@@ -3,7 +3,7 @@ title: "Climate Machine Learning Applications"
33subtitle : " NCAS Summer school 2025"
44format :
55 revealjs :
6- embed-resources : true
6+ embed-resources : false
77 slide-number : true
88 chalkboard : false
99 preview-links : auto
@@ -31,12 +31,7 @@ bibliography: references.bib
3131
3232## Teaching Material Recap {.smaller}
3333
34- Over the ML sessions at the summer school we have learnt about:
35-
36- - Classification - categorising items based on information
37- - Regression - using information to predict another value
38-
39- using:
34+ We have learnt the theory behind using:
4035
4136- ANNs - using input _ features_ to make predictions
4237- CNNs - using _ image-like_ data as an input
@@ -46,18 +41,18 @@ using:
4641
4742## _ Image-like_ data
4843
49- ![ ] ( https://web.archive.org/web/20250812154555if_/ http://colah.github.io/posts/2014-10-Visualizing-MNIST/img/mnist_pca/MNIST-p1815-1.png) {.absolute width=30% top=20% left=35%}
44+ ![ ] ( http://colah.github.io/posts/2014-10-Visualizing-MNIST/img/mnist_pca/MNIST-p1815-1.png ) {.absolute width=30% top=20% left=35%}
5045
5146::: {.fragment}
52- ![ ] ( https://web.archive.org/web/20250812154555if_/ http://colah.github.io/posts/2014-10-Visualizing-MNIST/img/mnist_pca/MNIST-PCA1.png) {.absolute width=30% top=20% left=35%}
47+ ![ ] ( http://colah.github.io/posts/2014-10-Visualizing-MNIST/img/mnist_pca/MNIST-PCA1.png ) {.absolute width=30% top=20% left=35%}
5348:::
5449
5550::: {.fragment}
56- ![ ] ( https://web.archive.org/web/20250812154621if_/ http://colah.github.io/posts/2014-10-Visualizing-MNIST/img/mnist_pca/MNIST-PCA1-4.png) {.absolute width=30% top=20% left=35%}
51+ ![ ] ( http://colah.github.io/posts/2014-10-Visualizing-MNIST/img/mnist_pca/MNIST-PCA1-4.png ) {.absolute width=30% top=20% left=35%}
5752:::
5853
5954::: {.fragment}
60- ![ ] ( https://web.archive.org/web/20171016213111if_/ http://mdpi.com/atmosphere/atmosphere-08-00024/article_deploy/html/images/atmosphere-08-00024-g005.png) {.absolute width=70% top=15% left=15%}
55+ ![ ] ( http://mdpi.com/atmosphere/atmosphere-08-00024/article_deploy/html/images/atmosphere-08-00024-g005.png ) {.absolute width=70% top=15% left=15%}
6156:::
6257
6358::: {.attribution}
@@ -74,7 +69,7 @@ NB: [colah provides an excellent article](https://colah.github.io/posts/2014-10-
7469
7570## Applications in geosciences: {.smaller}
7671
77- See review of @kashinath2021physics
72+ See review of @kashinath2021physics and @ gmd-16-6433-2023
7873
7974:::: {.columns}
8075::: {.column width="50%"}
@@ -88,17 +83,21 @@ See review of @kashinath2021physics
8883- Downscaling/Upsampling
8984 [ @harris2022generative ]
9085 <br >
86+ - Climate Emulators
87+ [ @watt2025ace2 ; @chapman2025camulator ; @Dheeshjith_2025]
88+ <br >
9189:::
9290
9391::: {.column width="50%"}
9492- Time series forecasting
95- [ @shao2021deep ]
93+ [ @shao2021deep ; @ nguyen2023climax ; @ bodnar2025foundation ]
9694 <br >
9795- Equation discovery
9896 [ @zanna2020data ; @ma2021data ]
9997 <br >
10098- Complete forecasting
101- [ @rasp2020weatherbench ; @pathak2022fourcastnet ; @bi2022pangu ]
99+ [ @pathak2022fourcastnet ; @bi2022pangu ; @rasp2024weatherbench ; @Kochkov_2024; @nathaniel2024chaosbench ]
100+ <br >
102101 <br >
103102
104103:::
@@ -188,7 +187,7 @@ Additional challenges:
188187- Train to predict _ 'image'_ from coarsened version.
189188 - Topography?
