@@ -129,6 +129,14 @@ Helping Today:
129129
130130# Part 1: Neural-network basics -- and fun applications.
131131
132+ ## Machine learning
133+
134+ - Machine learns underlying patterns and relations in given data to produce an output.
135+
136+ - Machine learning is accomplished by learning a mathematical function that can represent the data.
137+
138+ - Learning can be supervised, unsupervised, semi-supervised, self-supervised, reinforcement etc.
139+
132140## Fitting a straight line I {.smaller}
133141
134142- Consider the data:
@@ -360,6 +368,39 @@ Image source: [3Blue1Brown](https://www.3blue1brown.com/topics/neural-networks)
360368 - I have never met anyone actually training models in C++; I find it a bit weird.
361369- See the PyTorch website: [ https://pytorch.org/ ] ( https://pytorch.org/ )
362370
371+ ## Getting to the Exercise
372+ * Github Repository Cloning*
373+
374+ - Navigate to
375+ [ https://tinyurl.com/ml-iccs-24 ] ( https://tinyurl.com/ml-iccs-24 )
376+ - Go to terminal and type in the below command
377+ - ` git clone https://github.com/Cambridge-ICCS/practical-ml-with-pytorch `
378+
379+ ## Using online platform
380+ * Using Colab*
381+
382+ ` https://tinyurl.com/4arrjjt5 `
383+
384+ * Using Jupyter Notebook*
385+
386+ - Download the repo from the [ https://tinyurl.com/ml-iccs-24 ] ( https://tinyurl.com/ml-iccs-24 )
387+ - ` cd <path_to_the_repo> `
388+ - ` jupyter notebook `
389+ - exercises/01_penguin_classification.ipynb
390+
391+ ## Creating virtual environment
392+ * Installing with venv*
393+
394+ - ` python3 -m venv venv `
395+ - ` source venv/bin/activate `
396+
397+ * Installing with conda*
398+
399+ - ` conda create -n ml-workshop "python>=3.9.10" `
400+ - ` conda activate ml-workshop `
401+ - ` cd practical-ml-with-PyTorch `
402+ ` pip install . `
403+
363404
364405# Other resources
365406
0 commit comments