diff --git "a/assignments/ejalice/03-\354\265\234\354\235\200\354\247\200.ipynb" "b/assignments/ejalice/03-\354\265\234\354\235\200\354\247\200.ipynb" new file mode 100644 index 0000000..2aebe23 --- /dev/null +++ "b/assignments/ejalice/03-\354\265\234\354\235\200\354\247\200.ipynb" @@ -0,0 +1,590 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Country nameRegional indicatorLadder scoreStandard error of ladder scoreupperwhiskerlowerwhiskerLogged GDP per capitaSocial supportHealthy life expectancyFreedom to make life choicesGenerosityPerceptions of corruptionLadder score in DystopiaExplained by: Log GDP per capitaExplained by: Social supportExplained by: Healthy life expectancyExplained by: Freedom to make life choicesExplained by: GenerosityExplained by: Perceptions of corruptionDystopia + residual
0FinlandWestern Europe7.8420.0327.9047.78010.7750.95472.0000.949-0.0980.1862.431.4461.1060.7410.6910.1240.4813.253
1DenmarkWestern Europe7.6200.0357.6877.55210.9330.95472.7000.9460.0300.1792.431.5021.1080.7630.6860.2080.4852.868
2SwitzerlandWestern Europe7.5710.0367.6437.50011.1170.94274.4000.9190.0250.2922.431.5661.0790.8160.6530.2040.4132.839
3IcelandWestern Europe7.5540.0597.6707.43810.8780.98373.0000.9550.1600.6732.431.4821.1720.7720.6980.2930.1702.967
4NetherlandsWestern Europe7.4640.0277.5187.41010.9320.94272.4000.9130.1750.3382.431.5011.0790.7530.6470.3020.3842.798
...............................................................
144LesothoSub-Saharan Africa3.5120.1203.7483.2767.9260.78748.7000.715-0.1310.9152.430.4510.7310.0070.4050.1030.0151.800
145BotswanaSub-Saharan Africa3.4670.0743.6113.3229.7820.78459.2690.824-0.2460.8012.431.0990.7240.3400.5390.0270.0880.648
146RwandaSub-Saharan Africa3.4150.0683.5483.2827.6760.55261.4000.8970.0610.1672.430.3640.2020.4070.6270.2270.4931.095
147ZimbabweSub-Saharan Africa3.1450.0583.2593.0307.9430.75056.2010.677-0.0470.8212.430.4570.6490.2430.3590.1570.0751.205
148AfghanistanSouth Asia2.5230.0382.5962.4497.6950.46352.4930.382-0.1020.9242.430.3700.0000.1260.0000.1220.0101.895
\n", + "

149 rows × 20 columns

\n", + "
" + ], + "text/plain": [ + " Country name Regional indicator Ladder score \\\n", + "0 Finland Western Europe 7.842 \n", + "1 Denmark Western Europe 7.620 \n", + "2 Switzerland Western Europe 7.571 \n", + "3 Iceland Western Europe 7.554 \n", + "4 Netherlands Western Europe 7.464 \n", + ".. ... ... ... \n", + "144 Lesotho Sub-Saharan Africa 3.512 \n", + "145 Botswana Sub-Saharan Africa 3.467 \n", + "146 Rwanda Sub-Saharan Africa 3.415 \n", + "147 Zimbabwe Sub-Saharan Africa 3.145 \n", + "148 Afghanistan South Asia 2.523 \n", + "\n", + " Standard error of ladder score upperwhisker lowerwhisker \\\n", + "0 0.032 7.904 7.780 \n", + "1 0.035 7.687 7.552 \n", + "2 0.036 7.643 7.500 \n", + "3 0.059 7.670 7.438 \n", + "4 0.027 7.518 7.410 \n", + ".. ... ... ... \n", + "144 0.120 3.748 3.276 \n", + "145 0.074 3.611 3.322 \n", + "146 0.068 3.548 3.282 \n", + "147 0.058 3.259 3.030 \n", + "148 0.038 2.596 2.449 \n", + "\n", + " Logged GDP per capita Social support Healthy life expectancy \\\n", + "0 10.775 0.954 72.000 \n", + "1 10.933 0.954 72.700 \n", + "2 11.117 0.942 74.400 \n", + "3 10.878 0.983 73.000 \n", + "4 10.932 0.942 72.400 \n", + ".. ... ... ... \n", + "144 7.926 0.787 48.700 \n", + "145 9.782 0.784 59.269 \n", + "146 7.676 0.552 61.400 \n", + "147 7.943 0.750 56.201 \n", + "148 7.695 0.463 52.493 \n", + "\n", + " Freedom to make life choices Generosity Perceptions of corruption \\\n", + "0 0.949 -0.098 0.186 \n", + "1 0.946 0.030 0.179 \n", + "2 0.919 0.025 0.292 \n", + "3 0.955 0.160 0.673 \n", + "4 0.913 0.175 0.338 \n", + ".. ... ... ... \n", + "144 0.715 -0.131 0.915 \n", + "145 0.824 -0.246 0.801 \n", + "146 0.897 0.061 0.167 \n", + "147 0.677 -0.047 0.821 \n", + "148 0.382 -0.102 0.924 \n", + "\n", + " Ladder score in Dystopia Explained by: Log GDP per capita \\\n", + "0 2.43 1.446 \n", + "1 2.43 1.502 \n", + "2 2.43 1.566 \n", + "3 2.43 1.482 \n", + "4 2.43 1.501 \n", + ".. ... ... \n", + "144 2.43 0.451 \n", + "145 2.43 1.099 \n", + "146 2.43 0.364 \n", + "147 2.43 0.457 \n", + "148 2.43 0.370 \n", + "\n", + " Explained by: Social support Explained by: Healthy life expectancy \\\n", + "0 1.106 0.741 \n", + "1 1.108 0.763 \n", + "2 1.079 0.816 \n", + "3 1.172 0.772 \n", + "4 1.079 0.753 \n", + ".. ... ... \n", + "144 0.731 0.007 \n", + "145 0.724 0.340 \n", + "146 0.202 0.407 \n", + "147 0.649 0.243 \n", + "148 0.000 0.126 \n", + "\n", + " Explained by: Freedom to make life choices Explained by: Generosity \\\n", + "0 0.691 0.124 \n", + "1 0.686 0.208 \n", + "2 0.653 0.204 \n", + "3 0.698 0.293 \n", + "4 0.647 0.302 \n", + ".. ... ... \n", + "144 0.405 0.103 \n", + "145 0.539 0.027 \n", + "146 0.627 0.227 \n", + "147 0.359 0.157 \n", + "148 0.000 0.122 \n", + "\n", + " Explained by: Perceptions of corruption Dystopia + residual \n", + "0 0.481 3.253 \n", + "1 0.485 2.868 \n", + "2 0.413 2.839 \n", + "3 0.170 2.967 \n", + "4 0.384 2.798 \n", + ".. ... ... \n", + "144 0.015 1.800 \n", + "145 0.088 0.648 \n", + "146 0.493 1.095 \n", + "147 0.075 1.205 \n", + "148 0.010 1.895 \n", + "\n", + "[149 rows x 20 columns]" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.read_csv('./world-happiness-report-2021.csv')\n", + "df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Assignment 1\n", + "행복 지수를 1점 간격으로 두고 다음과 같은 **Histogram**을 작성 해 주세요.