190189
191- ![ ] ( https://web.archive.org/web/20250907164310if_/https:// earthdatascience.org/images/earth-analytics/climate-data/downscale-climate-data-met.jpg )
190+ ![ ] ( https://earthdatascience.org/images/earth-analytics/climate-data/downscale-climate-data-met.jpg )
192191
193192::: {.attribution}
194193Image by [ Earth Lab] ( https://www.earthdatascience.org/courses/use-data-open-source-python/hierarchical-data-formats-hdf/intro-to-MACAv2-cmip5-data/ )
@@ -198,10 +197,10 @@ Image by [Earth Lab](https://www.earthdatascience.org/courses/use-data-open-sour
198197## Forecasting {.smaller}
199198
200199- Time-series
201- - popular use
202200 - Recurrent Neural Nets
203201- Complete weather
204- - FourCastNet, Pangu-Weather, GraphCast, NeuralGCM
202+ - FourCastNet, Pangu-Weather,
203+ - GraphCast, NeuralGCM
205204
206205![ ] ( https://media.springernature.com/full/springer-static/image/art%3A10.1038%2Fs41586-023-06185-3/MediaObjects/41586_2023_6185_Fig2_HTML.png?as=webp ) {.absolute bottom=0% left=0% width=48%}
207206
@@ -216,6 +215,28 @@ Global image from NVIDIA FourCastNet
216215Speaker notes go here.
217216:::
218217
218+ ## Differentiable Models
219+
220+ - Online training
221+ - End-to-end differentiable GCMs
222+ - Greater stability
223+
224+ ![ ] ( https://storage.googleapis.com/gweb-research2023-media/images/NeuralGCM-img1.width-1250.png ) {.absolute bottom=10% left=10% width=100%}
225+
226+ ::: {.attribution}
227+ Images from Google NeuralGCM
228+ :::
229+
230+
231+ ## Foundation Models
232+ - Pretrained on large amount of heterogeneous climate datasets
233+ - Aims to learn general purpose representations of dynamic
234+ - Fine tune for specific forecasting tasks
235+ - Examples:
236+ - ClimaX, Microsoft Aurora
237+
238+
239+
219240# Challenges
220241
221242## Training data - considerations {.smaller}
@@ -287,7 +308,7 @@ Replacing physics-based components of larger models (emulation or data-driven) r
287308- Language interoperation
288309- Physical compatibility
289310
290- ![ ] ( https://web.archive.org/web/20250718183653if_/https:// upload.wikimedia.org/wikipedia/commons/thumb/5/55/Mathematical_Bridge_tangents.jpg/250px-Mathematical_Bridge_tangents.jpg ) {style="border-radius: 50%;" .absolute top=40% left=30% width=40%}
311+ ![ ] ( https://upload.wikimedia.org/wikipedia/commons/thumb/5/55/Mathematical_Bridge_tangents.jpg/250px-Mathematical_Bridge_tangents.jpg ) {style="border-radius: 50%;" .absolute top=40% left=30% width=40%}
291312
292313::: {.attribution}
293314[ Mathematical Bridge] ( https://upload.wikimedia.org/wikipedia/commons/thumb/5/55/Mathematical_Bridge_tangents.jpg/250px-Mathematical_Bridge_tangents.jpg )
@@ -303,7 +324,7 @@ used under [CC BY-SA 3.0](https://creativecommons.org/licenses/by-sa/3.0/deed.en
303324
304325![ ] ( https://raw.githubusercontent.com/pytorch/pytorch/main/docs/source/_static/img/pytorch-logo-dark.png ) {style="background-image: radial-gradient(gray 40%, black);" .absolute top=65% left=5% width=20%}
305326
306- ![ ] ( https://web.archive.org/web/20250825230804if_/https:// upload.wikimedia.org/wikipedia/commons/1/11/TensorFlowLogo.svg ) {.absolute top=75% left=7.5% width=15%}
327+ ![ ] ( https://upload.wikimedia.org/wikipedia/commons/1/11/TensorFlowLogo.svg ) {.absolute top=75% left=7.5% width=15%}
307328
308329
309330
@@ -393,7 +414,7 @@ runtime
393414
394415![ ] ( https://raw.githubusercontent.com/pytorch/pytorch/main/docs/source/_static/img/pytorch-logo-dark.png ) {style="background-image: radial-gradient(gray 40%, black);" .absolute bottom=12.5% right=22% height=10%}
395416
396- ![ ] ( https://web.archive.org/web/20250825230804if_/https:// upload.wikimedia.org/wikipedia/commons/1/11/TensorFlowLogo.svg ) {.absolute bottom=10% left=82% height=15%}
417+ ![ ] ( https://upload.wikimedia.org/wikipedia/commons/1/11/TensorFlowLogo.svg ) {.absolute bottom=10% left=82% height=15%}
397418
398419
399420
0 commit comments