Skip to content

Commit e488dc0

Browse files
committed
Update slides, fix broken image fetching
Added new references, added slides on differentiable models and foundation models. Websites now seem to be blocking downloads of images, possibly due to the rise in AI bot scraping therefore set quarto to dynamically load images.
1 parent f0fd81a commit e488dc0

File tree

1 file changed

+41
-20
lines changed

1 file changed

+41
-20
lines changed

slides/applications.qmd

Lines changed: 41 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@ title: "Climate Machine Learning Applications"
33
subtitle: "NCAS Summer school 2025"
44
format:
55
revealjs:
6-
embed-resources: true
6+
embed-resources: false
77
slide-number: true
88
chalkboard: false
99
preview-links: auto
@@ -31,12 +31,7 @@ bibliography: references.bib
3131

3232
## Teaching Material Recap {.smaller}
3333

34-
Over the ML sessions at the summer school we have learnt about:
35-
36-
- Classification - categorising items based on information
37-
- Regression - using information to predict another value
38-
39-
using:
34+
We have learnt the theory behind using:
4035

4136
- ANNs - using input _features_ to make predictions
4237
- CNNs - using _image-like_ data as an input
@@ -46,18 +41,18 @@ using:
4641

4742
## _Image-like_ data
4843

49-
![](https://web.archive.org/web/20250812154555if_/http://colah.github.io/posts/2014-10-Visualizing-MNIST/img/mnist_pca/MNIST-p1815-1.png){.absolute width=30% top=20% left=35%}
44+
![](http://colah.github.io/posts/2014-10-Visualizing-MNIST/img/mnist_pca/MNIST-p1815-1.png){.absolute width=30% top=20% left=35%}
5045

5146
::: {.fragment}
52-
![](https://web.archive.org/web/20250812154555if_/http://colah.github.io/posts/2014-10-Visualizing-MNIST/img/mnist_pca/MNIST-PCA1.png){.absolute width=30% top=20% left=35%}
47+
![](http://colah.github.io/posts/2014-10-Visualizing-MNIST/img/mnist_pca/MNIST-PCA1.png){.absolute width=30% top=20% left=35%}
5348
:::
5449

5550
::: {.fragment}
56-
![](https://web.archive.org/web/20250812154621if_/http://colah.github.io/posts/2014-10-Visualizing-MNIST/img/mnist_pca/MNIST-PCA1-4.png){.absolute width=30% top=20% left=35%}
51+
![](http://colah.github.io/posts/2014-10-Visualizing-MNIST/img/mnist_pca/MNIST-PCA1-4.png){.absolute width=30% top=20% left=35%}
5752
:::
5853

5954
::: {.fragment}
60-
![](https://web.archive.org/web/20171016213111if_/http://mdpi.com/atmosphere/atmosphere-08-00024/article_deploy/html/images/atmosphere-08-00024-g005.png){.absolute width=70% top=15% left=15%}
55+
![](http://mdpi.com/atmosphere/atmosphere-08-00024/article_deploy/html/images/atmosphere-08-00024-g005.png){.absolute width=70% top=15% left=15%}
6156
:::
6257

6358
::: {.attribution}
@@ -74,7 +69,7 @@ NB: [colah provides an excellent article](https://colah.github.io/posts/2014-10-
7469

7570
## Applications in geosciences: {.smaller}
7671

77-
See review of @kashinath2021physics
72+
See review of @kashinath2021physics and @gmd-16-6433-2023
7873

7974
:::: {.columns}
8075
::: {.column width="50%"}
@@ -88,17 +83,21 @@ See review of @kashinath2021physics
8883
- Downscaling/Upsampling
8984
[@harris2022generative]
9085
<br>
86+
- Climate Emulators
87+
[@watt2025ace2; @chapman2025camulator; @Dheeshjith_2025]
88+
<br>
9189
:::
9290

9391
::: {.column width="50%"}
9492
- Time series forecasting
95-
[@shao2021deep]
93+
[@shao2021deep; @nguyen2023climax; @bodnar2025foundation]
9694
<br>
9795
- Equation discovery
9896
[@zanna2020data; @ma2021data]
9997
<br>
10098
- Complete forecasting
101-
[@rasp2020weatherbench; @pathak2022fourcastnet; @bi2022pangu]
99+
[@pathak2022fourcastnet; @bi2022pangu; @rasp2024weatherbench; @Kochkov_2024; @nathaniel2024chaosbench]
100+
<br>
102101
<br>
103102

104103
:::
@@ -188,7 +187,7 @@ Additional challenges:
188187
- Train to predict _'image'_ from coarsened version.
189188
- Topography?
190189