\n", + "행복 지수의 키 값은 \"Ladder score\" 입니다." + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAVQ0lEQVR4nO3de9RddX3n8fcHgnIRCkhgwkXTadHKaItOpCrWtgKWihjqFC+rdILS4nSsxU5nnNRZs9Y4rra4qi47LJ1ZFMVUrBVFCxVHzcRia1EgXBQQLF4iKJEEELlolct3/ti/6CHJEx5C9nOeJ7/3a62zzr6dvb/7Wcnn/M7v7P07qSokSf3YZdoFSJLmlsEvSZ0x+CWpMwa/JHXG4Jekzhj8ktQZg19dSvKkJPcm2XXatUhzzeDX1CRZl+TYzZadmuRzYx+7qm6uqidU1YNjH2s2kpyW5MYk9yS5LcnFSfaedl3aOS2adgFS75L8MvCnwPFVdXWS/YETd/AxFlXVAztyn1q4bPFrXkuyMsnXWkv4y0l+Y2LdqUn+KclZSb7XWszHTKy/JMmfJbm8rb+whSpJliapJIsmtn1L2989ST6d5ICJfT0nyaVJ7kryxSS/slkdX2+v+0aS32rLfzbJZ9uxb0/yoRlO89nA56vqaoCqurOqVlXVPW0/eyR5e5Jvtn19Lskebd1Lk1zf6rokydMm6lqX5L8m+RJwX5JF2zoPdaSqfPiYygNYBxy72bJTgc9NzJ8MHMzQSHkFcB+wZGLbB4A/BHZr678H7N/WXwJ8G3g6sBdwAXBeW7cUKGDRxLZfA54C7NHmz2zrDgHuAF7c6jiuzS9u+70beGrbdgnwb9r0B4H/1l6zO/D8Gf4OvwT8AHgzcDTw+M3Wv6vVcwiwK/A84PGt1vtaPbsBbwS+Cjxu4u97DXBYO6cZz2Pa/xZ8zO3DFr+m7W9b6/OuJHcB755cWVUfrqpbq+qhqvoQcBNw1MQmG4B3VtX9bf1XgBMm1r+/qq6rqvuA/w68fBtf6J5bVf9cVT8AzgeObMtPAT5RVZ9odawG1jIEKMBDwNOT7FFV66vq+rb8fuDJwMFV9S9VtdXvLqrqH4GXAc8CLgbuSPKOJLsm2QV4DXBGVX27qh6sqkur6ocMb3QXV9XqqrofeBtDwD9vYvf/q6puaef0SOehThj8mraTqmrfTQ/gP06uTPLvk1wz8cbwdOCAiU2+XVWTIw1+k+ETwia3bLZut81eP+k7E9PfB57Qpp8MnLzZG9TzGT553McQwP8BWN++lP259ro3AgEub90xr5npj1BV/7eqTgT2B5YzfJr5nVbr7gyfRjZ3cDunTft4qJ3vITOc/4znMVNd2jkZ/Jq3kjwZ+Evg94EntjeG6xjCdJNDkkzOPwm4dWL+sM3W3Q/c/ihLuYXhk8O+E4+9qupMgKr6VFUdxxCgN7aaqarvVNXvVtXBwGuBdyf52W0dqLXE1wCfYXiTux34F+BntrL5rQxhDkD7OxzG0L31413O9jzUD4Nf89leDMG1ESDJqxnCcNKBwB8k2S3JycDTgE9MrD8lyRFJ9gT+J/CRevSXcJ4HnJjk11r3y+5JfiXJoUkOal+w7gX8ELgXeLDVe3KSQ9s+vtvOZYtjJ1me5JVJ9svgKOCXgS+0Vvx7gXckObgd/7lJHs/QHXVCkmOS7Ab8Uavh0kd7Ho/y76EFzuDXvFVVXwbeDnweuA14BvBPm212GXA4Q8v4T4DfrKo7Jta/H3gfQzfO7sAfbEcdtzB0v7yJ4U3oFuC/MPz/2YUhcG8F7mQI7E3dVc8GLktyL3ARQz/9N7ZyiO8Cv8vw/cXdDAH951X1gbb+PwPXAle0Y7wV2KWqvsLQb39WO/8TgROr6kfbcR7qSB7ePSotHElOBX6nqp4/w/pLGK7iOWcu65LmO9/pJakzBr8kdcauHknqjC1+SerMghik7YADDqilS5dOuwxJWlCuvPLK26tq8ebLF0TwL126lLVr1067DElaUJJ8c2vL7eqRpM6M2uJPsg64h+FuxQeqalkbFvdDDKMjrgNeXlXfHbMOSdJPzEWL/1er6siqWtbmVwJrqupwYE2blyTNkWl09SwHVrXpVcBJU6hBkro1dvAX8OkkVyY5vS07qKrWA7TnA7f2wiSnJ1mbZO3GjRtHLlOS+jH2VT1HV9WtSQ4EVie5cbYvrKqzgbMBli1b5l1mkrSDjNrir6pb2/MG4GMMv5x0W5IlAO15w5g1SJIebrTgT7JXkr03TQMvYvgRjYuAFW2zFcCFY9UgSdrSmF09BwEfaz+OtAj466r6ZJIrgPOTnAbczPBj2pKkOTJa8FfV14Ff2MryO4BjxjquNJOlKy+edgmztu7MEx55I2k7eeeuJHXG4Jekzhj8ktQZg1+SOmPwS1JnDH5J6ozBL0mdMfglqTMGvyR1xuCXpM4Y/JLUGYNfkjpj8EtSZwx+SeqMwS9JnTH4JakzBr8kdcbgl6TOGPyS1BmDX5I6Y/BLUmcMfknqjMEvSZ0x+CWpMwa/JHXG4Jekzhj8ktQZg1+SOmPwS1JnDH5J6ozBL0mdMfglqTMGvyR1xuCXpM6MHvxJdk1ydZKPt/n9k6xOclN73m/sGiRJPzEXLf4zgBsm5lcCa6rqcGBNm5ckzZFRgz/JocAJwDkTi5cDq9r0KuCkMWuQJD3c2C3+dwJvBB6aWHZQVa0HaM8Hbu2FSU5PsjbJ2o0bN45cpiT1Y7TgT/ISYENVXbk9r6+qs6tqWVUtW7x48Q6uTpL6tWjEfR8NvDTJi4HdgX2SnAfclmRJVa1PsgTYMGINkqTNjNbir6o/rqpDq2op8ErgM1V1CnARsKJttgK4cKwaJElbmsZ1/GcCxyW5CTiuzUuS5siYXT0/VlWXAJe06TuAY+biuJKkLXnnriR1xuCXpM4Y/JLUGYNfkjpj8EtSZwx+SeqMwS9JnTH4JakzBr8kdcbgl6TOGPyS1Jk5GatHO6elKy+edgmStoMtfknqjMEvSZ0x+CWpM/bxS/PQQvv+ZN2ZJ0y7BD0KtvglqTMGvyR1xuCXpM4Y/JLUGYNfkjpj8EtSZwx+SeqMwS9JnTH4JakzBr8kdcbgl6TOGPyS1BmDX5I6Y/BLUmcMfknqjMEvSZ0x+CWpM6MFf5Ldk1ye5ItJrk/y5rZ8/ySrk9zUnvcbqwZJ0pbGbPH/EHhhVf0CcCRwfJLnACuBNVV1OLCmzUuS5showV+De9vsbu1RwHJgVVu+CjhprBokSVsatY8/ya5JrgE2AKur6jLgoKpaD9CeD5zhtacnWZtk7caNG8csU5K6MmrwV9WDVXUkcChwVJKnP4rXnl1Vy6pq2eLFi0erUZJ6MydX9VTVXcAlwPHAbUmWALTnDXNRgyRpMOZVPYuT7Num9wCOBW4ELgJWtM1WABeOVYMkaUuLRtz3EmBVkl0Z3mDOr6qPJ/k8cH6S04CbgZNHrEGStJnRgr+qvgQ8cyvL7wCOGeu4kqRt885dSerMrII/yZrZLJMkzX/b7OpJsjuwJ3BAG1ohbdU+wMEj1yZJGsEj9fG/FngDQ8hfyU+C/27gXeOVJUkayzaDv6r+AviLJK+vqrPmqCZJ0ohmdVVPVZ2V5HnA0snXVNVfjVSXJGkkswr+JO8Hfga4BniwLS7A4JekBWa21/EvA46oqhqzGEnS+GZ7Hf91wL8asxBJ0tyYbYv/AODLSS5n+IEVAKrqpaNUJUkazWyD/3+MWYQkae7M9qqez45diCRpbsz2qp57GK7iAXgcw88o3ldV+4xVmCRpHLNt8e89OZ/kJOCoMQqSJI1ru0bnrKq/BV64Y0uRJM2F2Xb1vGxidheG6/q9pl+SFqDZXtVz4sT0A8A6YPkOr0aSNLrZ9vG/euxCJElzY7Y/xHJoko8l2ZDktiQXJDl07OIkSTvebL/cPRe4iGFc/kOAv2vLJEkLzGyDf3FVnVtVD7TH+4DFI9YlSRrJbIP/9iSnJNm1PU4B7hizMEnSOGYb/K8BXg58B1gP/CbgF76StADN9nLOtwArquq7AEn2B97G8IYgSVpAZtvi//lNoQ9QVXcCzxynJEnSmGYb/Lsk2W/TTGvxz/bTgiRpHplteL8duDTJRxiGang58CejVSVJGs1s79z9qyRrGQZmC/CyqvryqJVJkkYx6+6aFvSGvSQtcNs1LLMkaeEy+CWpMwa/JHXG4JekzowW/EkOS/L3SW5Icn2SM9ry/ZOsTnJTe97vkfYlSdpxxmzxPwD8UVU9DXgO8LokRwArgTVVdTiwps1LkubIaMFfVeur6qo2fQ9wA8NY/suBVW2zVcBJY9UgSdrSnPTxJ1nKMLbPZcBBVbUehjcH4MAZXnN6krVJ1