191-
![](https://web.archive.org/web/20250907164310if_/https://earthdatascience.org/images/earth-analytics/climate-data/downscale-climate-data-met.jpg)
190+
![](https://earthdatascience.org/images/earth-analytics/climate-data/downscale-climate-data-met.jpg)
192191

193192
::: {.attribution}
194193
Image by [Earth Lab](https://www.earthdatascience.org/courses/use-data-open-source-python/hierarchical-data-formats-hdf/intro-to-MACAv2-cmip5-data/)
@@ -198,10 +197,10 @@ Image by [Earth Lab](https://www.earthdatascience.org/courses/use-data-open-sour
198197
## Forecasting {.smaller}
199198

200199
- Time-series
201-
- popular use
202200
- Recurrent Neural Nets
203201
- Complete weather
204-
- FourCastNet, Pangu-Weather, GraphCast, NeuralGCM
202+
- FourCastNet, Pangu-Weather,
203+
- GraphCast, NeuralGCM
205204

206205
![](https://media.springernature.com/full/springer-static/image/art%3A10.1038%2Fs41586-023-06185-3/MediaObjects/41586_2023_6185_Fig2_HTML.png?as=webp){.absolute bottom=0% left=0% width=48%}
207206

@@ -216,6 +215,28 @@ Global image from NVIDIA FourCastNet
216215
Speaker notes go here.
217216
:::
218217

218+
## Differentiable Models
219+
220+
- Online training
221+
- End-to-end differentiable GCMs
222+
- Greater stability
223+
224+
![](https://storage.googleapis.com/gweb-research2023-media/images/NeuralGCM-img1.width-1250.png){.absolute bottom=10% left=10% width=100%}
225+
226+
::: {.attribution}
227+
Images from Google NeuralGCM
228+
:::
229+
230+
231+
## Foundation Models
232+
- Pretrained on large amount of heterogeneous climate datasets
233+
- Aims to learn general purpose representations of dynamic
234+
- Fine tune for specific forecasting tasks
235+
- Examples:
236+
- ClimaX, Microsoft Aurora
237+
238+
239+
219240
# Challenges
220241

221242
## Training data - considerations {.smaller}
@@ -287,7 +308,7 @@ Replacing physics-based components of larger models (emulation or data-driven) r
287308
- Language interoperation
288309
- Physical compatibility
289310

290-
![]( https://web.archive.org/web/20250718183653if_/https://upload.wikimedia.org/wikipedia/commons/thumb/5/55/Mathematical_Bridge_tangents.jpg/250px-Mathematical_Bridge_tangents.jpg ){style="border-radius: 50%;" .absolute top=40% left=30% width=40%}
311+
![]( https://upload.wikimedia.org/wikipedia/commons/thumb/5/55/Mathematical_Bridge_tangents.jpg/250px-Mathematical_Bridge_tangents.jpg ){style="border-radius: 50%;" .absolute top=40% left=30% width=40%}
291312

292313
::: {.attribution}
293314
[Mathematical Bridge](https://upload.wikimedia.org/wikipedia/commons/thumb/5/55/Mathematical_Bridge_tangents.jpg/250px-Mathematical_Bridge_tangents.jpg)
@@ -303,7 +324,7 @@ used under [CC BY-SA 3.0](https://creativecommons.org/licenses/by-sa/3.0/deed.en
303324

304325
![](https://raw.githubusercontent.com/pytorch/pytorch/main/docs/source/_static/img/pytorch-logo-dark.png){style="background-image: radial-gradient(gray 40%, black);" .absolute top=65% left=5% width=20%}
305326

306-
![]( https://web.archive.org/web/20250825230804if_/https://upload.wikimedia.org/wikipedia/commons/1/11/TensorFlowLogo.svg ){.absolute top=75% left=7.5% width=15%}
327+
![]( https://upload.wikimedia.org/wikipedia/commons/1/11/TensorFlowLogo.svg ){.absolute top=75% left=7.5% width=15%}
307328

308329

309330

@@ -393,7 +414,7 @@ runtime
393414

394415
![](https://raw.githubusercontent.com/pytorch/pytorch/main/docs/source/_static/img/pytorch-logo-dark.png){style="background-image: radial-gradient(gray 40%, black);" .absolute bottom=12.5% right=22% height=10%}
395416

396-
![](https://web.archive.org/web/20250825230804if_/https://upload.wikimedia.org/wikipedia/commons/1/11/TensorFlowLogo.svg){.absolute bottom=10% left=82% height=15%}
417+
![](https://upload.wikimedia.org/wikipedia/commons/1/11/TensorFlowLogo.svg){.absolute bottom=10% left=82% height=15%}
397418

398419

399420

0 commit comments

Comments
 (0)