m7cuHEuypSkLowe/EmeAFwAvKGq7p7t66rq7KpaVlXLFi/2N18kaUcZNfiT7MYQ+h+oqo+2xbclWdLWLwE2jFmDJOnhxryqJ8B7gBuq6h0Tqy4CVrTpFcCFY9UgSdrSmEMrHw38NnBtkmvasjcBZwLnJzkNuBk4ecQaJEmbGS34q+pzDCN5bs0xYx1XkrRt3rkrSZ0x+CWpMwa/JHXG4Jekzhj8ktQZg1+SOmPwS1JnxryBS1Inlq68eNolzNq6M0+YdglTZ4tfkjpj8EtSZwx+SeqMwS9JnTH4JakzBr8kdcbgl6TOGPyS1BmDX5I6Y/BLUmcMfknqjMEvSZ0x+CWpMwa/JHXG4Jekzhj8ktQZg1+SOmPwS1JnDH5J6ozBL0mdMfglqTMGvyR1xuCXpM4Y/JLUmUXTLkAPt3TlxdMuQdJObrQWf5L3JtmQ5LqJZfsnWZ3kpva831jHlyRt3ZhdPe8Djt9s2UpgTVUdDqxp85KkOTRa8FfVPwB3brZ4ObCqTa8CThrr+JKkrZvrL3cPqqr1AO35wDk+viR1b95e1ZPk9CRrk6zduHHjtMuRpJ3GXAf/bUmWALTnDTNtWFVnV9Wyqlq2ePHiOStQknZ2cx38FwEr2vQK4MI5Pr4kdW/Myzk/CHweeGqSbyU5DTgTOC7JTcBxbV6SNIdGu4Grql41w6pjxjqmJOmRzdsvdyVJ4zD4JakzBr8kdcbgl6TOGPyS1BmDX5I6Y/BLUmcMfknqjMEvSZ0x+CWpMwa/JHXG4Jekzhj8ktQZg1+SOmPwS1JnDH5J6ozBL0mdMfglqTMGvyR1xuCXpM4Y/JLUGYNfkjpj8EtSZwx+SeqMwS9JnTH4JakzBr8kdcbgl6TOGPyS1BmDX5I6Y/BLUmcMfknqjMEvSZ1ZNO0CxrZ05cXTLkGS5pWptPiTHJ/kK0m+mmTlNGqQpF7NefAn2RV4F/DrwBHAq5IcMdd1SFKvptHiPwr4alV9vap+BPwNsHwKdUhSl6bRx38IcMvE/LeAX9x8oySnA6e32XuTfGU7j3cAcPt2vnYaFlK9C6lWWFj1LqRaYQHVm7cunFqbx1Lvk7e2cBrBn60sqy0WVJ0NnP2YD5asraplj3U/c2Uh1buQaoWFVe9CqhUWVr0LqVYYp95pdPV8CzhsYv5Q4NYp1CFJXZpG8F8BHJ7kp5M8DnglcNEU6pCkLs15V09VPZDk94FPAbsC762q60c85GPuLppjC6nehVQrLKx6F1KtsLDqXUi1wgj1pmqL7nVJ0k7MIRskqTMGvyR1ZqcN/iSHJfn7JDckuT7JGdOuaSZJdk9yeZIvtlrfPO2aHkmSXZNcneTj067lkSRZl+TaJNckWTvteh5Jkn2TfCTJje3f73OnXdPWJHlq+5tuetyd5A3TrmsmSf6w/f+6LskHk+w+7Zq2JckZrdbrd/Tfdaft40+yBFhSVVcl2Ru4Ejipqr485dK2kCTAXlV1b5LdgM8BZ1TVF6Zc2oyS/CdgGbBPVb1k2vVsS5J1wLKqWhA37SRZBfxjVZ3Trnzbs6rumnJZ29SGYvk28ItV9c1p17O5JIcw/L86oqp+kOR84BNV9b7pVrZ1SZ7OMKrBUcCPgE8Cv1dVN+2I/e+0Lf6qWl9VV7Xpe4AbGO4anndqcG+b3a095u07cpJDgROAc6Zdy84myT7AC4D3AFTVj+Z76DfHAF+bj6E/YRGwR5JFwJ7M7/uHngZ8oaq+X1UPAJ8FfmNH7XynDf5JSZYCzwQum3IpM2pdJ9cAG4DVVTVvawXeCbwReGjKdcxWAZ9OcmUbCmQ++9fARuDc1pV2TpK9pl3ULLwS+OC0i5hJVX0beBtwM7Ae+F5VfXq6VW3TdcALkjwxyZ7Ai3n4ja+PyU4f/EmeAFwAvKGq7p52PTOpqger6kiGO5mPah/15p0kLwE2VNWV067lUTi6qp7FMCLs65K8YNoFbcMi4FnA/66qZwL3AfN66PLWHfVS4MPTrmUmSfZjGAzyp4GDgb2SnDLdqmZWVTcAbwVWM3TzfBF4YEftf6cO/tZffgHwgar66LTrmY32sf4S4PjpVjKjo4GXtn7zvwFemOS86Za0bVV1a3veAHyMod90vvoW8K2JT3wfYXgjmM9+Hbiqqm6bdiHbcCzwjaraWFX3Ax8Fnjflmrapqt5TVc+qqhcAdwI7pH8fduLgb1+Yvge4oareMe16tiXJ4iT7tuk9GP6R3jjVomZQVX9cVYdW1VKGj/efqap523JKslf7cp/WZfIiho/R81JVfQe4JclT26JjgHl3QcJmXsU87uZpbgaek2TPlg3HMHzvN28lObA9Pwl4GTvwb7wz//Ti0cBvA9e2vnOAN1XVJ6ZX0oyWAKvalRG7AOdX1by/THKBOAj42PB/nUXAX1fVJ6db0iN6PfCB1oXydeDVU65nRq3/+TjgtdOuZVuq6rIkHwGuYugyuZr5P3TDBUmeCNwPvK6qvrujdrzTXs4pSdq6nbarR5K0dQa/JHXG4Jekzhj8ktQZg1+SOmPwS1JnDH5pJG0wMGneMfilCe1O34vbbyNcl+QVSZ6d5NK27PIke7ffUDi3jfN/dZJfba8/NcmHk/wdw8BweyV5b5Ir2nbLp3yK0k595660PY4Hbq2qEwCS/BTDXZ6vqKor2rDJPwDOAKiqZyT5OYaQf0rbx3OBn6+qO5P8KcOwFq9pw3JcnuT/VdV9c3xe0o/Z4pce7lrg2CRvTfJLwJOA9VV1BUBV3d3GR38+8P627Ebgm8Cm4F9dVXe26RcBK9uwIZcAu7d9SlNji1+aUFX/nOTfMox//mfAp9n6j+JkG7uZbM0H+HdV9ZUdV6X02NjilyYkORj4flWdx/DDHc8BDk7y7LZ+7/al7T8Av9WWPYWhFb+1cP8U8Po2IiRJnjn+WUjbZotferhnAH+e5CGGURF/j6HVflYbMvsHDMNmvxv4P0muZRjt8dSq+mHL90lvYfjFsi+18F8HzOvfKNbOz9E5JakzdvVIUmcMfknqjMEvSZ0x+CWpMwa/JHXG4Jekzhj8ktSZ/w/7HJiff+6ymAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "s=df[\"Ladder score\"]\n", + "plt.hist(s, [i for i in range(2, 10)])\n", + "plt.xlabel(\"score\")\n", + "plt.ylabel(\"count\")\n", + "plt.title(\"Happiness Score\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Assignment 2\n", + "행복 지수를 y축으로, GDP를 x축으로 하여, scatter 한 값을 한 번 입력 해 보세요." + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEWCAYAAABsY4yMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAnC0lEQVR4nO3df5hcVZ3n8fc3nTbpoGuDBJc0BJgdBRdQIq2iOCMCijMIRhwEZ9j1xyrrrA6SZXDCzLigo2t84q/x14yMjvL4gwEUI8/gGFgxg6DgdEgQUDKOAsEOQhSCkARsku/+cW+F6up7q25V3VP3R31ez9NP0lW36p5b3f29537P95xr7o6IiNTPvKIbICIiYSjAi4jUlAK8iEhNKcCLiNSUAryISE0pwIuI1JQCvAycmS01s0fNbKTotojUmQL8kDKzu83sxJbH3mRmN4Tet7tvdvenuvuu0PvKwsz+h5ndaWaPmNn9Zna1mT2t6HaFZJF3mtmPzGyHmf3SzNaZ2ZlN26wzs8fiz+U3ZrbezFaa2YKmbS4ys5n4hL3NzL5vZi8u5qiklQK8DDUzexnwf4E3uPvTgOcAl+e8j/l5vl9O+/4EcC5wHvAMYAL4a+BVLdu9M/5c9o+3PRP4lplZ0zaXuftTgcXADcCVLc9LQRTgJVXcW/tZ3IP7sZm9tum5N5nZjWb2STN7OO4Bn9D0/Doz+6CZ/TB+/ptmtk/83MFm5o3gE2/7N/H7PWJm15jZvk3vdUzcM9xmZrea2XEt7fh5/Lq7zOxP4sd/18z+Nd73r8zsspTDfAHwA3ffAODuD7r7Je7+SPw+Y2b2ETO7J36vG8xsLH7uVDO7I27XOjN7TlO77jazvzCzHwHbzWx+u+NI+OzvNrML4s/9ITP7gpktbHr+1Wa2sanX/Nx2+25572cD/ws4092vdfed7r7L3W9w9zcltcfdt7v7OuBU4MXAyQnbzACXAP+Z6KQhRXN3fQ3hF3A3cGLLY28Cbmj6/nRgCVFH4AxgO7B/07ZPACuA0fj5h4F94ufXAdPAEcBewNeBL8fPHQw4ML9p258BzwbG4u9Xxc9NAL8G/jBuxyvi7xfH7/sb4NB42/2Bw+P/Xwr8VfyahcBLUz6H3wN2Au8FjgUWtDz/6bg9E8AI8BJgQdzW7XF7RoF3A/8BPKXp890IHBgfU+pxtPn53B6/fh/gRuD98XPPBx4AXhS36Y3x9guS9p3w3m8H7s7wO7IOeGvC49cDH4r/f1HTz3UBsBq4t+jfb31FX+rBD7c1cQ9wm5ltAz7T/KS7X+HuW9x9t7tfBvwUeGHTJg8AH3f3mfj5Tczu2X3J3W939+3Ae4DXW/rA6hfc/d/dfSdRiuSo+PGzgG+5+7fidlwLTBEFSoDdwBFmNubu97n7HfHjM8BBwBJ3f8zdE8cW3P17wGlEQfNq4Ndm9lEzGzGzecBbgHe5+7RHvdzvu/vjRCe0qz3qAc8AHyYK5C9pevtPuPu98TF1Oo4kn4pf/yDwAeAN8eNvAz7r7jfHbboEeBw4JmXfrfYFftn8gJn9Iv49eMzMDmrTJoAtRCedhtfHvz/3AkcDyzu8XgZEAX64LXf38cYX0WX7Hmb235vSANuIeuP7Nm0y7e7Nq9XdQ9Tjb7i35bnRltc3aw44O4Cnxv8/CDi95UT0UqIrie1EgfbtwH0WDY4eFr/u3YABP4zTKG9J+xDc/V/c/RSioPUaoquTt8ZtXUh0ddFqSXxMjffYHR/vRMrxpx5HWruY+/k1PtuDgPNa3utA0j/7Vr9u3a+7H0B0vAuIPrd2JoAHm76/PP4d2s/dj3f39R1eLwOiAC+J4l7cPwDvBJ4RnwBuZ/Yf/0TLYNpSot5dw4Etz80Av+qyKfcSXQmMN33t5e6rANx9rbu/gihg3Rm3GXf/pbu/zd2XAP8T+IyZ/W67HcU96+8A1xGdzH4FPAb8l4TNtxAFWiCqSomPd7r5LbMeR4rWz6/x2d4LfKDlvRa5+6Up+251HXCAmU222SaRmR1I1Ev/XrevlcFTgJc0exEFia0AZvZmoqDXbD/gHDMbNbPTiSpQvtX0/Flm9l/NbBHwPuBr3n1p5JeBU8zspDhtstDMjjOzA8zsmfFA515EKYpHgV1xe083swPi93goPpY5+zaz15jZmWa2t0VeCLwMuCnulf8j8FEzWxLv/8UWlQleDpxsZieY2ShRhcnjwPe7PY42x/6O+Dj3Af4SaAwU/wPwdjN7UdzmvczsZMtY2unum4DPAv9kZq+IB5Ib4wuJzGyRRRVH3wR+yOyfs5SUArwkcvcfAx8BfgDcDxxJNNDX7GbgWUQ93Q8Af+Tuv256/kvAF4nSLwuBc3pox71EaZO/JDrZ3AucT/S7O48osG4hShm8jCfTTC8AbjazR4GriPLodyXs4iGinPZPiQZsvwysdvevxM//OXAb8G/xPj4EzIuD5FnAJ+PjPwU4xd1/28NxpPkqcA3w8/jr/fF7TcVt/lTc/v8gSit14x1EpZIfjY/rF8DfEKW8Njdt9ykze4Tod+DjRIPlr4pPflJyNjuFKpKNmb2JqMLipSnPryOqrvjcINtVF2Z2N9Hn+/+KbotUl3rwIiI1pQAvIlJTStGIiNSUevAiIjVV2CJISfbdd18/+OCDi26GiEhlrF+//lfuvjjpuaAB3sxWEM0IdKJSsze7+2Np2x988MFMTU2FbJKISK2Y2T1pzwVL0ZjZBFHd86S7H0G0KNKZ7V8lIiJ5CZ2Dnw+MxcuVLmL2NHYREQkoWIB392miFfY2A/cBD7v7Na3bmdnZZjZlZlNbt24N1RwRkaETMkWzN9HU7EOIVrnby8zOat3O3S9290l3n1y8OHGcQEREehAyRXMicJe7b43Xy76SNosZiYhIvkJW0WwGjolXEtwJnEB0gwMRka6t2TDN6rWb2LJtJ0vGxzj/pENZvmyi8wuHWLAA7+43m9nXgFuIbu22Abg41P5EpL7WbJjmgitvY+dMtOLz9LadXHDlbQAK8m0EraJx9wvd/TB3P8Ld/1t8qzMRka6sXrtpT3Bv2Dmzi9VrNxXUomrQUgUiUnpbtiXdWjb9cYkowItI6S0ZH+vqcYkowItI6Z1/0qGMjY7MemxsdITzTzq0oBZVQ6kWGxMRSdIYSFUVTXcU4EWkEpYvm1BA75ICvIjUiurln6QALyK1oXr52RTgRaQ22tXLJwX4uvf2FeBFpNKag3TaHaaT6uWHobevMkkRqaxGkJ5uE9whuV5+GGbHKsCLSGUlBelWafXywzA7VgFeRCqrUzAeMeN1RyeXVw7D7FgFeBGprE7BeJc7X18/zZoN03OeG4bZsQrwIlJZSUG6VVpeffmyCT542pFMjI9hwMT4GB887cjaDLCCqmhEpMJalzDoVEWTVBZ548rjB9TawVOAF5HaGDFjl88N80vGx4aiLLKVAryIVFZr0E4K7o28ereToAYh9EQr5eBFpLLSyiRHzObk1ctWFtlaw9+4okgaEO6VevAiUgq99GbTgvNud+5adfKsx5aMjzGdsH1RZZGDuKJQD15ECtdrbzYtOM8zm/PaspVFDuKKQgFeRArX67IBaWWSu9znnCDKVhY5iIlWStGISOF67c02gvN5l986Z4A1Kd1RppuGnH/SobMGiCH/KwoFeBEpXNb8eFqefsVlGxPft8zrygziNoQK8CJSiOZgPb5olNF5xszuJ3vhrb3ZtDr2qXseZF6b+vcyC31FoQAvIgPXGqwf2jHD6IgxPjbKwztnEnuzaXn6r9y0OXEGa93WlemFAryIDFxSsJ7Z5ey1YD4bL3xl4muSUjhAYnAfMQs6gFqVO0EpwIvUTBWCT5ZB1dYUTjd2uwcN7lVZ8kBlkiI1MojZkXnoVCLYehwP7ZjJ5f3zUKU7QQUL8GZ2qJltbPr6jZmdG2p/IlKd4NNp0lGWOzU1vy7tfUIo25IH7QQL8O6+yd2PcvejgKOBHcA3Qu1PRKoTfDpNOsra3sbrBjl5qUp3ghpUDv4E4Gfufs+A9icylMq23kqaTuMEacfRrNFTz1JqmOe4xCAmKOVlUDn4M4FLB7QvkaFVtvVWkmQZJ0g6jkYZZbc99bzHJcq25EE75gmTA3LdgdlTgC3A4e5+f8LzZwNnAyxduvToe+5RJ1+kH2Wvojl21XWJvfOJ8bFZd1fK6ziy7q+qzGy9u08mPTeIFM0fALckBXcAd78YuBhgcnIy7NlGZAiUab2VJFnHCfI6jqqMS4QwiBTNG1B6RkRigx6krNKgaN6CBngzWwS8Argy5H5EpDryGCdYs2GaY1ddxyErr+bYVde1zadXYVwilKApGnffATwj5D5EpFr6XUWx25mkg1i1sayCD7J2Y3Jy0qempopuhoiUWN0HTbvVbpBVSxWISKUM86BptxTgRaRShnnQtFsK8CJSSmkDqcM8aNotLRcsIqWTZSB1GAdNu6UALyKlsmbDdMebaJd9MldZKEUjIqWxZsM0518xN7g3aCC1O+rBi0hpXHTVHbNuvN0qaSC17GvvFEkBXkRKY9vO9Ds3JQ2k9nr7vGE5KShFIyKVkLQkby93sKrKbQ3zoAAvIoVIKoPcO+Xm2vMMVly2cc66M71MeqrKbQ3zoBSNiAxcUmplxWUbScu+N9LyrSmYXu5gNUwzYdWDF5GBafTaz71s45xedHNwt/jfETNaNfe2e5n0NEwzYdWDF4nVeeCtDMfW2mtvx4kWD+vU2+5l0lOV7qnaLwV4EXqvxqiCshxbUu67nUbA7pSC6XbS0zDNhFWAF6H9wFs365SXMWjkcWx56DbH3fgMQ/S2BzETtgy/DwrwIvQ/8NZvLzlkMBjUoGKnY0jrjUOUc2/OwTeCeFV722W5alKAFyE9+DSnAtoFsH56yXkGg6Q29lJp0q0sx5DWG//gaUcC6UG8iuvOlOWqSQFehM4Db50CWD+95LyCQVobX3f0BF9fPx10UDHLMXTqjVctiLdTllJMlUmKEAWXD552JBPjYxhRBUfzzMlOk2P6Kb3LKxiktfG7d25te2x56HQMjfLIFZdtBOBjZxzFjSuPr1VQb1aWUkz14EVi7VIBnQJYP4OBeaVQ2rUxdJqj3TGkXVlM3fMg371za6Vy61mVpRRTPXiRDDr1yDpdAbST1x2Kiuw1tjuGtCuLr9y0ubbrwfTz+5An85R1l4swOTnpU1NTRTdDKi5ERUrSJJ3GAGEef7R5tLmXNua139VrNzG9bScjZuxyZ6LpvQ5eeXXm95oYH+PGlcd3tf9hZ2br3X0y6TmlaKRWQpWnhS7XyyOF0m0b231W7d6n+aQwvmiURx97Ys8a7o0bdez47RN7tm0tgWynjuvBFEk9eKmVY1ddl5gLVs9wrrTPanxslMef2J1azph1uYGx0REWzJ/Xdo33Vvo5dU89eBkaZSlPq4K0zyQpIDdXDGVdbmDnzK62246NjvQ8CFmGWaJVoAAvtdJPRUrVgka/7W03szRJnifJRo6+l/aXZZZoFSjAS630Wp5WtaDRT3ubB0WTlghYODqPh3bM7cU3TpLdnBT2XjTKYzNz0z2NYN7LZ1uWWaJVoDJJqZVey9OKvMtP0p2NOum1vc23q4MouDdWXG98VheecnhqyWNSOSRN79H6mgtPOTz3ckGl4bIL2oM3s3Hgc8ARRL9Lb3H3H4Tcp0gvPcOigkavPfG0dnXqXSedGBprr7cObrZLn1x01R2zcvWtpRrjY6NcdOrhQZYhGMTaOnUROkXzt8C33f2PzOwpwKLA+5OaGVRevKig0Wu6Ia29RvSZ9Tojt6HdSXL5sglWr93Utjrm8Sd2pz7Xr7LMEq2CYCkaM/tPwO8Dnwdw99+6+7ZQ+5P6aU4nhJ7tmNds0m71euVw/kmHJqZFHBLTNI00UFpRdF7LIjTsnNnFeZffmint1G2KqiyzRKsgZA/+d4CtwBfM7HnAeuBd7r69eSMzOxs4G2Dp0qUBmyNVk9a7Pe/yW4F8L/uLWne81yuH5csmODdeuKtVa/DtdKu8XpdF6JQOakx6apd26jVFVcUlhIsQcpB1PvB84O/cfRmwHVjZupG7X+zuk+4+uXjx4oDNkapJ6yXucg/Sk1++bGLP+ulbtu1k9dpNwddG6efKYSLj2jPtbpWXpfeb1MNOG2xNkzYAXOTg9jAIGeB/AfzC3W+Ov/8aUcAXyaRdLzZEEBhkSqhhEIuUpZ0oDTou2Zv2mQB72t14r06S2tFusDhrRZGkC5aicfdfmtm9Znaou28CTgB+HGp/Uj9Jg2nN8q5wCV1fnTZg3Gu6IWtaqZ8B5HafSfPJofnY5sULjmXZX7tUT9nnIlRB6CqaPwO+ElfQ/Bx4c+D9SY00/qjPu/zWzAGjHyFLJbPkmnupGMpycuin6qSXqpu0VS2T9tfpJK4JTP0JGuDdfSOQuAiOSBaNP+xBlMWFXOag09VByJm0/Qwg9/KZdLO/5m3TevKawNQ7LVUgpdEuhQHhK1xCLnPQLg0B4dNDvaaBev1MutlfY9u01S01gal3CvBSCp2CZOiyuMbJZefMrsSbVrSTJTiPpOSlRywanizr9Pukk+vLD1vM6rWbWHHZxlxPtprAlD8FeCmFIheQaj257HKftSBWJ1mCc1Jwb368zNPv2+XXy5JKkmQK8FIKRfZg+z25dLrhdLtyzkaZYVV6r2VNJUkyrSYppVDkDaP7Pbmk1aO//LDFs1ZubDU6z/YE8KpMvy9rKkmSqQcvpVBkD7bf9EhaaqHdDFJgzuygKvRey5xKkrkU4KUUisy/5nFySQrOK1LWimmY2eXBxxjyXo2zKqkkiSjAS2kU1YMNdXLJsiBXyNRGiAFRDYRWi3nK6H4RJicnfWpqquhmiOSi0yqOkHyjjW730Qi2Tx8bxQy27ZhhyfgY2x9/InHN9n73mZeq3QO3rMxsvbsnTihVD14kkNZZmkn3P+0ntdF6AmkO5u2uHMowIFq1e+BWlQK8SECtNeR59lg7DuKm6GZANFQve5DzHob5SkEBXtoa5j+OvOU9xtBLT7ybq4aQvexBlVsO+5WC6uAlVRHro0t2WXriey8a7bm2PuTNOAY172HYbyiSuQdvZmPA0nhtdxkCRS4fEFqZr0yytq3TUrtjoyNceMrhPR9XyF72oMoth31iVqYevJmdAmwEvh1/f5SZXRWwXVICdf3jKPOVSTdta539Oj42yt6LRnObCZvWm3bo+25Lg5q5W+QM6TLIVCZpZuuB44F18f1VMbMfuftz82yMyiTLJW351hEzPvL655Wmx9uttOPKs3yw1yuEtLY12jfIK40sN+su43IKzdJuPlL2dnejXZlk1hz8E+7+cI5tkgpIu7FyqJteQ/INnvMW+sqknyuEdm0Y9JVGcy87SRVy2VVZ4yeUrDn4283sj4ERM3sWcA7w/XDNkjJod8u8ELn4QVU8hF5PJcvdm9J6951mvw56DKRR+XPIyqtJutavQrquCmv8hJK1B/9nwOHA48BXgYeBcwO1SUpk+bIJdqek8QZ50+s8pa3+mNcAX7srhE69+7Srpizvn1UvV0nDnsuuqo4B3sxGgKvc/a/c/QXx11+7+2MDaJ+UwNPHRrt6vFeDGtQNfdneLhh2Ool1Sou0e/8sek0fhT4pShgdUzTuvsvMdpjZ05WHH05m3T3eq0EuRRvysr1dCWDaCpPNJ7FG29IGCPsJqr2WvmqRsWrKmoN/DLjNzK4FtjcedPdzgrRKSmXbjrkLVrV7vFd1WYq2XTBsrEvTKukk1k1QzVq1089V0jDnsqsqa4C/Ov6SITSonnWdeolpwTDtJPbywxZz7Krr5hx3lqDazeC0btgxXDIvF2xmTwGeHX+7yd3z7b6hOviyWrNhmvOvuJWZ3U/+rswDnr5odM/StFUNxEVo7W2//LDFfH39dM+12t3U9Q9DXfiw6Xu5YDM7DrgEuJvoRmMHmtkb3f36nNooZdeSb98NPBSnaIZtAad+NefYV6/dxJdv2jxnm6xlldBd2qVOV0nSWdYUzUeAVzbWoTGzZwOXAkeHalhZlXkNk1BWr93EzK72V3p512fX/XPOcjOQ6W07OXjl1bPWkU86mXabdlEufXhkrYMfbV5kzN3/Hci3Rq4CyriGSeiZn2s2THe87VxDGWaCVkU3a7m3nlpb5waohFHSZO3BT5nZ54Evxd//CbA+TJPKq2yrK4ae+dl4/6zyupFEyM+5LFcG/Z4MW8sqQWkXmStrgP9T4B1ESxQYcD3wmU4vMrO7gUeAXUTr2SQOBFRF2VZXzBoIew1q3fQy87yRRKjPuUw3f8hyQ+5Or2+mtIskyZqimQ/8rbuf5u6vBT4BtJ9P/aSXu/tRVQ/uUL7p2lkCYaiFr846ZmmwG0mE+pyLuPlDWgotLa3y8TOOajuLtbGd0i+SRdYe/HeAE4FH4+/HgGuAl4RoVFmVbSJOlsG1ftIdae8/MT7G+5cf2WOrO5+YQn3Og74Cy3LFkHZl1Xr8jYHWQS8Z3Kws6S3JLmuAX+jujeCOuz9qZosyvM6Ba8zMgc+6+8WtG5jZ2cDZAEuXLs3YnGKULdeZJRD2E9RCBdqnj42ybefcaRSNtW1CfM5rNkwzz2zOqpgQ7gqs08k1La1Stt8zKFd6S7LLGuC3m9nz3f0WADObBLJ0e4519y1mth9wrZnd2Vo7Hwf9iyGa6NRF2wtRplxnlkDQz8zFUIEmy9o2eX7OjeCUFNxbT1j99lKbX5/2y5x2ci1zD7lsBQaSTdYA/y7gCjPbQtQrXwKc0elF7r4l/vcBM/sG8EKiAVrJSadA2G8vPMQJbVBr2zSkDRaPmM0aO+iml5oUjGFuaiXJPDPWbJieMxDeuu8Vl21k6p4H+0qH5aVsBQaSTdYAfwiwDFgKvBY4hrnlubOY2V7APHd/JP7/K4H39dFWaZGlx1eGy/3WdqalaEKlStKC0G73WZ9DN1VJSSeCBfPnZao6atwRC2b/fFpf68BXbtrM5EH7FN5L1ho21ZQ1wL/H3a8ws3HgFUQzW/8OeFGb1zwT+IZF193zga+6+7f7aKs06aa3WWRaKamdoyPG6DybtbZNyMHqrMEpay817USQtaS0sX3ziSNt3x7vr+gAX7YCA8kma5lk46d6MvD37v5N4CntXuDuP3f358Vfh7v7B/ppaFkN4h6iSYoo+etFUjtndjlPXTh/YPfJzDrTM2t5Zl5pieb3adcTLkMaZNjvbVpVWXvw02b2WaJSyQ+Z2QKynxxqq8jKgqrkRNPas23HDBv+zytnPRZqkDFrmiprLzXtimDvRaM8NrN7zusXjs7bszBb6/s073vFZRsT855lSYOUqcBAsska4F8PvAr4sLtvM7P9gfPDNasaiqwsSAsy88w4ZOXVpanCyJoeCX2yzBKc+j0RXHjK4Ymvh7mDr60njuXLJrhiajM3/uzBWftSGkT6kSnAu/sO4Mqm7+8D7gvVqKooshedFGSAPaWAZalTztorLksZXh4ngrTXtztxrNkwzS2bZ98R04DXHa1es/Quaw9eEhRZWdAaZJIm8ZShTjlrr7gqKaeGbtMVnbZPq6L57p1be22iiAJ8P8pUWZA0iQfKESCzBMNhL8Or2glOqkEBvg+deqchZyZmuWEElCNAZvkcynSyLMKwn+AkDAX4PqX1TkMPGmZZyrcMATLr51CGCVm9yOsknjamsuO3T8yZ9SqSlQJ8IKEHDdtduhuUJkB28zmUtQwvLYjneRJvbH/RVXfMmuX70I6ZUgyWSzUNfS17KKFzqmmX7hPjY9y16mRuXHl8KQJC1XPL7dbTz3uy2fJlE+y1YG6fq4wT2KQaFOADCX1zkKrch7PT51DUTOCs2gXxECevqp8QpVwU4AMJHYCrMnW83edQhZtrtwu4IU7iZbtrmFSbcvCBDGLQsKw562btPodjV11XislN7bSrbglR+TPs1USSL/OU+ukiTE5O+tTUVNHNkAE5ZOXVqWtOl2WgOKkcdWx0ZM/VUohS2DLf+EPKx8zWp93zWj14KUxa7xiYlbKB4ipIkqpbFo7Om/V83m2rwpWZVINy8FKYpPx8q7JUkDz+xO49/2+ULpZprEAkiXrwA6bL7ye15ue7vYfpoJRlITSRbinAD5DuTD9Xczri2FXXlXK6fp6lizrByyApRTNAVbkLU1G16UXX9qcdd16li1UoC5V6UQ9+gEJMYsm7R1jkVUaR69G0O+5eSheTfi5K9cigKcAPUN4rBoYIxkUHoaIqSNod940rj9+zTZYTT9rPJW1xuKLHGKS+FOAHKO8VA0ME46KnyheVo+503N2ceNJ+LiMJN2WB4scYpL6Ugx+gxvIC42Ojsx7vtewuRDAucqp8kTnqPI877fPf5V6J9YOkPhTgByzPFQNDBOMiBzqLHITO87jbrfRZhfWDpD6UoilAXj3vEOuWFDnQWWR6KM/jbvdz0SxVGSQF+AFbs2E68QbZ0H3PO1QwLioIFX3buryOu6p3p5L6UYAfoEaOOSm499rzHmQwDj0AWqeVFNVTlzJQgB+gtPuojpiVPhc7iPp49XxF8qUAP0BpueTd7qUPYoOqj1fPVyQ/watozGzEzDaY2T+H3lfZVfluPUXXx4tI9wZRJvku4CcD2E/pFb3WSj+qfHISGVZBA7yZHQCcDHwu5H6qoir3UU1S5ZOTyLAKnYP/OPBu4GlpG5jZ2cDZAEuXLg3cnOJVNcesAVCR6gkW4M3s1cAD7r7ezI5L287dLwYuhuierKHaI/2r6slJZFiFTNEcC5xqZncD/wQcb2ZfDrg/ERFpEqwH7+4XABcAxD34P3f3s0Ltr6p0hx8RCUV18AXSLfzyoZOkSLKBBHh3XwesC/HeVf7jLvrmGnWgk6RIukovF1z1e1xq8lD/qnKfW5EiVDrAV/2PW5OH+qeTpEi6Sgf4qv9xa/JQ/3SSFElX6QBf9T/uKs9sLQudJEXSVbqKpg7rh2eZPFTlgeTQNMNWJF2lA3zd/riTAjmQW5VIXU8UmmErksw84e5CRZmcnPSpqanC9l9kAGwt94PoamTB/Hls2zkzZ/uJ8TFuXHl83++vlJBItZnZenefTHqu0jn4PBVdcplWEZQU3KH7geSqVxyJSPcU4GNFB8BuA3a3A8lVrzgSke4pwMeKDoBpAXvvRaO5VImkvb8Dx666rjKTw0QkOwX4WNEll2nlfheecngupZRJ799QtRnAIpJNpato8lR0yWWniqB+B0Kb33864apEa+BUT12roiQ/qqJpMix/MIesvJqkn7oBd606edDNkR6oKkoa2lXRqAffpGr11L2ekJaMjyX24qsyA1i0Eqlkoxx8RfVT1qnp/dVXdFGAVIMCfEX1U9apNXCqr+iiAKkGpWgqqt8eXNXSUTJb0UUBUg3qwVeUenDDTVdhkoV68BWlHpzoKkw6UYCvqLqtpCki+VOArzD14ESkHeXgRURqSgFeRKSmlKIZYsOyNIPIsFKAH1Kta5n0cytAESknpWiGVNE3OBGR8BTgh5TWMhGpPwX4IaWZsCL1FyzAm9lCM/uhmd1qZneY2XtD7Uu6pxUlReov5CDr48Dx7v6omY0CN5jZv7j7TQH3KRlpJqxI/QUL8B7dKurR+NvR+Ks8t48SzYQVqbmgOXgzGzGzjcADwLXufnPCNmeb2ZSZTW3dujVkc0REhkrQAO/uu9z9KOAA4IVmdkTCNhe7+6S7Ty5evDhkc0REhspAqmjcfRuwDnjVIPYnIiJhq2gWm9l4/P8x4ETgzlD7ExGR2UJW0ewPXGJmI0Qnksvd/Z8D7k9ERJqErKL5EbAs1PuLiEh7mskqIlJTCvAiIjWlAC8iUlMK8CIiNaUALyJSUwrwIiI1pQAvIlJTCvAiIjWlAC8iUlMhlyqQAVizYVo37RCRRArwFbZmwzQXXHkbO2d2ATC9bScXXHkbgIK8iChFU2Wr127aE9wbds7sYvXaTQW1SETKRAG+wrZs29nV4yIyXBTgK2zJ+FhXj4vIcFGAr7DzTzqUsdGRWY+NjY5w/kmHFtQiESkTDbJWWGMgVVU0IpJEAb7ili+bUEAXkURK0YiI1JQCvIhITSnAi4jUlAK8iEhNKcCLiNSUuXvRbdjDzLYC9xTdjhb7Ar8quhEDNmzHPGzHCzrmOjnI3RcnPVGqAF9GZjbl7pNFt2OQhu2Yh+14Qcc8LJSiERGpKQV4EZGaUoDv7OKiG1CAYTvmYTte0DEPBeXgRURqSj14EZGaUoAXEakpBfgUZnaomW1s+vqNmZ1bdLtCMrMVZnaHmd1uZpea2cKi2xSamb0rPt476vrzNbN/NLMHzOz2psf2MbNrzeyn8b97F9nGvKUc8+nxz3m3mQ1FuaQCfAp33+TuR7n7UcDRwA7gG8W2KhwzmwDOASbd/QhgBDiz2FaFZWZHAG8DXgg8D3i1mT2r2FYF8UXgVS2PrQS+4+7PAr4Tf18nX2TuMd8OnAZcP/DWFEQBPpsTgJ+5e9lm2eZtPjBmZvOBRcCWgtsT2nOAm9x9h7s/Afwr8NqC25Q7d78eeLDl4dcAl8T/vwRYPsg2hZZ0zO7+E3cfqjvSK8BncyZwadGNCMndp4EPA5uB+4CH3f2aYlsV3O3A75vZM8xsEfCHwIEFt2lQnunu9wHE/+5XcHskAAX4DszsKcCpwBVFtyWkOAf7GuAQYAmwl5mdVWyrwnL3nwAfAq4Fvg3cCjxRaKNEcqQA39kfALe4+/1FNySwE4G73H2ru88AVwIvKbhNwbn75939+e7++0SX9D8tuk0Dcr+Z7Q8Q//tAwe2RABTgO3sDNU/PxDYDx5jZIjMzonGHnxTcpuDMbL/436VEA3DD8LMGuAp4Y/z/NwLfLLAtEohmsrYR52XvBX7H3R8uuj2hmdl7gTOI0hQbgLe6++PFtiosM/se8AxgBvjf7v6dgpuUOzO7FDiOaLnc+4ELgTXA5cBSopP76e7eOhBbWSnH/CDwSWAxsA3Y6O4nFdTEgVCAFxGpKaVoRERqSgFeRKSmFOBFRGpKAV5EpKYU4EVEakoBXoaemT3TzL5qZj83s/Vm9gMze62ZHWdmD5vZBjPbZGbXm9mrm153kZlNx6uN3m5mpxZ5HCKt5hfdAJEixZO61gCXuPsfx48dRLQ8xUPA99z91fHjRwFrzGxnU738x9z9w2b2HOB7Zrafu+8e9HGIJFEPXobd8cBv3f3vGw+4+z3u/snWDd19I/A+4J0Jz/2EaILYvuGaKtIdBXgZdocDt3Sx/S3AYa0PmtmLgN3A1pzaJdI3BXiRJmb2aTO71cz+LW2Tlu9XmNlGoqWWz3BNDZcSUQ5eht0dwOsa37j7O8xsX2AqZftlzF6E7WPu/uGA7RPpmXrwMuyuAxaa2Z82PbYoaUMzey7wHuDTg2iYSL/Ug5eh5u5uZsuBj5nZu4ly6NuBv4g3+T0z20AU9B8AzqnjipNST1pNUkSkppSiERGpKQV4EZGaUoAXEakpBXgRkZpSgBcRqSkFeBGRmlKAFxGpqf8PVFUGcOPu03IAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "y=df[\"Ladder score\"]\n", + "x=df[\"Logged GDP per capita\"]\n", + "plt.scatter(x, y)\n", + "plt.title(\"Happiness Score per GDP\")\n", + "plt.xlabel(\"GDP\")\n", + "plt.ylabel(\"score\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Assignment 3\n", + "행복지수 상위 10개, 하위 10개를 선택 후, 각각의 Social support, Logged GDP per capita, Freedom to make life choices 의 평균을 구해서 막대 그래프로 나타내세요." + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEICAYAAABYoZ8gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAfKElEQVR4nO3de5xd873/8ddbhEkEIdFWEgxtkronjOCgjVvrlEppXNKi0Tp+HPdecI5qQn/a8/BDtdUibolrB1WpFL0gShtiQk6CaIqERNKIICSERD6/P9Z3xp5tZrInmT17Ztb7+XjMY2at77p8115rv/d3fdfaaxQRmJlZfqxX6QqYmVn7cvCbmeWMg9/MLGcc/GZmOePgNzPLGQe/mVnOOPjN1pGkakkhaf0yLX+8pP9bjmVbPjn4K0zSXEkHFY0bLenxStWpOZI2kDRW0j8lLU91v1FSdZnXO1zS/HKuo5zSh8LnisaNlXRrpepUDpI2kXSlpFclLZP0YhruW+b1dsj3S0fm4LfWuBs4HPgGsCmwKzANOLCSlQIoV2vbSiNpA+AhYEfgEGAT4N+AJcCwClYNAEndKl2HjsTB3wlIOl/SS5LelfS8pCMKykZL+pukX0paKukFSQcWlE+W9FNJU1P5REmbp7I/SDqjaF0zJH2tiTocBBwMjIiIpyJiVUQsjYhfRcQNaZp+kn4v6c3U2vuPgvkbdVcUt+LT2cP30/qXSqqVVCVpI+ABoF9qRS5L6xkr6W5Jt0p6Bzhf0nuS+hQsc3dJiyV1b2J7hkmaIultSQslXZXCq748JJ2Szm7ekvQrSUpl3SRdJukNSS8Dh5a0I5tR/1pI+p6k11N9TiyabLO0v96V9KSkzxbM/3NJ8yS9I2mapP0Kyupfp9o079OSdi163f8rHVdvSbpJUlUqe1bSVwum7Z62eUgTm3ECsDVwREQ8HxGrI+L1iPhxRNyf5t8+HY9vS3pO0uEFy54s6aSC4Uat+Ob2h6TtgWuAvdOx8XaafrykqyXdL2k58F1Ji1TQQJD0dUnTS9tLXYuDv3N4CdiPrJV9EXCrpC0LyvcEXgb6AmOAe+rDPTkB+DbQD1gF/CKNnwAcVz9RCoT+wP1N1OEgYGpEzGuhnncA89N6RgI/KfwQKsHRZK3FbYFdgNERsRz4d2BBRPRKPwvS9CPIzkJ6A5cDk9My6h0H/CYiVjaxro+Ac8hes73Jzlr+s2iaw4A9yM5sjga+nMb/RyobCtSkbV1XnyHbv/2B7wC/krRZQfkosn2/GfAicElB2VPAEGBz4HbgrvrwTkYAdxWU31v0YfjNtG2fBQYBP0zjb6bg+AC+AiyMiOlN1P8g4MGIWNbUxqX13Qf8CfgUcAZwm6TBTU3fjE/sj4iYBZwCTEnHRu+C6b9B9jptDPyS7Ozj4ILy44BbWrH+LsPB3zHcm1pBb6cWy68LCyPirohYkFpRtcA/aXz6/DpwZUSsTOX/oHEr9JaIeDaF6IXA0cpOfScCAyUNTNMdD9RGxIdN1LEPsLC5DZC0FbAvcF5ErEjhcH1aZql+kbbzTbKQGLKG6adExL3pdXmfgg+ytH2jaOaNHRHTIuKJdOYyF7gW+GLRZP8TEW9HxKvAIwX1OZrs9Z6X6vrTVmxjc1YCF6d9eD+wDCgMxXsiYmpErAJuK6gLEXFrRCxJ23I5sGHRvNMi4u70AXgFUAXsVVB+VcG2XEL2ugHcCnxF0iZp+HiaD8oWj4+0vl5kr+mHEfEwMKlgXaVobn80Z2JE/C0dHytofHxsTvZhd3sr1t9lOPg7hq9FRO/6H4panpJOkDS94INhJ7KWar3XovHT9l4ha3XXm1dU1h3oGxEfAHcCx0lajxaCkqy1tGUzZaT1vRkR7xatq38L8xT7V8Hf75EFRUuKzz4mAjtI2o6sZbc0IqY2NaOkQZImSfpX6ir6CY1f05bq049PvqYt+YjsNS/UnSzs6y1Jod7U+lqqC6mLaFbqInub7MyhcFsa6hoRq/n4rOwT5RQcO+nM6m/A1yX1Jjvzuq2ZbSzl+JiX1l+4rvY8Pm4FviqpF9mH92MR0dKHVZfl4O/gJG0DXAecDvRJHwzPAiqYrH99/3OyNbCgYHirorKVwBtpeALZqf6BwHsRMaWZqvwFGCZpQDPlC4DNJW1ctK7X0t/LgZ4FZZ9pZjlNae4Rso3Gp1bdnWTb01LrFOBq4AVgYERsAvw3jV/Tlizkk69pS14FqovGbcuaPzDWKPXnn0cWZJul42Mpjbdlq4Lp1wMG0PLxUVhW30o+iuwM6zWa9hfgy8quyTRlAbBVWn/hutrz+HgNmAIcwZqPjy7Nwd/xbUR2AC8GSBf9diqa5lPAmeni21HA9jTupz9O0g6SegIXA3dHxEcAKehXk/WRN/tGiIi/AH8Gfqfsoun6kjZOF9y+nfr+/w78VNlF2V3I+qrrW4jTyboNNpf0GeDsVrwGi4A+kjYtYdqbgdFkdx+1dLvkxsA7wDJJnwdObUV97iR7vQekfvjz1zB9LfDDNP16yi6Uf5Xs+sS62pjsus1iYH1JPyK7o6bQ7pKOTBc2zwY+AJ4oKD8t1W1zsg/A2oKye4HdgLPIXtvm3ELWwv6tpM+n7ewj6b8lfQV4kizcz03H6XCy1+A3af7pwJGSeiq79fU7rXgNFgEDVHBxvgU3A+cCOwO/a8U6uhQHfwcXEc+ThfIUsgN8Z7LT70JPAgPJWvGXACMjYklB+S3AeLJT5SrgzKL5b07LXdN95SPJPlBqyVqVz5Jd3PxLKh9F1rJdQPamGhMRfy6ow/8Cc8ku8BWGS4si4gWyC8cvp+6ufi1M+zeyD7KnU999c75PdvHvXbIzqpLrk6b/I9n2PA3cs4bpLyb7UHwceAu4FPhmRDzbinU2549kdz3NJjuDWEHTXWDHpHUfDxxZdMH7drJ98nL6abj7Kl07+S3ZGUqz25m6DQ8iO4v6M9mH6lSyLqcn03Wjw8m6i94gu451Qtq3AD8DPiQ7xifQfJdSUx4GngP+JemNNUz7O2Ab4Hfpmlcuyf+IpXOTNBo4KSL2baZ8MnBrRFzfwjJOAE5ubhmdjaSHgdtb2ua8kDQW+FxEHNdM+Vyy4+cvTZWnaX4EDGpuGZ2NpJeA/9PSNnd1/tJLzqXun/+k6E6izkrSHmRdEyMqXZeuIHX/fIfW3Z3VYUn6OlnX6cOVrksluasnxyR9maxveBFd4LY2SRPIup3OLrq7yNaCsi/gzQMeiIi/Vro+6yqd/V4NnFZ0d1HuuKvHzCxn3OI3M8uZTtHH37dv36iurq50NczMOpVp06a9ERFbFI/vFMFfXV1NXV1dpathZtapSGryS4Lu6jEzyxkHv5lZzjj4zcxyplP08ZtZ17Zy5Urmz5/PihUrKl2VTqmqqooBAwbQvfsn/udQkxz8ZlZx8+fPZ+ONN6a6uprGD5q1NYkIlixZwvz589l2221LmsddPWZWcStWrKBPnz4O/bUgiT59+rTqbMnBb2YdgkN/7bX2tXPwm5nljPv4zazD0UVt2/qPMWt+JlmvXr1Ytuzj/xU/fvx46urquOqqq9q0Lh2Bg986vLYOgbVVSniYdQbu6jEzW4P77ruPPffck6FDh3LQQQexaNEiAMaOHcvxxx/PAQccwMCBA7nuuusAmDx5Ml/4whc44ogj2GGHHTjllFNYvXo1N9xwA+ecc07Dcq+77jq++93vtvv2uMVvZga8//77DBkypGH4zTff5PDDDwdg33335YknnkAS119/PZdeeimXX345ADNmzOCJJ55g+fLlDB06lEMPPRSAqVOn8vzzz7PNNttwyCGHcM8993Dssceyyy67cOmll9K9e3duuukmrr322nbfVge/mRnQo0cPpk+f3jBc38cP2fcMjjnmGBYuXMiHH37Y6H75ESNG0KNHD3r06MH+++/P1KlT6d27N8OGDWO77bYDYNSoUTz++OOMHDmSAw44gEmTJrH99tuzcuVKdt5553bdTnBXj5nZGp1xxhmcfvrpzJw5k2uvvbbRPfPFt1LWDzc3/qSTTmL8+PHcdNNNnHjiiWWuedMc/GZma7B06VL69+8PwIQJExqVTZw4kRUrVrBkyRImT57MHnvsAWRdPXPmzGH16tXU1tay7777ArDnnnsyb948br/9dkaNGtW+G5K4q8fMOpyOdgfV2LFjOeqoo+jfvz977bUXc+bMaSgbNmwYhx56KK+++ioXXngh/fr1Y/bs2ey9996cf/75zJw5s+FCb72jjz6a6dOns9lmm1Vicxz8ZmZAo3v4AUaPHs3o0aOBrB9/xIgRTc43aNAgxo0b94nxPXv2pLa2tsl5Hn/88UZ397Q3d/WYmbWTt99+m0GDBtGjRw8OPPDAitXDLX4zs7U0duzYJscPHz6c4cOHf2J87969mT17dnkrVQK3+M3McsbBb2aWMw5+M7OccfCbmeWMg9/MOhypbX9KMXfuXHbaaadG48aOHctll13W7Dzjx4/n9NNPX5dNrYiyBb+kGyW9LunZgnGbS/qzpH+m35X59oKZWY6Vs8U/HjikaNz5wEMRMRB4KA2bmXVow4cP57zzzmPYsGEMGjSIxx57rKFswYIFHHLIIQwcOJBzzz23Yfypp55KTU0NO+64I2PGjGkYX11d3bCsYcOG8eKLLwLZF8ZOOeUU9ttvPwYNGsSkSZMA2G+//Ro9PG6fffZhxowZ67Q9ZQv+iPgr8GbR6BFA/YMuJgBfK9f6zcza0qpVq5g6dSpXXnklF110UcP46dOnU1tby8yZM6mtrWXevHkAXHLJJdTV1TFjxgweffTRRmG9ySabMHXqVE4//XTOPvvshvFz587l0Ucf5Q9/+AOnnHIKK1asaHioG8Ds2bP54IMP2GWXXdZpW9q7j//TEbEQIP3+VHMTSjpZUp2kusWLF7dbBc0sn5r7h+X144888kgAdt99d+bOndtQfuCBB7LppptSVVXFDjvswCuvvALAnXfeyW677cbQoUN57rnneP755xvmqX8426hRo5gyZUrD+KOPPpr11luPgQMHst122/HCCy9w1FFHMWnSJFauXMmNN97Y8BiJddFhv7kbEeOAcQA1NTUd64lNZtbl9OnTh7feeqvRuDfffLPh2fsbbrghAN26dWPVqlUN09SPLyybM2cOl112GU899RSbbbYZo0ePbvZRzs39XT/cs2dPDj74YCZOnMidd97Z8D8C1kV7t/gXSdoSIP1+vZ3Xb2bWpF69erHlllvy0EMPAVnoP/jggw2PU26Nd955h4022ohNN92URYsW8cADDzQqr394W21tLXvvvXfD+LvuuovVq1fz0ksv8fLLLzN48GAge4b/mWeeyR577MHmm2++tpvYoL1b/L8HvgX8T/o9sZ3Xb2adQFToHP/mm2/mtNNO43vf+x4AY8aM4bOf/Wyrl7PrrrsydOhQdtxxR7bbbjv22WefRuUffPABe+65J6tXr+aOO+5oGD948GC++MUvsmjRIq655hqqqqqArHtpk002abN/3KIo0yss6Q5gONAXWASMAe4F7gS2Bl4FjoqI4gvAn1BTUxNtcXpjnZMuKvFG7DLraM+I70pmzZrF9ttvX+lqtIvq6mrq6uro27dvo/GjR4/msMMOY+TIkZ+YZ8GCBQwfPpwXXniB9dZruqOmqddQ0rSIqCmetmwt/oho7l/LVO5ZpGZmnczNN9/MBRdcwBVXXNFs6LdWh724a2bWFRXeEVSo/pbNYieccAInnHBCm9bBj2wwsw6hXN3OedDa187Bb2YVV1VVxZIlSxz+ayEiWLJkScOF4FK4q8fMKm7AgAHMnz8ff1lz7VRVVTFgwICSp+/ywe87Qsw6vu7duzd8UcrKz109ZmY54+A3M8uZLt/VY2aV1xG6XN3d+jG3+M3McsbBb2aWMw5+M7OccfCbmeWMg9/MLGcc/GZmOePgNzPLGQe/mVnOOPjNzHLGwW9mljMOfjOznHHwm5nljIPfzCxnHPxmZjnj4DczyxkHv5lZzjj4zcxyxsFvZpYzDn4zs5xx8JuZ5YyD38wsZyoS/JLOkfScpGcl3SGpqhL1MDPLo3YPfkn9gTOBmojYCegGHNve9TAzy6tKdfWsD/SQtD7QE1hQoXqYmeVOuwd/RLwGXAa8CiwElkbEn4qnk3SypDpJdYsXL27vapqZdVmV6OrZDBgBbAv0AzaSdFzxdBExLiJqIqJmiy22aO9qmpl1WZXo6jkImBMRiyNiJXAP8G8VqIeZWS5VIvhfBfaS1FOSgAOBWRWoh5lZLq3f3iuMiCcl3Q08DawCngHGtXc9zMpJqnQNMhGVroF1RO0e/AARMQYYU4l1m5nlnb+5a2aWMw5+M7OccfCbmeWMg9/MLGcc/GZmOePgNzPLGQe/mVnOOPjNzHLGwW9mljMOfjOznHHwm5nljIPfzCxnHPxmZjnj4Dczy5mKPJbZzKyj68r/U8EtfjOznHHwm5nljIPfzCxnHPxmZjnj4DczyxkHv5lZzjj4zcxyxsFvZpYz/gJXB9SVvzhiZpXnFr+ZWc6UHPySekgaXM7KmJlZ+ZUU/JK+CkwHHkzDQyT9voz1MjOzMim1xT8WGAa8DRAR04HqclTIzMzKq9TgXxURS9tqpZJ6S7pb0guSZknau62WbWZmLSv1rp5nJX0D6CZpIHAm8Pd1WO/PgQcjYqSkDYCe67AsMzNrhVJb/GcAOwIfALcDS4Gz12aFkjYBvgDcABARH0bE22uzLDMza701tvgldQN+HxEHARe0wTq3AxYDN0naFZgGnBURy9tg2WZmtgZrbPFHxEfAe5I2baN1rg/sBlwdEUOB5cD5xRNJOllSnaS6xYsXt9Gqzcys1D7+FcBMSX8mC2oAIuLMtVjnfGB+RDyZhu+mieCPiHHAOICamhp/h9TMrI2UGvx/SD/rLCL+JWmepMER8Q/gQOD5tli2mZmtWUnBHxET0t03g9Kof0TEynVY7xnAbWmZLwMnrsOyzMysFUoKfknDgQnAXEDAVpK+FRF/XZuVpi+A1azNvGZmtm5K7eq5HPhS6ppB0iDgDmD3clXMzMzKo9T7+LvXhz5ARMwGupenSmZmVk6ltvjrJN0A3JKGv0l2/72ZmXUypQb/qcBpZI9qEPBX4NflqpSZmZVPqcG/PvDziLgCGr7Nu2HZamVmZmVTah//Q0CPguEewF/avjpmZlZupQZ/VUQsqx9If/uJmmZmnVCpwb9c0m71A5JqgPfLUyUzMyunUvv4zwLukrQACKAfcEzZamVmZmVTavBvCwwFtgaOAPYi+wAwM7NOptSungsj4h2gN3Aw2VMzry5XpczMrHxKDf6P0u9DgWsiYiKwQXmqZGZm5VRq8L8m6VrgaOB+SRu2Yl4zM+tASg3vo4E/Aoek/4+7OfCDclXKzMzKp9Tn8b8H3FMwvBBYWK5KmZlZ+bi7xswsZxz8ZmY54+A3M8sZB7+ZWc44+M3McsbBb2aWMw5+M7OccfCbmeWMg9/MLGcc/GZmOePgNzPLGQe/mVnOOPjNzHLGwW9mljMVC35J3SQ9I2lSpepgZpZHlWzxnwXMquD6zcxyqSLBL2kA2f/vvb4S6zczy7NKtfivBM4FVjc3gaSTJdVJqlu8eHG7VczMrKtr9+CXdBjwekRMa2m6iBgXETURUbPFFlu0U+3MzLq+SrT49wEOlzQX+A1wgKRbK1APM7Ncavfgj4j/iogBEVENHAs8HBHHtXc9zMzyyvfxm5nlzPqVXHlETAYmV7IOZmZ54xa/mVnOOPjNzHLGwW9mljMOfjOznHHwm5nljIPfzCxnHPxmZjnj4DczyxkHv5lZzjj4zcxyxsFvZpYzDn4zs5xx8JuZ5YyD38wsZxz8ZmY54+A3M8sZB7+ZWc44+M3McsbBb2aWMw5+M7OccfCbmeWMg9/MLGcc/GZmOePgNzPLGQe/mVnOOPjNzHLGwW9mljMOfjOznHHwm5nlTLsHv6StJD0iaZak5ySd1d51MDPLs/UrsM5VwPci4mlJGwPTJP05Ip6vQF3MzHKn3Vv8EbEwIp5Of78LzAL6t3c9zMzyqqJ9/JKqgaHAk02UnSypTlLd4sWL271uZmZdVcWCX1Iv4LfA2RHxTnF5RIyLiJqIqNliiy3av4JmZl1URYJfUney0L8tIu6pRB3MzPKqEnf1CLgBmBURV7T3+s3M8q4SLf59gOOBAyRNTz9fqUA9zMxyqd1v54yIxwG193rNzCzjb+6ameWMg9/MLGcc/GZmOePgNzPLGQe/mVnOOPjNzHLGwW9mljMOfjOznHHwm5nljIPfzCxnHPxmZjnj4DczyxkHv5lZzjj4zcxyxsFvZpYzDn4zs5xx8JuZ5YyD38wsZxz8ZmY54+A3M8sZB7+ZWc44+M3McsbBb2aWMw5+M7OccfCbmeWMg9/MLGcc/GZmOePgNzPLGQe/mVnOVCT4JR0i6R+SXpR0fiXqYGaWV+0e/JK6Ab8C/h3YARglaYf2roeZWV5VosU/DHgxIl6OiA+B3wAjKlAPM7NcWr8C6+wPzCsYng/sWTyRpJOBk9PgMkn/aIe6lY3GqrmivsAb7ViVkqnZKudTM/uww+4/8D4s1Bnfg7DO+3CbpkZWIvib2oz4xIiIccC48lensiTVRURNpetha8f7r/PL4z6sRFfPfGCrguEBwIIK1MPMLJcqEfxPAQMlbStpA+BY4PcVqIeZWS61e1dPRKySdDrwR6AbcGNEPNfe9ehAunx3Vhfn/df55W4fKuIT3etmZtaF+Zu7ZmY54+A3M8sZB38bkXSBpOckzZA0XdInvpuwhvlrJP1iDdMMlzRp3WradUj6tKTbJb0saZqkKZKOSGXDJS2V9Ex6PMhfJR1WMO9YSa+lffWspMNbWM9ESVOKxo2W1K9g+GxJPVtYxvX131CXtKyV2zlE0ldaM09XJumjtN/qf6rbePmjJV3VlsvsaCpxH3+XI2lv4DBgt4j4QFJfYIPWLCMi6oC6ctSvK5Ik4F5gQkR8I43bBigM8Mci4rBUNgS4V9L7EfFQKv9ZRFwmaXvgMUmfiojVRevpDexG9iXCbSNiTioaDTzLx7cinw3cCrzXRF27RcRJ67C5Q4Aa4P51WEZX8n5EDGmqIB0XKt6P1phb/G1jS+CNiPgAICLeiIgFkg5MLc6Zkm6UtCGApD0k/V3S/0qaKmnjwta8pGGp/Jn0e3AFt62jOgD4MCKuqR8REa9ExC+bmjgipgMXA6c3UTYLWEX2Dc5iXwfuI3u0yLEAkkaSBfFtqcV5FtAPeETSI2maZZIulvQksLekyZIaviQk6XJJT0t6SNIWaVzDNJL6Spqbbnm+GDgmresYSRul4+mpdIzk+pEnkqolzZL0a+BpYCtJP0ivzwxJFxVMe1x6z02XdG16dhiSTpQ0W9KjwD4F02+T9tGM9HvrNH68pKslPZLOOL+Y9sksSePb9xVoPQd/2/gT2cE2W9Kv00FQBYwHjomIncnOrk5Nb+Ra4KyI2BU4CHi/aHkvAF+IiKHAj4CftNeGdCI7kr3JW+Np4PPFI5V1y60GFjcxzyjgjvQzCiAi7iY7O/tmRAyJiJ+Ttfz3j4j903wbAc9GxJ4R8XjRMjcCno6I3YBHgTHNVTg9z+pHQG1aVy1wAfBwROwB7A/8P0kblfQKdA09Crp5fpfGDQZuTu+ZwcBAsueCDQF2l/SFdGZ3DLBPOmP4CPimpC2Bi8gC/2Cyh0fWuyotdxfgNqCwO3YzsgbIOWSNg5+RHZc7pzPMDstdPW0gIpZJ2h3Yj+yNWAv8FJgTEbPTZBOA04CHgIUR8VSa9x0ANX4gx6bABEkDyR5n0b09tqMzk/QrYF+ys4A9mpusaPgcSccB75J9QDe6t1nSp4HPAY9HREhaJWmniHi2hCp9BPy2mbLVZMcIZN1D95SwvEJfAg6X9P00XAVsDcxq5XI6q0ZdPamP/5WIeCKN+lL6eSYN9yL7INgF2B14Kr3fegCvkz0rbHJELE7LqwUGpXn3Bo5Mf98CXFpQj/vScTETWBQRM9P8zwHVwPQ22doycPC3kYj4CJgMTE4HwreamVQ08WyiIj8GHomII9JBPbmNqtmVPEfWDQNARJyWrq20dJ1kKI3D8WcRcVkL0x9D1qqbk4JiE7Lunh+WUL8V6ZgoRf3xsIqPz8KrWphewNcjolM/uLCNLS/4W8BPI+LawgkknUF2Tei/isZ/jTW/J+sVTvdB+r264O/64Q6dre7qaQOSBqfWeb0hwCKgWtLn0rjjyU7rXwD6SdojzbuxpOKDZFPgtfT36HLVu5N7GKiSdGrBuJbuqtkFuJDsf0GUahRwSERUR0Q1WWvx2FT2LrBxwbTFwy1ZDxiZ/v4GUN8VNDetg4Lyppb9R+CMdCETSUNLXG9e/BH4tqReAJL6S/oU2dn2yPQ3kjZXdkPAk8BwSX0kdQeOKljW3/l4n3+Tj/dVp9ahP5U6kV7AL5XdAbIKeJHskdJ3AHelYH8KuCYiPpR0TJq+B1n//kFFy7uUrKvnu2QBZ0XSKfbXgJ9JOpesf345cF7BZPtJeobsA+F14MyCO3palM60tgbquw+IiDmS3knXBMYD10h6n6w7YBzwgKSFBf38zVkO7ChpGrCU7MwC4DLgTknH03i/PwKcL2k6WRfij4ErgRkp/OeS3VVmQET8KfXnT0mfjcuA4yLieUk/BP4kaT1gJXBaRDwhaSwwBVhIdi2oW1rcmcCNkn5Adoyd2L5bUx5+ZIOZWc64q8fMLGcc/GZmOePgNzPLGQe/mVnOOPjNzHLGwW9mljMOfjOznPn/nGAxqd3GhCIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df2=df.sort_values(by=\"Ladder score\", ascending=False)\n", + "df2[\"Social support\"]=df2[\"Social support\"]*10\n", + "df2[\"Freedom to make life choices\"]=df2[\"Freedom to make life choices\"]*10\n", + "\n", + "Happy=df2.head(10).loc[:,[\"Social support\", \"Logged GDP per capita\", \"Freedom to make life choices\"]].mean()\n", + "Unhappy=df2.tail(10).loc[:,[\"Social support\", \"Logged GDP per capita\", \"Freedom to make life choices\"]].mean()\n", + "\n", + "x=[\"Social\", \"GDP Attribute\", \"Freedom\"]\n", + "\n", + "y1=Happy\n", + "y2=Unhappy\n", + "\n", + "x_axis=np.arange(len(x))\n", + "plt.xticks(x_axis, x)\n", + "\n", + "plt.bar(x_axis-0.2, y1, width=0.3, color=\"green\", align=\"center\", label=\"Happy\")\n", + "plt.bar(x_axis+0.2, y2, width=0.3, color=\"Blue\", align=\"center\", label=\"Unhappy\")\n", + "plt.legend(loc=1)\n", + "plt.ylabel(\"score\")\n", + "plt.title(\"Happy Country and Unhappy Country\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +}