diff --git "a/assignments/JeongHongjae/02_\354\240\225\355\231\215\354\236\254.ipynb" "b/assignments/JeongHongjae/02_\354\240\225\355\231\215\354\236\254.ipynb"
new file mode 100644
index 0000000..78490b6
--- /dev/null
+++ "b/assignments/JeongHongjae/02_\354\240\225\355\231\215\354\236\254.ipynb"
@@ -0,0 +1,774 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Team | \n",
+ " Tournament | \n",
+ " Goals | \n",
+ " Shots pg | \n",
+ " yellow_cards | \n",
+ " red_cards | \n",
+ " Possession% | \n",
+ " Pass% | \n",
+ " AerialsWon | \n",
+ " Rating | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " Manchester City | \n",
+ " Premier League | \n",
+ " 83 | \n",
+ " 15.8 | \n",
+ " 46 | \n",
+ " 2 | \n",
+ " 60.8 | \n",
+ " 89.4 | \n",
+ " 12.8 | \n",
+ " 7.01 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " Bayern Munich | \n",
+ " Bundesliga | \n",
+ " 99 | \n",
+ " 17.1 | \n",
+ " 44 | \n",
+ " 3 | \n",
+ " 58.1 | \n",
+ " 85.5 | \n",
+ " 12.9 | \n",
+ " 6.95 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " Paris Saint-Germain | \n",
+ " Ligue 1 | \n",
+ " 86 | \n",
+ " 15.0 | \n",
+ " 73 | \n",
+ " 7 | \n",
+ " 60.1 | \n",
+ " 89.5 | \n",
+ " 9.5 | \n",
+ " 6.88 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " Barcelona | \n",
+ " LaLiga | \n",
+ " 85 | \n",
+ " 15.3 | \n",
+ " 68 | \n",
+ " 2 | \n",
+ " 62.4 | \n",
+ " 89.7 | \n",
+ " 10.6 | \n",
+ " 6.87 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " Real Madrid | \n",
+ " LaLiga | \n",
+ " 67 | \n",
+ " 14.4 | \n",
+ " 57 | \n",
+ " 2 | \n",
+ " 57.7 | \n",
+ " 87.7 | \n",
+ " 11.8 | \n",
+ " 6.86 | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 93 | \n",
+ " Sheffield United | \n",
+ " Premier League | \n",
+ " 20 | \n",
+ " 8.5 | \n",
+ " 73 | \n",
+ " 3 | \n",
+ " 43.0 | \n",
+ " 76.9 | \n",
+ " 19.1 | \n",
+ " 6.46 | \n",
+ "
\n",
+ " \n",
+ " | 94 | \n",
+ " Crotone | \n",
+ " Serie A | \n",
+ " 45 | \n",
+ " 9.5 | \n",
+ " 85 | \n",
+ " 4 | \n",
+ " 47.2 | \n",
+ " 80.4 | \n",
+ " 12.7 | \n",
+ " 6.43 | \n",
+ "
\n",
+ " \n",
+ " | 95 | \n",
+ " Benevento | \n",
+ " Serie A | \n",
+ " 40 | \n",
+ " 11.0 | \n",
+ " 90 | \n",
+ " 5 | \n",
+ " 44.2 | \n",
+ " 77.7 | \n",
+ " 13.4 | \n",
+ " 6.43 | \n",
+ "
\n",
+ " \n",
+ " | 96 | \n",
+ " Dijon | \n",
+ " Ligue 1 | \n",
+ " 25 | \n",
+ " 9.2 | \n",
+ " 75 | \n",
+ " 5 | \n",
+ " 46.9 | \n",
+ " 80.0 | \n",
+ " 14.3 | \n",
+ " 6.42 | \n",
+ "
\n",
+ " \n",
+ " | 97 | \n",
+ " Schalke 04 | \n",
+ " Bundesliga | \n",
+ " 25 | \n",
+ " 8.9 | \n",
+ " 70 | \n",
+ " 2 | \n",
+ " 46.2 | \n",
+ " 76.5 | \n",
+ " 15.6 | \n",
+ " 6.41 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
98 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Team Tournament Goals Shots pg yellow_cards \\\n",
+ "0 Manchester City Premier League 83 15.8 46 \n",
+ "1 Bayern Munich Bundesliga 99 17.1 44 \n",
+ "2 Paris Saint-Germain Ligue 1 86 15.0 73 \n",
+ "3 Barcelona LaLiga 85 15.3 68 \n",
+ "4 Real Madrid LaLiga 67 14.4 57 \n",
+ ".. ... ... ... ... ... \n",
+ "93 Sheffield United Premier League 20 8.5 73 \n",
+ "94 Crotone Serie A 45 9.5 85 \n",
+ "95 Benevento Serie A 40 11.0 90 \n",
+ "96 Dijon Ligue 1 25 9.2 75 \n",
+ "97 Schalke 04 Bundesliga 25 8.9 70 \n",
+ "\n",
+ " red_cards Possession% Pass% AerialsWon Rating \n",
+ "0 2 60.8 89.4 12.8 7.01 \n",
+ "1 3 58.1 85.5 12.9 6.95 \n",
+ "2 7 60.1 89.5 9.5 6.88 \n",
+ "3 2 62.4 89.7 10.6 6.87 \n",
+ "4 2 57.7 87.7 11.8 6.86 \n",
+ ".. ... ... ... ... ... \n",
+ "93 3 43.0 76.9 19.1 6.46 \n",
+ "94 4 47.2 80.4 12.7 6.43 \n",
+ "95 5 44.2 77.7 13.4 6.43 \n",
+ "96 5 46.9 80.0 14.3 6.42 \n",
+ "97 2 46.2 76.5 15.6 6.41 \n",
+ "\n",
+ "[98 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "\n",
+ "df = pd.read_csv('./Football teams.csv')\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "각 Column의 정보는 다음 링크에 있는 것과 같습니다.\n",
+ "\n",
+ "https://www.kaggle.com/varpit94/football-teams-rankings-stats\n",
+ "\n",
+ "## Assignments 1\n",
+ "패스 성공률이 높은 상위 5개의 팀을 추출 해 보세요\n",
+ "(hint: sort_values, head)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Team | \n",
+ " Tournament | \n",
+ " Goals | \n",
+ " Shots pg | \n",
+ " yellow_cards | \n",
+ " red_cards | \n",
+ " Possession% | \n",
+ " Pass% | \n",
+ " AerialsWon | \n",
+ " Rating | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 3 | \n",
+ " Barcelona | \n",
+ " LaLiga | \n",
+ " 85 | \n",
+ " 15.3 | \n",
+ " 68 | \n",
+ " 2 | \n",
+ " 62.4 | \n",
+ " 89.7 | \n",
+ " 10.6 | \n",
+ " 6.87 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " Paris Saint-Germain | \n",
+ " Ligue 1 | \n",
+ " 86 | \n",
+ " 15.0 | \n",
+ " 73 | \n",
+ " 7 | \n",
+ " 60.1 | \n",
+ " 89.5 | \n",
+ " 9.5 | \n",
+ " 6.88 | \n",
+ "
\n",
+ " \n",
+ " | 0 | \n",
+ " Manchester City | \n",
+ " Premier League | \n",
+ " 83 | \n",
+ " 15.8 | \n",
+ " 46 | \n",
+ " 2 | \n",
+ " 60.8 | \n",
+ " 89.4 | \n",
+ " 12.8 | \n",
+ " 7.01 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " Juventus | \n",
+ " Serie A | \n",
+ " 77 | \n",
+ " 15.7 | \n",
+ " 76 | \n",
+ " 6 | \n",
+ " 55.4 | \n",
+ " 88.3 | \n",
+ " 11.4 | \n",
+ " 6.85 | \n",
+ "
\n",
+ " \n",
+ " | 35 | \n",
+ " Sassuolo | \n",
+ " Serie A | \n",
+ " 64 | \n",
+ " 13.9 | \n",
+ " 74 | \n",
+ " 4 | \n",
+ " 58.2 | \n",
+ " 87.8 | \n",
+ " 10.9 | \n",
+ " 6.67 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Team Tournament Goals Shots pg yellow_cards \\\n",
+ "3 Barcelona LaLiga 85 15.3 68 \n",
+ "2 Paris Saint-Germain Ligue 1 86 15.0 73 \n",
+ "0 Manchester City Premier League 83 15.8 46 \n",
+ "6 Juventus Serie A 77 15.7 76 \n",
+ "35 Sassuolo Serie A 64 13.9 74 \n",
+ "\n",
+ " red_cards Possession% Pass% AerialsWon Rating \n",
+ "3 2 62.4 89.7 10.6 6.87 \n",
+ "2 7 60.1 89.5 9.5 6.88 \n",
+ "0 2 60.8 89.4 12.8 7.01 \n",
+ "6 6 55.4 88.3 11.4 6.85 \n",
+ "35 4 58.2 87.8 10.9 6.67 "
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df2 = df.sort_values(by='Pass%', ascending = False)\n",
+ "df2.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Assignments 2\n",
+ "모든 팀 중에서 점유율이 60% 이상인 팀을 추출 하세요"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Team | \n",
+ " Tournament | \n",
+ " Goals | \n",
+ " Shots pg | \n",
+ " yellow_cards | \n",
+ " red_cards | \n",
+ " Possession% | \n",
+ " Pass% | \n",
+ " AerialsWon | \n",
+ " Rating | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " Manchester City | \n",
+ " Premier League | \n",
+ " 83 | \n",
+ " 15.8 | \n",
+ " 46 | \n",
+ " 2 | \n",
+ " 60.8 | \n",
+ " 89.4 | \n",
+ " 12.8 | \n",
+ " 7.01 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " Paris Saint-Germain | \n",
+ " Ligue 1 | \n",
+ " 86 | \n",
+ " 15.0 | \n",
+ " 73 | \n",
+ " 7 | \n",
+ " 60.1 | \n",
+ " 89.5 | \n",
+ " 9.5 | \n",
+ " 6.88 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " Barcelona | \n",
+ " LaLiga | \n",
+ " 85 | \n",
+ " 15.3 | \n",
+ " 68 | \n",
+ " 2 | \n",
+ " 62.4 | \n",
+ " 89.7 | \n",
+ " 10.6 | \n",
+ " 6.87 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Team Tournament Goals Shots pg yellow_cards \\\n",
+ "0 Manchester City Premier League 83 15.8 46 \n",
+ "2 Paris Saint-Germain Ligue 1 86 15.0 73 \n",
+ "3 Barcelona LaLiga 85 15.3 68 \n",
+ "\n",
+ " red_cards Possession% Pass% AerialsWon Rating \n",
+ "0 2 60.8 89.4 12.8 7.01 \n",
+ "2 7 60.1 89.5 9.5 6.88 \n",
+ "3 2 62.4 89.7 10.6 6.87 "
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df3 = df[df[\"Possession%\"]>60]\n",
+ "df3"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Assignments 3\n",
+ "5대 리그 중, 제일 과격 한 리그는 무엇일까요? 일단 Yellow Card 갯수 순서로 리그를 정렬 해 주고, 거기서 yellow_cards와 red_cards 수로 정렬 해 주세요!\n",
+ "(hint: groupby, sum, loc)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " yellow_cards | \n",
+ " red_cards | \n",
+ "
\n",
+ " \n",
+ " | Tournament | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | LaLiga | \n",
+ " 1639 | \n",
+ " 75 | \n",
+ "
\n",
+ " \n",
+ " | Serie A | \n",
+ " 1597 | \n",
+ " 69 | \n",
+ "
\n",
+ " \n",
+ " | Ligue 1 | \n",
+ " 1419 | \n",
+ " 102 | \n",
+ "
\n",
+ " \n",
+ " | Premier League | \n",
+ " 1095 | \n",
+ " 48 | \n",
+ "
\n",
+ " \n",
+ " | Bundesliga | \n",
+ " 1081 | \n",
+ " 33 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " yellow_cards red_cards\n",
+ "Tournament \n",
+ "LaLiga 1639 75\n",
+ "Serie A 1597 69\n",
+ "Ligue 1 1419 102\n",
+ "Premier League 1095 48\n",
+ "Bundesliga 1081 33"
+ ]
+ },
+ "execution_count": 35,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df4 = df.groupby([\"Tournament\"]).sum()\n",
+ "df4 = df4.sort_values(by=\"yellow_cards\", ascending = False)\n",
+ "df4 = df4.loc[:, \"yellow_cards\":\"red_cards\"]\n",
+ "df4"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Assignments 4\n",
+ "\n",
+ "생각해 보니 레드 카드도 감안을 해야 할 것 같습니다. 레드 카드 5점, 옐로우 카드 2점으로 점수를 산정 하여, 해당 점수를 바탕으로 정렬해서, 진짜 과격한 리그가 어느 리그인지 알아 보도록 해봐요!\n",
+ "\n",
+ "아 맞다, df['A'] = df['B'] * 5 + df['C'] * 2\n",
+ "\n",
+ "이런 식으로 새로운 Column을 만들면 되지 않을까요?"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " yellow_cards | \n",
+ " red_cards | \n",
+ " score | \n",
+ "
\n",
+ " \n",
+ " | Tournament | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | LaLiga | \n",
+ " 1639 | \n",
+ " 75 | \n",
+ " 3653 | \n",
+ "
\n",
+ " \n",
+ " | Serie A | \n",
+ " 1597 | \n",
+ " 69 | \n",
+ " 3539 | \n",
+ "
\n",
+ " \n",
+ " | Ligue 1 | \n",
+ " 1419 | \n",
+ " 102 | \n",
+ " 3348 | \n",
+ "
\n",
+ " \n",
+ " | Premier League | \n",
+ " 1095 | \n",
+ " 48 | \n",
+ " 2430 | \n",
+ "
\n",
+ " \n",
+ " | Bundesliga | \n",
+ " 1081 | \n",
+ " 33 | \n",
+ " 2327 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " yellow_cards red_cards score\n",
+ "Tournament \n",
+ "LaLiga 1639 75 3653\n",
+ "Serie A 1597 69 3539\n",
+ "Ligue 1 1419 102 3348\n",
+ "Premier League 1095 48 2430\n",
+ "Bundesliga 1081 33 2327"
+ ]
+ },
+ "execution_count": 40,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df5 = df4\n",
+ "df5['score'] = df5['yellow_cards']*2 + df5['red_cards']*5\n",
+ "df5 = df5.sort_values(by='score', ascending = False)\n",
+ "df5"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Assignments 5\n",
+ "흠.. 근데 패스 성공률과 점유율의 상관관계에 대해서 알아보고 싶은데.. 선형 적인 면에서 이를 알 수 있을까요? numpy를 이용해서 covariance matrix를 통해서 알아 보면 될 것 같은데...\n",
+ "\n",
+ "hint: to_numpy, T, cov"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 58,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([[21.99771618, 19.52841995],\n",
+ " [19.52841995, 23.91276667]])"
+ ]
+ },
+ "execution_count": 58,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "A1 = df.sort_values('Pass%',ascending = False).head()\n",
+ "A1\n",
+ "\n",
+ "A2 = df[df['Possession%']>=60]\n",
+ "A2\n",
+ "\n",
+ "A3 = df.groupby(df['Tournament']).sum().sort_values(['yellow_cards','red_cards'],ascending= False)\n",
+ "A3 = A3.loc[:,['yellow_cards','red_cards']]\n",
+ "A3\n",
+ "\n",
+ "A4 = A3\n",
+ "A4['score'] = A4['red_cards']*5 +A4['yellow_cards']*2\n",
+ "A4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git "a/assignments/JeongHongjae/03_\354\240\225\355\231\215\354\236\254.ipynb" "b/assignments/JeongHongjae/03_\354\240\225\355\231\215\354\236\254.ipynb"
new file mode 100644
index 0000000..3e1f536
--- /dev/null
+++ "b/assignments/JeongHongjae/03_\354\240\225\355\231\215\354\236\254.ipynb"
@@ -0,0 +1,627 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Country name | \n",
+ " Regional indicator | \n",
+ " Ladder score | \n",
+ " Standard error of ladder score | \n",
+ " upperwhisker | \n",
+ " lowerwhisker | \n",
+ " Logged GDP per capita | \n",
+ " Social support | \n",
+ " Healthy life expectancy | \n",
+ " Freedom to make life choices | \n",
+ " Generosity | \n",
+ " Perceptions of corruption | \n",
+ " Ladder score in Dystopia | \n",
+ " Explained by: Log GDP per capita | \n",
+ " Explained by: Social support | \n",
+ " Explained by: Healthy life expectancy | \n",
+ " Explained by: Freedom to make life choices | \n",
+ " Explained by: Generosity | \n",
+ " Explained by: Perceptions of corruption | \n",
+ " Dystopia + residual | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " Finland | \n",
+ " Western Europe | \n",
+ " 7.842 | \n",
+ " 0.032 | \n",
+ " 7.904 | \n",
+ " 7.780 | \n",
+ " 10.775 | \n",
+ " 0.954 | \n",
+ " 72.000 | \n",
+ " 0.949 | \n",
+ " -0.098 | \n",
+ " 0.186 | \n",
+ " 2.43 | \n",
+ " 1.446 | \n",
+ " 1.106 | \n",
+ " 0.741 | \n",
+ " 0.691 | \n",
+ " 0.124 | \n",
+ " 0.481 | \n",
+ " 3.253 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " Denmark | \n",
+ " Western Europe | \n",
+ " 7.620 | \n",
+ " 0.035 | \n",
+ " 7.687 | \n",
+ " 7.552 | \n",
+ " 10.933 | \n",
+ " 0.954 | \n",
+ " 72.700 | \n",
+ " 0.946 | \n",
+ " 0.030 | \n",
+ " 0.179 | \n",
+ " 2.43 | \n",
+ " 1.502 | \n",
+ " 1.108 | \n",
+ " 0.763 | \n",
+ " 0.686 | \n",
+ " 0.208 | \n",
+ " 0.485 | \n",
+ " 2.868 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " Switzerland | \n",
+ " Western Europe | \n",
+ " 7.571 | \n",
+ " 0.036 | \n",
+ " 7.643 | \n",
+ " 7.500 | \n",
+ " 11.117 | \n",
+ " 0.942 | \n",
+ " 74.400 | \n",
+ " 0.919 | \n",
+ " 0.025 | \n",
+ " 0.292 | \n",
+ " 2.43 | \n",
+ " 1.566 | \n",
+ " 1.079 | \n",
+ " 0.816 | \n",
+ " 0.653 | \n",
+ " 0.204 | \n",
+ " 0.413 | \n",
+ " 2.839 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " Iceland | \n",
+ " Western Europe | \n",
+ " 7.554 | \n",
+ " 0.059 | \n",
+ " 7.670 | \n",
+ " 7.438 | \n",
+ " 10.878 | \n",
+ " 0.983 | \n",
+ " 73.000 | \n",
+ " 0.955 | \n",
+ " 0.160 | \n",
+ " 0.673 | \n",
+ " 2.43 | \n",
+ " 1.482 | \n",
+ " 1.172 | \n",
+ " 0.772 | \n",
+ " 0.698 | \n",
+ " 0.293 | \n",
+ " 0.170 | \n",
+ " 2.967 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " Netherlands | \n",
+ " Western Europe | \n",
+ " 7.464 | \n",
+ " 0.027 | \n",
+ " 7.518 | \n",
+ " 7.410 | \n",
+ " 10.932 | \n",
+ " 0.942 | \n",
+ " 72.400 | \n",
+ " 0.913 | \n",
+ " 0.175 | \n",
+ " 0.338 | \n",
+ " 2.43 | \n",
+ " 1.501 | \n",
+ " 1.079 | \n",
+ " 0.753 | \n",
+ " 0.647 | \n",
+ " 0.302 | \n",
+ " 0.384 | \n",
+ " 2.798 | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 144 | \n",
+ " Lesotho | \n",
+ " Sub-Saharan Africa | \n",
+ " 3.512 | \n",
+ " 0.120 | \n",
+ " 3.748 | \n",
+ " 3.276 | \n",
+ " 7.926 | \n",
+ " 0.787 | \n",
+ " 48.700 | \n",
+ " 0.715 | \n",
+ " -0.131 | \n",
+ " 0.915 | \n",
+ " 2.43 | \n",
+ " 0.451 | \n",
+ " 0.731 | \n",
+ " 0.007 | \n",
+ " 0.405 | \n",
+ " 0.103 | \n",
+ " 0.015 | \n",
+ " 1.800 | \n",
+ "
\n",
+ " \n",
+ " | 145 | \n",
+ " Botswana | \n",
+ " Sub-Saharan Africa | \n",
+ " 3.467 | \n",
+ " 0.074 | \n",
+ " 3.611 | \n",
+ " 3.322 | \n",
+ " 9.782 | \n",
+ " 0.784 | \n",
+ " 59.269 | \n",
+ " 0.824 | \n",
+ " -0.246 | \n",
+ " 0.801 | \n",
+ " 2.43 | \n",
+ " 1.099 | \n",
+ " 0.724 | \n",
+ " 0.340 | \n",
+ " 0.539 | \n",
+ " 0.027 | \n",
+ " 0.088 | \n",
+ " 0.648 | \n",
+ "
\n",
+ " \n",
+ " | 146 | \n",
+ " Rwanda | \n",
+ " Sub-Saharan Africa | \n",
+ " 3.415 | \n",
+ " 0.068 | \n",
+ " 3.548 | \n",
+ " 3.282 | \n",
+ " 7.676 | \n",
+ " 0.552 | \n",
+ " 61.400 | \n",
+ " 0.897 | \n",
+ " 0.061 | \n",
+ " 0.167 | \n",
+ " 2.43 | \n",
+ " 0.364 | \n",
+ " 0.202 | \n",
+ " 0.407 | \n",
+ " 0.627 | \n",
+ " 0.227 | \n",
+ " 0.493 | \n",
+ " 1.095 | \n",
+ "
\n",
+ " \n",
+ " | 147 | \n",
+ " Zimbabwe | \n",
+ " Sub-Saharan Africa | \n",
+ " 3.145 | \n",
+ " 0.058 | \n",
+ " 3.259 | \n",
+ " 3.030 | \n",
+ " 7.943 | \n",
+ " 0.750 | \n",
+ " 56.201 | \n",
+ " 0.677 | \n",
+ " -0.047 | \n",
+ " 0.821 | \n",
+ " 2.43 | \n",
+ " 0.457 | \n",
+ " 0.649 | \n",
+ " 0.243 | \n",
+ " 0.359 | \n",
+ " 0.157 | \n",
+ " 0.075 | \n",
+ " 1.205 | \n",
+ "
\n",
+ " \n",
+ " | 148 | \n",
+ " Afghanistan | \n",
+ " South Asia | \n",
+ " 2.523 | \n",
+ " 0.038 | \n",
+ " 2.596 | \n",
+ " 2.449 | \n",
+ " 7.695 | \n",
+ " 0.463 | \n",
+ " 52.493 | \n",
+ " 0.382 | \n",
+ " -0.102 | \n",
+ " 0.924 | \n",
+ " 2.43 | \n",
+ " 0.370 | \n",
+ " 0.000 | \n",
+ " 0.126 | \n",
+ " 0.000 | \n",
+ " 0.122 | \n",
+ " 0.010 | \n",
+ " 1.895 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
149 rows × 20 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Country name Regional indicator Ladder score \\\n",
+ "0 Finland Western Europe 7.842 \n",
+ "1 Denmark Western Europe 7.620 \n",
+ "2 Switzerland Western Europe 7.571 \n",
+ "3 Iceland Western Europe 7.554 \n",
+ "4 Netherlands Western Europe 7.464 \n",
+ ".. ... ... ... \n",
+ "144 Lesotho Sub-Saharan Africa 3.512 \n",
+ "145 Botswana Sub-Saharan Africa 3.467 \n",
+ "146 Rwanda Sub-Saharan Africa 3.415 \n",
+ "147 Zimbabwe Sub-Saharan Africa 3.145 \n",
+ "148 Afghanistan South Asia 2.523 \n",
+ "\n",
+ " Standard error of ladder score upperwhisker lowerwhisker \\\n",
+ "0 0.032 7.904 7.780 \n",
+ "1 0.035 7.687 7.552 \n",
+ "2 0.036 7.643 7.500 \n",
+ "3 0.059 7.670 7.438 \n",
+ "4 0.027 7.518 7.410 \n",
+ ".. ... ... ... \n",
+ "144 0.120 3.748 3.276 \n",
+ "145 0.074 3.611 3.322 \n",
+ "146 0.068 3.548 3.282 \n",
+ "147 0.058 3.259 3.030 \n",
+ "148 0.038 2.596 2.449 \n",
+ "\n",
+ " Logged GDP per capita Social support Healthy life expectancy \\\n",
+ "0 10.775 0.954 72.000 \n",
+ "1 10.933 0.954 72.700 \n",
+ "2 11.117 0.942 74.400 \n",
+ "3 10.878 0.983 73.000 \n",
+ "4 10.932 0.942 72.400 \n",
+ ".. ... ... ... \n",
+ "144 7.926 0.787 48.700 \n",
+ "145 9.782 0.784 59.269 \n",
+ "146 7.676 0.552 61.400 \n",
+ "147 7.943 0.750 56.201 \n",
+ "148 7.695 0.463 52.493 \n",
+ "\n",
+ " Freedom to make life choices Generosity Perceptions of corruption \\\n",
+ "0 0.949 -0.098 0.186 \n",
+ "1 0.946 0.030 0.179 \n",
+ "2 0.919 0.025 0.292 \n",
+ "3 0.955 0.160 0.673 \n",
+ "4 0.913 0.175 0.338 \n",
+ ".. ... ... ... \n",
+ "144 0.715 -0.131 0.915 \n",
+ "145 0.824 -0.246 0.801 \n",
+ "146 0.897 0.061 0.167 \n",
+ "147 0.677 -0.047 0.821 \n",
+ "148 0.382 -0.102 0.924 \n",
+ "\n",
+ " Ladder score in Dystopia Explained by: Log GDP per capita \\\n",
+ "0 2.43 1.446 \n",
+ "1 2.43 1.502 \n",
+ "2 2.43 1.566 \n",
+ "3 2.43 1.482 \n",
+ "4 2.43 1.501 \n",
+ ".. ... ... \n",
+ "144 2.43 0.451 \n",
+ "145 2.43 1.099 \n",
+ "146 2.43 0.364 \n",
+ "147 2.43 0.457 \n",
+ "148 2.43 0.370 \n",
+ "\n",
+ " Explained by: Social support Explained by: Healthy life expectancy \\\n",
+ "0 1.106 0.741 \n",
+ "1 1.108 0.763 \n",
+ "2 1.079 0.816 \n",
+ "3 1.172 0.772 \n",
+ "4 1.079 0.753 \n",
+ ".. ... ... \n",
+ "144 0.731 0.007 \n",
+ "145 0.724 0.340 \n",
+ "146 0.202 0.407 \n",
+ "147 0.649 0.243 \n",
+ "148 0.000 0.126 \n",
+ "\n",
+ " Explained by: Freedom to make life choices Explained by: Generosity \\\n",
+ "0 0.691 0.124 \n",
+ "1 0.686 0.208 \n",
+ "2 0.653 0.204 \n",
+ "3 0.698 0.293 \n",
+ "4 0.647 0.302 \n",
+ ".. ... ... \n",
+ "144 0.405 0.103 \n",
+ "145 0.539 0.027 \n",
+ "146 0.627 0.227 \n",
+ "147 0.359 0.157 \n",
+ "148 0.000 0.122 \n",
+ "\n",
+ " Explained by: Perceptions of corruption Dystopia + residual \n",
+ "0 0.481 3.253 \n",
+ "1 0.485 2.868 \n",
+ "2 0.413 2.839 \n",
+ "3 0.170 2.967 \n",
+ "4 0.384 2.798 \n",
+ ".. ... ... \n",
+ "144 0.015 1.800 \n",
+ "145 0.088 0.648 \n",
+ "146 0.493 1.095 \n",
+ "147 0.075 1.205 \n",
+ "148 0.010 1.895 \n",
+ "\n",
+ "[149 rows x 20 columns]"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = pd.read_csv('./world-happiness-report-2021.csv')\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Assignment 1\n",
+ "행복 지수를 1점 간격으로 두고 다음과 같은 **Histogram**을 작성 해 주세요.\n",
+ "행복 지수의 키 값은 \"Ladder score\" 입니다."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAATX0lEQVR4nO3df7CdV13v8feHhAw2thekh19JelM1ihltpR5TtNw6BekkVgmiI+3wQ0Em1qFIdRyN/uHoMHrpXO+dq0whZkpRVOwoECfa2B/+RKdWcgK1bUqDMQR7TDGntFr5MaSRr3/sJ8PmZJ2TfdLzZJ+TvF8ze85+1rPWk28yTT5d69nP2qkqJEma7RnjLkCStDQZEJKkJgNCktRkQEiSmgwISVLTynEXsJguvPDCWr9+/bjLkKRlY9++fY9V1UTr3FkVEOvXr2dqamrcZUjSspHk03Odc4lJktRkQEiSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUdFY9SS09Xeu33z7uEhbk8DuvGXcJOos5g5AkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJauo1IJJsTnIgycEk2xvntya5P8l9SaaSvGzUsZKkfvUWEElWADcDW4CNwHVJNs7q9hfApVX17cCbgVsWMFaS1KM+ZxCbgINVdaiqjgG3AVuHO1TV56qqusPVQI06VpLUrz4DYg3wyNDxdNf2VZL8YJKHgdsZzCJGHtuN39YtT03NzMwsSuGSpH4DIo22OqmhaldVvRh4NfCOhYztxu+sqsmqmpyYmDjdWiVJs/QZENPAuqHjtcCRuTpX1UeAb0hy4ULHSpIWX58BsRfYkOTiJKuAa4Hdwx2SfGOSdO8vA1YBnx1lrCSpXyv7unBVHU9yA3AnsAK4tar2J7m+O78D+CHgjUmeAr4IvLa7ad0c21etkqST9RYQAFW1B9gzq23H0PubgJtGHStJOnN8klqS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKmp14BIsjnJgSQHk2xvnH9dkvu71z1JLh06dzjJA0nuSzLVZ52SpJOt7OvCSVYANwOvBKaBvUl2V9VDQ90+BXxPVT2RZAuwE7h86PxVVfVYXzVKkubW5wxiE3Cwqg5V1THgNmDrcIequqeqnugO7wXW9liPJGkB+gyINcAjQ8fTXdtcfhz4s6HjAu5Ksi/JtrkGJdmWZCrJ1MzMzNMqWJL0Fb0tMQFptFWzY3IVg4B42VDzFVV1JMnzgLuTPFxVHznpglU7GSxNMTk52by+JGnh+pxBTAPrho7XAkdmd0pyCXALsLWqPnuivaqOdD+PArsYLFlJks6QPgNiL7AhycVJVgHXAruHOyS5CPgw8Iaq+uRQ++ok5594D1wNPNhjrZKkWXpbYqqq40luAO4EVgC3VtX+JNd353cAvwQ8F3h3EoDjVTUJPB/Y1bWtBD5QVXf0Vask6WR93oOgqvYAe2a17Rh6/xbgLY1xh4BLZ7dLks6cXgNCAli//fZxlyDpNLjVhiSpyYCQJDUZEJKkJu9BSMvYcrq/c/id14y7BC2QMwhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWrqNSCSbE5yIMnBJNsb51+X5P7udU+SS0cdK0nqV28BkWQFcDOwBdgIXJdk46xunwK+p6ouAd4B7FzAWElSj/qcQWwCDlbVoao6BtwGbB3uUFX3VNUT3eG9wNpRx0qS+tVnQKwBHhk6nu7a5vLjwJ8tdGySbUmmkkzNzMw8jXIlScP6DIg02qrZMbmKQUD8/ELHVtXOqpqsqsmJiYnTKlSSdLKVPV57Glg3dLwWODK7U5JLgFuALVX12YWMlST1p88ZxF5gQ5KLk6wCrgV2D3dIchHwYeANVfXJhYyVJPWrtxlEVR1PcgNwJ7ACuLWq9ie5vju/A/gl4LnAu5MAHO+Wi5pj+6pVknSyPpeYqKo9wJ5ZbTuG3r8FeMuoYyVJZ85IS0xJ/mKUNknS2WPeGUSSZwHnARcmeQ5f+XTRBcCLeq5NkjRGp1pi+gngRgZhsI+vBMSTDJ50liSdpeYNiKr6DeA3krytqt51hmqSJC0BI92krqp3JfluYP3wmKp6f091SZLGbKSASPK7wDcA9wH/1TUXYEBI0llq1I+5TgIbq6q53YUk6ewz6pPUDwIv6LMQSdLSMuoM4kLgoSQfBb50orGqXtVLVZKksRs1IH65zyIkSUvPqJ9i+pu+C5EkLS2jforpP/nK9zGsAp4JfL6qLuirMEnSeI06gzh/+DjJqxl8Lagk6Sx1Wt8HUVV/DLx8cUuRJC0loy4xvWbo8BkMnovwmQhJOouN+immHxh6fxw4DGxd9GokSUvGqPcg3tR3IZKkpWXULwxam2RXkqNJ/i3Jh5Ks7bs4SdL4jHqT+n3AbgbfC7EG+JOuTZJ0lho1ICaq6n1Vdbx7/TYw0WNdkqQxGzUgHkvy+iQrutfrgc/2WZgkabxGDYg3Az8CfAZ4FPhhwBvXknQWGzUg3gH8aFVNVNXzGATGL59qUJLNSQ4kOZhke+P8i5P8fZIvJfnZWecOJ3kgyX1JpkasU5K0SEZ9DuKSqnrixEFVPZ7kJfMNSLICuBl4JTAN7E2yu6oeGur2OPBTwKvnuMxVVfXYiDVKkhbRqDOIZyR5zomDJF/HqcNlE3Cwqg5V1THgNmY9XFdVR6tqL/DUAmqWJJ0Bo84g/i9wT5IPMthi40eAXz3FmDXAI0PH08DlC6itgLuSFPBbVbWz1SnJNmAbwEUXXbSAy0uS5jPqk9Tv7+4DvBwI8JpZS0UtaV1qAbVdUVVHkjwPuDvJw1X1kUZtO4GdAJOTk+4PJUmLZNQZBF0gnCoUhk0D64aO1wJHFvDrHel+Hk2yi8GS1UkBIUnqx2lt9z2ivcCGJBcnWQVcy+Bp7FNKsjrJ+SfeA1cDD/ZWqSTpJCPPIBaqqo4nuQG4E1gB3FpV+5Nc353fkeQFwBRwAfDlJDcCG4ELgV1JTtT4gaq6o69aJUkn6y0gAKpqD7BnVtuOofefYbD0NNuTwKV91iZJml+fS0ySpGXMgJAkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNBoQkqanXb5STpBPWb7993CUsyOF3XjPuEsbOGYQkqcmAkCQ1GRCSpCYDQpLUZEBIkpp6DYgkm5McSHIwyfbG+Rcn+fskX0ryswsZK0nqV28BkWQFcDOwBdgIXJdk46xujwM/Bfz6aYyVJPWozxnEJuBgVR2qqmPAbcDW4Q5VdbSq9gJPLXSsJKlffQbEGuCRoePprm1RxybZlmQqydTMzMxpFSpJOlmfAZFGWy322KraWVWTVTU5MTExcnGSpPn1GRDTwLqh47XAkTMwVpK0CPoMiL3AhiQXJ1kFXAvsPgNjJUmLoLfN+qrqeJIbgDuBFcCtVbU/yfXd+R1JXgBMARcAX05yI7Cxqp5sje2rVknSyXrdzbWq9gB7ZrXtGHr/GQbLRyONlSSdOT5JLUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNvW61oX6s3377uEuQdA5wBiFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKmp14BIsjnJgSQHk2xvnE+S3+zO35/ksqFzh5M8kOS+JFN91ilJOllvm/UlWQHcDLwSmAb2JtldVQ8NddsCbOhelwPv6X6ecFVVPdZXjZKkufU5g9gEHKyqQ1V1DLgN2Dqrz1bg/TVwL/DsJC/ssSZJ0oj6DIg1wCNDx9Nd26h9Crgryb4k2+b6RZJsSzKVZGpmZmYRypYkQb8BkUZbLaDPFVV1GYNlqLcmubL1i1TVzqqarKrJiYmJ069WkvRV+gyIaWDd0PFa4MiofarqxM+jwC4GS1aSpDOkz4DYC2xIcnGSVcC1wO5ZfXYDb+w+zfRS4D+q6tEkq5OcD5BkNXA18GCPtUqSZuntU0xVdTzJDcCdwArg1qran+T67vwOYA/wfcBB4AvAm7rhzwd2JTlR4weq6o6+apUknazX76Suqj0MQmC4bcfQ+wLe2hh3CLi0z9okSfPzSWpJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqSmleMuYKlYv/32cZcgSUtKrzOIJJuTHEhyMMn2xvkk+c3u/P1JLht1rCSpX70FRJIVwM3AFmAjcF2SjbO6bQE2dK9twHsWMFaS1KM+ZxCbgINVdaiqjgG3AVtn9dkKvL8G7gWeneSFI46VJPWoz3sQa4BHho6ngctH6LNmxLEAJNnGYPYB8LkkB06z3guBx05z7Jm2nGqF5VXvcqoVlle9y6lWctOyqvfp1Po/5zrRZ0Ck0VYj9hll7KCxaiewc2GlnSzJVFVNPt3rnAnLqVZYXvUup1phedW7nGqF5VVvX7X2GRDTwLqh47XAkRH7rBphrCSpR33eg9gLbEhycZJVwLXA7ll9dgNv7D7N9FLgP6rq0RHHSpJ61NsMoqqOJ7kBuBNYAdxaVfuTXN+d3wHsAb4POAh8AXjTfGP7qrXztJepzqDlVCssr3qXU62wvOpdTrXC8qq3l1pT1VzalySd49xqQ5LUZEBIkprO6YBIsi7JXyX5RJL9Sd4+7prmk+RZST6a5B+7en9l3DWdSpIVST6e5E/HXcupJDmc5IEk9yWZGnc980ny7CQfTPJw99/vd427prkk+ebuz/TE68kkN467rrkk+enu79eDSf4gybPGXdN8kry9q3X/Yv+5ntP3ILqntl9YVR9Lcj6wD3h1VT005tKakgRYXVWfS/JM4O+At3dPoS9JSX4GmAQuqKrvH3c980lyGJisqiX/cFSS3wH+tqpu6T7pd15V/fuYyzqlbhudfwUur6pPj7ue2ZKsYfD3amNVfTHJHwJ7quq3x1tZW5JvZbDTxCbgGHAH8JNV9U+Lcf1zegZRVY9W1ce69/8JfILBU9xLUrclyee6w2d2ryWb8EnWAtcAt4y7lrNJkguAK4H3AlTVseUQDp1XAP+8FMNhyErga5KsBM5jaT+D9S3AvVX1hao6DvwN8IOLdfFzOiCGJVkPvAT4hzGXMq9uyeY+4Chwd1Ut5Xr/P/BzwJfHXMeoCrgryb5uC5el6uuBGeB93fLdLUlWj7uoEV0L/MG4i5hLVf0r8OvAvwCPMng2667xVjWvB4Erkzw3yXkMHhtYd4oxIzMggCRfC3wIuLGqnhx3PfOpqv+qqm9n8HT5pm6KueQk+X7gaFXtG3ctC3BFVV3GYBfhtya5ctwFzWElcBnwnqp6CfB5YMlvid8thb0K+KNx1zKXJM9hsDHoxcCLgNVJXj/equZWVZ8AbgLuZrC89I/A8cW6/jkfEN1a/oeA36+qD4+7nlF1Swp/DWwebyVzugJ4Vbeufxvw8iS/N96S5ldVR7qfR4FdDNZ1l6JpYHpo9vhBBoGx1G0BPlZV/zbuQubxvcCnqmqmqp4CPgx895hrmldVvbeqLquqK4HHgUW5/wDneEB0N33fC3yiqv7fuOs5lSQTSZ7dvf8aBv8xPzzWouZQVb9QVWuraj2DZYW/rKol+39iSVZ3H1SgW665msH0fcmpqs8AjyT55q7pFcCS/GDFLNexhJeXOv8CvDTJed2/D69gcG9yyUryvO7nRcBrWMQ/43P9K0evAN4APNCt6wP8YlXtGV9J83oh8DvdJ0GeAfxhVS35j48uE88Hdg3+TWAl8IGqumO8Jc3rbcDvd8s2h+i2qVmquvXxVwI/Me5a5lNV/5Dkg8DHGCzVfJylv+XGh5I8F3gKeGtVPbFYFz6nP+YqSZrbOb3EJEmamwEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0Iao25DOGlJMiCkBeqeur69+16OB5O8Nsl3Jrmna/tokvO77+94X/cdEx9PclU3/seS/FGSP2GwOeDqJLcm2dv12zrm36IE+CS1dDo2A0eq6hqAJP+DwRO3r62qvd123F8E3g5QVd+W5MUMwuCbumt8F3BJVT2e5NcYbEXy5m4rlY8m+fOq+vwZ/n1JX8UZhLRwDwDfm+SmJP8LuAh4tKr2AlTVk93e/C8Dfrdrexj4NHAiIO6uqse791cD27vtXv4aeFZ3TWmsnEFIC1RVn0zyHQz23v/fwF20v7gp81xmeHYQ4Ieq6sDiVSk9fc4gpAVK8iLgC1X1ewy+XOalwIuSfGd3/vzu5vNHgNd1bd/EYFbQCoE7gbd1u4eS5CX9/y6kU3MGIS3ctwH/J8mXGeyg+ZMMZgHv6rZh/yKDrdjfDexI8gCDnUF/rKq+1OXAsHcw+Pa9+7uQOAws6e/v1rnB3VwlSU0uMUmSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpKb/Bs/A0MHjyZv2AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df2 = df[\"Ladder score\"]\n",
+ "plt.hist(df2, [i for i in range(2, 10)], density=True) # target, int or sequence, density\n",
+ "plt.xlabel(\"score\")\n",
+ "plt.ylabel(\"count\")\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Assignment 2\n",
+ "행복 지수를 y축으로, GDP를 x축으로 하여, scatter 한 값을 한 번 입력 해 보세요."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEWCAYAAABsY4yMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAnC0lEQVR4nO3df5hcVZ3n8fc3nTbpoGuDBJc0BJgdBRdQIq2iOCMCijMIRhwEZ9j1xyrrrA6SZXDCzLigo2t84q/x14yMjvL4gwEUI8/gGFgxg6DgdEgQUDKOAsEOQhSCkARsku/+cW+F6up7q25V3VP3R31ez9NP0lW36p5b3f29537P95xr7o6IiNTPvKIbICIiYSjAi4jUlAK8iEhNKcCLiNSUAryISE0pwIuI1JQCvAycmS01s0fNbKTotojUmQL8kDKzu83sxJbH3mRmN4Tet7tvdvenuvuu0PvKwsz+h5ndaWaPmNn9Zna1mT2t6HaFZJF3mtmPzGyHmf3SzNaZ2ZlN26wzs8fiz+U3ZrbezFaa2YKmbS4ys5n4hL3NzL5vZi8u5qiklQK8DDUzexnwf4E3uPvTgOcAl+e8j/l5vl9O+/4EcC5wHvAMYAL4a+BVLdu9M/5c9o+3PRP4lplZ0zaXuftTgcXADcCVLc9LQRTgJVXcW/tZ3IP7sZm9tum5N5nZjWb2STN7OO4Bn9D0/Doz+6CZ/TB+/ptmtk/83MFm5o3gE2/7N/H7PWJm15jZvk3vdUzcM9xmZrea2XEt7fh5/Lq7zOxP4sd/18z+Nd73r8zsspTDfAHwA3ffAODuD7r7Je7+SPw+Y2b2ETO7J36vG8xsLH7uVDO7I27XOjN7TlO77jazvzCzHwHbzWx+u+NI+OzvNrML4s/9ITP7gpktbHr+1Wa2sanX/Nx2+25572cD/ws4092vdfed7r7L3W9w9zcltcfdt7v7OuBU4MXAyQnbzACXAP+Z6KQhRXN3fQ3hF3A3cGLLY28Cbmj6/nRgCVFH4AxgO7B/07ZPACuA0fj5h4F94ufXAdPAEcBewNeBL8fPHQw4ML9p258BzwbG4u9Xxc9NAL8G/jBuxyvi7xfH7/sb4NB42/2Bw+P/Xwr8VfyahcBLUz6H3wN2Au8FjgUWtDz/6bg9E8AI8BJgQdzW7XF7RoF3A/8BPKXp890IHBgfU+pxtPn53B6/fh/gRuD98XPPBx4AXhS36Y3x9guS9p3w3m8H7s7wO7IOeGvC49cDH4r/f1HTz3UBsBq4t+jfb31FX+rBD7c1cQ9wm5ltAz7T/KS7X+HuW9x9t7tfBvwUeGHTJg8AH3f3mfj5Tczu2X3J3W939+3Ae4DXW/rA6hfc/d/dfSdRiuSo+PGzgG+5+7fidlwLTBEFSoDdwBFmNubu97n7HfHjM8BBwBJ3f8zdE8cW3P17wGlEQfNq4Ndm9lEzGzGzecBbgHe5+7RHvdzvu/vjRCe0qz3qAc8AHyYK5C9pevtPuPu98TF1Oo4kn4pf/yDwAeAN8eNvAz7r7jfHbboEeBw4JmXfrfYFftn8gJn9Iv49eMzMDmrTJoAtRCedhtfHvz/3AkcDyzu8XgZEAX64LXf38cYX0WX7Hmb235vSANuIeuP7Nm0y7e7Nq9XdQ9Tjb7i35bnRltc3aw44O4Cnxv8/CDi95UT0UqIrie1EgfbtwH0WDY4eFr/u3YABP4zTKG9J+xDc/V/c/RSioPUaoquTt8ZtXUh0ddFqSXxMjffYHR/vRMrxpx5HWruY+/k1PtuDgPNa3utA0j/7Vr9u3a+7H0B0vAuIPrd2JoAHm76/PP4d2s/dj3f39R1eLwOiAC+J4l7cPwDvBJ4RnwBuZ/Yf/0TLYNpSot5dw4Etz80Av+qyKfcSXQmMN33t5e6rANx9rbu/gihg3Rm3GXf/pbu/zd2XAP8T+IyZ/W67HcU96+8A1xGdzH4FPAb8l4TNtxAFWiCqSomPd7r5LbMeR4rWz6/x2d4LfKDlvRa5+6Up+251HXCAmU222SaRmR1I1Ev/XrevlcFTgJc0exEFia0AZvZmoqDXbD/gHDMbNbPTiSpQvtX0/Flm9l/NbBHwPuBr3n1p5JeBU8zspDhtstDMjjOzA8zsmfFA515EKYpHgV1xe083swPi93goPpY5+zaz15jZmWa2t0VeCLwMuCnulf8j8FEzWxLv/8UWlQleDpxsZieY2ShRhcnjwPe7PY42x/6O+Dj3Af4SaAwU/wPwdjN7UdzmvczsZMtY2unum4DPAv9kZq+IB5Ib4wuJzGyRRRVH3wR+yOyfs5SUArwkcvcfAx8BfgDcDxxJNNDX7GbgWUQ93Q8Af+Tuv256/kvAF4nSLwuBc3pox71EaZO/JDrZ3AucT/S7O48osG4hShm8jCfTTC8AbjazR4GriPLodyXs4iGinPZPiQZsvwysdvevxM//OXAb8G/xPj4EzIuD5FnAJ+PjPwU4xd1/28NxpPkqcA3w8/jr/fF7TcVt/lTc/v8gSit14x1EpZIfjY/rF8DfEKW8Njdt9ykze4Tod+DjRIPlr4pPflJyNjuFKpKNmb2JqMLipSnPryOqrvjcINtVF2Z2N9Hn+/+KbotUl3rwIiI1pQAvIlJTStGIiNSUevAiIjVV2CJISfbdd18/+OCDi26GiEhlrF+//lfuvjjpuaAB3sxWEM0IdKJSsze7+2Np2x988MFMTU2FbJKISK2Y2T1pzwVL0ZjZBFHd86S7H0G0KNKZ7V8lIiJ5CZ2Dnw+MxcuVLmL2NHYREQkoWIB392miFfY2A/cBD7v7Na3bmdnZZjZlZlNbt24N1RwRkaETMkWzN9HU7EOIVrnby8zOat3O3S9290l3n1y8OHGcQEREehAyRXMicJe7b43Xy76SNosZiYhIvkJW0WwGjolXEtwJnEB0gwMRka6t2TDN6rWb2LJtJ0vGxzj/pENZvmyi8wuHWLAA7+43m9nXgFuIbu22Abg41P5EpL7WbJjmgitvY+dMtOLz9LadXHDlbQAK8m0EraJx9wvd/TB3P8Ld/1t8qzMRka6sXrtpT3Bv2Dmzi9VrNxXUomrQUgUiUnpbtiXdWjb9cYkowItI6S0ZH+vqcYkowItI6Z1/0qGMjY7MemxsdITzTzq0oBZVQ6kWGxMRSdIYSFUVTXcU4EWkEpYvm1BA75ICvIjUiurln6QALyK1oXr52RTgRaQ22tXLJwX4uvf2FeBFpNKag3TaHaaT6uWHobevMkkRqaxGkJ5uE9whuV5+GGbHKsCLSGUlBelWafXywzA7VgFeRCqrUzAeMeN1RyeXVw7D7FgFeBGprE7BeJc7X18/zZoN03OeG4bZsQrwIlJZSUG6VVpeffmyCT542pFMjI9hwMT4GB887cjaDLCCqmhEpMJalzDoVEWTVBZ548rjB9TawVOAF5HaGDFjl88N80vGx4aiLLKVAryIVFZr0E4K7o28ereToAYh9EQr5eBFpLLSyiRHzObk1ctWFtlaw9+4okgaEO6VevAiUgq99GbTgvNud+5adfKsx5aMjzGdsH1RZZGDuKJQD15ECtdrbzYtOM8zm/PaspVFDuKKQgFeRArX67IBaWWSu9znnCDKVhY5iIlWStGISOF67c02gvN5l986Z4A1Kd1RppuGnH/SobMGiCH/KwoFeBEpXNb8eFqefsVlGxPft8zrygziNoQK8CJSiOZgPb5olNF5xszuJ3vhrb3ZtDr2qXseZF6b+vcyC31FoQAvIgPXGqwf2jHD6IgxPjbKwztnEnuzaXn6r9y0OXEGa93WlemFAryIDFxSsJ7Z5ey1YD4bL3xl4muSUjhAYnAfMQs6gFqVO0EpwIvUTBWCT5ZB1dYUTjd2uwcN7lVZ8kBlkiI1MojZkXnoVCLYehwP7ZjJ5f3zUKU7QQUL8GZ2qJltbPr6jZmdG2p/IlKd4NNp0lGWOzU1vy7tfUIo25IH7QQL8O6+yd2PcvejgKOBHcA3Qu1PRKoTfDpNOsra3sbrBjl5qUp3ghpUDv4E4Gfufs+A9icylMq23kqaTuMEacfRrNFTz1JqmOe4xCAmKOVlUDn4M4FLB7QvkaFVtvVWkmQZJ0g6jkYZZbc99bzHJcq25EE75gmTA3LdgdlTgC3A4e5+f8LzZwNnAyxduvToe+5RJ1+kH2Wvojl21XWJvfOJ8bFZd1fK6ziy7q+qzGy9u08mPTeIFM0fALckBXcAd78YuBhgcnIy7NlGZAiUab2VJFnHCfI6jqqMS4QwiBTNG1B6RkRigx6krNKgaN6CBngzWwS8Argy5H5EpDryGCdYs2GaY1ddxyErr+bYVde1zadXYVwilKApGnffATwj5D5EpFr6XUWx25mkg1i1sayCD7J2Y3Jy0qempopuhoiUWN0HTbvVbpBVSxWISKUM86BptxTgRaRShnnQtFsK8CJSSmkDqcM8aNotLRcsIqWTZSB1GAdNu6UALyKlsmbDdMebaJd9MldZKEUjIqWxZsM0518xN7g3aCC1O+rBi0hpXHTVHbNuvN0qaSC17GvvFEkBXkRKY9vO9Ds3JQ2k9nr7vGE5KShFIyKVkLQkby93sKrKbQ3zoAAvIoVIKoPcO+Xm2vMMVly2cc66M71MeqrKbQ3zoBSNiAxcUmplxWUbScu+N9LyrSmYXu5gNUwzYdWDF5GBafTaz71s45xedHNwt/jfETNaNfe2e5n0NEwzYdWDF4nVeeCtDMfW2mtvx4kWD+vU2+5l0lOV7qnaLwV4EXqvxqiCshxbUu67nUbA7pSC6XbS0zDNhFWAF6H9wFs365SXMWjkcWx56DbH3fgMQ/S2BzETtgy/DwrwIvQ/8NZvLzlkMBjUoGKnY0jrjUOUc2/OwTeCeFV722W5alKAFyE9+DSnAtoFsH56yXkGg6Q29lJp0q0sx5DWG//gaUcC6UG8iuvOlOWqSQFehM4Db50CWD+95LyCQVobX3f0BF9fPx10UDHLMXTqjVctiLdTllJMlUmKEAWXD552JBPjYxhRBUfzzMlOk2P6Kb3LKxiktfG7d25te2x56HQMjfLIFZdtBOBjZxzFjSuPr1VQb1aWUkz14EVi7VIBnQJYP4OBeaVQ2rUxdJqj3TGkXVlM3fMg371za6Vy61mVpRRTPXiRDDr1yDpdAbST1x2Kiuw1tjuGtCuLr9y0ubbrwfTz+5An85R1l4swOTnpU1NTRTdDKi5ERUrSJJ3GAGEef7R5tLmXNua139VrNzG9bScjZuxyZ6LpvQ5eeXXm95oYH+PGlcd3tf9hZ2br3X0y6TmlaKRWQpWnhS7XyyOF0m0b231W7d6n+aQwvmiURx97Ys8a7o0bdez47RN7tm0tgWynjuvBFEk9eKmVY1ddl5gLVs9wrrTPanxslMef2J1azph1uYGx0REWzJ/Xdo33Vvo5dU89eBkaZSlPq4K0zyQpIDdXDGVdbmDnzK62246NjvQ8CFmGWaJVoAAvtdJPRUrVgka/7W03szRJnifJRo6+l/aXZZZoFSjAS630Wp5WtaDRT3ubB0WTlghYODqPh3bM7cU3TpLdnBT2XjTKYzNz0z2NYN7LZ1uWWaJVoDJJqZVey9OKvMtP0p2NOum1vc23q4MouDdWXG98VheecnhqyWNSOSRN79H6mgtPOTz3ckGl4bIL2oM3s3Hgc8ARRL9Lb3H3H4Tcp0gvPcOigkavPfG0dnXqXSedGBprr7cObrZLn1x01R2zcvWtpRrjY6NcdOrhQZYhGMTaOnUROkXzt8C33f2PzOwpwKLA+5OaGVRevKig0Wu6Ia29RvSZ9Tojt6HdSXL5sglWr93Utjrm8Sd2pz7Xr7LMEq2CYCkaM/tPwO8Dnwdw99+6+7ZQ+5P6aU4nhJ7tmNds0m71euVw/kmHJqZFHBLTNI00UFpRdF7LIjTsnNnFeZffmint1G2KqiyzRKsgZA/+d4CtwBfM7HnAeuBd7r69eSMzOxs4G2Dp0qUBmyNVk9a7Pe/yW4F8L/uLWne81yuH5csmODdeuKtVa/DtdKu8XpdF6JQOakx6apd26jVFVcUlhIsQcpB1PvB84O/cfRmwHVjZupG7X+zuk+4+uXjx4oDNkapJ6yXucg/Sk1++bGLP+ulbtu1k9dpNwddG6efKYSLj2jPtbpWXpfeb1MNOG2xNkzYAXOTg9jAIGeB/AfzC3W+Ov/8aUcAXyaRdLzZEEBhkSqhhEIuUpZ0oDTou2Zv2mQB72t14r06S2tFusDhrRZGkC5aicfdfmtm9Znaou28CTgB+HGp/Uj9Jg2nN8q5wCV1fnTZg3Gu6IWtaqZ8B5HafSfPJofnY5sULjmXZX7tUT9nnIlRB6CqaPwO+ElfQ/Bx4c+D9SY00/qjPu/zWzAGjHyFLJbPkmnupGMpycuin6qSXqpu0VS2T9tfpJK4JTP0JGuDdfSOQuAiOSBaNP+xBlMWFXOag09VByJm0/Qwg9/KZdLO/5m3TevKawNQ7LVUgpdEuhQHhK1xCLnPQLg0B4dNDvaaBev1MutlfY9u01S01gal3CvBSCp2CZOiyuMbJZefMrsSbVrSTJTiPpOSlRywanizr9Pukk+vLD1vM6rWbWHHZxlxPtprAlD8FeCmFIheQaj257HKftSBWJ1mCc1Jwb368zNPv2+XXy5JKkmQK8FIKRfZg+z25dLrhdLtyzkaZYVV6r2VNJUkyrSYppVDkDaP7Pbmk1aO//LDFs1ZubDU6z/YE8KpMvy9rKkmSqQcvpVBkD7bf9EhaaqHdDFJgzuygKvRey5xKkrkU4KUUisy/5nFySQrOK1LWimmY2eXBxxjyXo2zKqkkiSjAS2kU1YMNdXLJsiBXyNRGiAFRDYRWi3nK6H4RJicnfWpqquhmiOSi0yqOkHyjjW730Qi2Tx8bxQy27ZhhyfgY2x9/InHN9n73mZeq3QO3rMxsvbsnTihVD14kkNZZmkn3P+0ntdF6AmkO5u2uHMowIFq1e+BWlQK8SECtNeR59lg7DuKm6GZANFQve5DzHob5SkEBXtoa5j+OvOU9xtBLT7ybq4aQvexBlVsO+5WC6uAlVRHro0t2WXriey8a7bm2PuTNOAY172HYbyiSuQdvZmPA0nhtdxkCRS4fEFqZr0yytq3TUrtjoyNceMrhPR9XyF72oMoth31iVqYevJmdAmwEvh1/f5SZXRWwXVICdf3jKPOVSTdta539Oj42yt6LRnObCZvWm3bo+25Lg5q5W+QM6TLIVCZpZuuB44F18f1VMbMfuftz82yMyiTLJW351hEzPvL655Wmx9uttOPKs3yw1yuEtLY12jfIK40sN+su43IKzdJuPlL2dnejXZlk1hz8E+7+cI5tkgpIu7FyqJteQ/INnvMW+sqknyuEdm0Y9JVGcy87SRVy2VVZ4yeUrDn4283sj4ERM3sWcA7w/XDNkjJod8u8ELn4QVU8hF5PJcvdm9J6951mvw56DKRR+XPIyqtJutavQrquCmv8hJK1B/9nwOHA48BXgYeBcwO1SUpk+bIJdqek8QZ50+s8pa3+mNcAX7srhE69+7Srpizvn1UvV0nDnsuuqo4B3sxGgKvc/a/c/QXx11+7+2MDaJ+UwNPHRrt6vFeDGtQNfdneLhh2Ool1Sou0e/8sek0fhT4pShgdUzTuvsvMdpjZ05WHH05m3T3eq0EuRRvysr1dCWDaCpPNJ7FG29IGCPsJqr2WvmqRsWrKmoN/DLjNzK4FtjcedPdzgrRKSmXbjrkLVrV7vFd1WYq2XTBsrEvTKukk1k1QzVq1089V0jDnsqsqa4C/Ov6SITSonnWdeolpwTDtJPbywxZz7Krr5hx3lqDazeC0btgxXDIvF2xmTwGeHX+7yd3z7b6hOviyWrNhmvOvuJWZ3U/+rswDnr5odM/StFUNxEVo7W2//LDFfH39dM+12t3U9Q9DXfiw6Xu5YDM7DrgEuJvoRmMHmtkb3f36nNooZdeSb98NPBSnaIZtAad+NefYV6/dxJdv2jxnm6xlldBd2qVOV0nSWdYUzUeAVzbWoTGzZwOXAkeHalhZlXkNk1BWr93EzK72V3p512fX/XPOcjOQ6W07OXjl1bPWkU86mXabdlEufXhkrYMfbV5kzN3/Hci3Rq4CyriGSeiZn2s2THe87VxDGWaCVkU3a7m3nlpb5waohFHSZO3BT5nZ54Evxd//CbA+TJPKq2yrK4ae+dl4/6zyupFEyM+5LFcG/Z4MW8sqQWkXmStrgP9T4B1ESxQYcD3wmU4vMrO7gUeAXUTr2SQOBFRF2VZXzBoIew1q3fQy87yRRKjPuUw3f8hyQ+5Or2+mtIskyZqimQ/8rbuf5u6vBT4BtJ9P/aSXu/tRVQ/uUL7p2lkCYaiFr846ZmmwG0mE+pyLuPlDWgotLa3y8TOOajuLtbGd0i+SRdYe/HeAE4FH4+/HgGuAl4RoVFmVbSJOlsG1ftIdae8/MT7G+5cf2WOrO5+YQn3Og74Cy3LFkHZl1Xr8jYHWQS8Z3Kws6S3JLmuAX+jujeCOuz9qZosyvM6Ba8zMgc+6+8WtG5jZ2cDZAEuXLs3YnGKULdeZJRD2E9RCBdqnj42ybefcaRSNtW1CfM5rNkwzz2zOqpgQ7gqs08k1La1Stt8zKFd6S7LLGuC3m9nz3f0WADObBLJ0e4519y1mth9wrZnd2Vo7Hwf9iyGa6NRF2wtRplxnlkDQz8zFUIEmy9o2eX7OjeCUFNxbT1j99lKbX5/2y5x2ci1zD7lsBQaSTdYA/y7gCjPbQtQrXwKc0elF7r4l/vcBM/sG8EKiAVrJSadA2G8vPMQJbVBr2zSkDRaPmM0aO+iml5oUjGFuaiXJPDPWbJieMxDeuu8Vl21k6p4H+0qH5aVsBQaSTdYAfwiwDFgKvBY4hrnlubOY2V7APHd/JP7/K4H39dFWaZGlx1eGy/3WdqalaEKlStKC0G73WZ9DN1VJSSeCBfPnZao6atwRC2b/fFpf68BXbtrM5EH7FN5L1ho21ZQ1wL/H3a8ws3HgFUQzW/8OeFGb1zwT+IZF193zga+6+7f7aKs06aa3WWRaKamdoyPG6DybtbZNyMHqrMEpay817USQtaS0sX3ziSNt3x7vr+gAX7YCA8kma5lk46d6MvD37v5N4CntXuDuP3f358Vfh7v7B/ppaFkN4h6iSYoo+etFUjtndjlPXTh/YPfJzDrTM2t5Zl5pieb3adcTLkMaZNjvbVpVWXvw02b2WaJSyQ+Z2QKynxxqq8jKgqrkRNPas23HDBv+zytnPRZqkDFrmiprLzXtimDvRaM8NrN7zusXjs7bszBb6/s073vFZRsT855lSYOUqcBAsska4F8PvAr4sLtvM7P9gfPDNasaiqwsSAsy88w4ZOXVpanCyJoeCX2yzBKc+j0RXHjK4Ymvh7mDr60njuXLJrhiajM3/uzBWftSGkT6kSnAu/sO4Mqm7+8D7gvVqKooshedFGSAPaWAZalTztorLksZXh4ngrTXtztxrNkwzS2bZ98R04DXHa1es/Quaw9eEhRZWdAaZJIm8ZShTjlrr7gqKaeGbtMVnbZPq6L57p1be22iiAJ8P8pUWZA0iQfKESCzBMNhL8Or2glOqkEBvg+deqchZyZmuWEElCNAZvkcynSyLMKwn+AkDAX4PqX1TkMPGmZZyrcMATLr51CGCVm9yOsknjamsuO3T8yZ9SqSlQJ8IKEHDdtduhuUJkB28zmUtQwvLYjneRJvbH/RVXfMmuX70I6ZUgyWSzUNfS17KKFzqmmX7hPjY9y16mRuXHl8KQJC1XPL7dbTz3uy2fJlE+y1YG6fq4wT2KQaFOADCX1zkKrch7PT51DUTOCs2gXxECevqp8QpVwU4AMJHYCrMnW83edQhZtrtwu4IU7iZbtrmFSbcvCBDGLQsKw562btPodjV11XislN7bSrbglR+TPs1USSL/OU+ukiTE5O+tTUVNHNkAE5ZOXVqWtOl2WgOKkcdWx0ZM/VUohS2DLf+EPKx8zWp93zWj14KUxa7xiYlbKB4ipIkqpbFo7Om/V83m2rwpWZVINy8FKYpPx8q7JUkDz+xO49/2+ULpZprEAkiXrwA6bL7ye15ue7vYfpoJRlITSRbinAD5DuTD9Xczri2FXXlXK6fp6lizrByyApRTNAVbkLU1G16UXX9qcdd16li1UoC5V6UQ9+gEJMYsm7R1jkVUaR69G0O+5eSheTfi5K9cigKcAPUN4rBoYIxkUHoaIqSNod940rj9+zTZYTT9rPJW1xuKLHGKS+FOAHKO8VA0ME46KnyheVo+503N2ceNJ+LiMJN2WB4scYpL6Ugx+gxvIC42Ojsx7vtewuRDAucqp8kTnqPI877fPf5V6J9YOkPhTgByzPFQNDBOMiBzqLHITO87jbrfRZhfWDpD6UoilAXj3vEOuWFDnQWWR6KM/jbvdz0SxVGSQF+AFbs2E68QbZ0H3PO1QwLioIFX3buryOu6p3p5L6UYAfoEaOOSm499rzHmQwDj0AWqeVFNVTlzJQgB+gtPuojpiVPhc7iPp49XxF8qUAP0BpueTd7qUPYoOqj1fPVyQ/watozGzEzDaY2T+H3lfZVfluPUXXx4tI9wZRJvku4CcD2E/pFb3WSj+qfHISGVZBA7yZHQCcDHwu5H6qoir3UU1S5ZOTyLAKnYP/OPBu4GlpG5jZ2cDZAEuXLg3cnOJVNcesAVCR6gkW4M3s1cAD7r7ezI5L287dLwYuhuierKHaI/2r6slJZFiFTNEcC5xqZncD/wQcb2ZfDrg/ERFpEqwH7+4XABcAxD34P3f3s0Ltr6p0hx8RCUV18AXSLfzyoZOkSLKBBHh3XwesC/HeVf7jLvrmGnWgk6RIukovF1z1e1xq8lD/qnKfW5EiVDrAV/2PW5OH+qeTpEi6Sgf4qv9xa/JQ/3SSFElX6QBf9T/uKs9sLQudJEXSVbqKpg7rh2eZPFTlgeTQNMNWJF2lA3zd/riTAjmQW5VIXU8UmmErksw84e5CRZmcnPSpqanC9l9kAGwt94PoamTB/Hls2zkzZ/uJ8TFuXHl83++vlJBItZnZenefTHqu0jn4PBVdcplWEZQU3KH7geSqVxyJSPcU4GNFB8BuA3a3A8lVrzgSke4pwMeKDoBpAXvvRaO5VImkvb8Dx666rjKTw0QkOwX4WNEll2nlfheecngupZRJ799QtRnAIpJNpato8lR0yWWniqB+B0Kb33864apEa+BUT12roiQ/qqJpMix/MIesvJqkn7oBd606edDNkR6oKkoa2lXRqAffpGr11L2ekJaMjyX24qsyA1i0Eqlkoxx8RfVT1qnp/dVXdFGAVIMCfEX1U9apNXCqr+iiAKkGpWgqqt8eXNXSUTJb0UUBUg3qwVeUenDDTVdhkoV68BWlHpzoKkw6UYCvqLqtpCki+VOArzD14ESkHeXgRURqSgFeRKSmlKIZYsOyNIPIsFKAH1Kta5n0cytAESknpWiGVNE3OBGR8BTgh5TWMhGpPwX4IaWZsCL1FyzAm9lCM/uhmd1qZneY2XtD7Uu6pxUlReov5CDr48Dx7v6omY0CN5jZv7j7TQH3KRlpJqxI/QUL8B7dKurR+NvR+Ks8t48SzYQVqbmgOXgzGzGzjcADwLXufnPCNmeb2ZSZTW3dujVkc0REhkrQAO/uu9z9KOAA4IVmdkTCNhe7+6S7Ty5evDhkc0REhspAqmjcfRuwDnjVIPYnIiJhq2gWm9l4/P8x4ETgzlD7ExGR2UJW0ewPXGJmI0Qnksvd/Z8D7k9ERJqErKL5EbAs1PuLiEh7mskqIlJTCvAiIjWlAC8iUlMK8CIiNaUALyJSUwrwIiI1pQAvIlJTCvAiIjWlAC8iUlMhlyqQAVizYVo37RCRRArwFbZmwzQXXHkbO2d2ATC9bScXXHkbgIK8iChFU2Wr127aE9wbds7sYvXaTQW1SETKRAG+wrZs29nV4yIyXBTgK2zJ+FhXj4vIcFGAr7DzTzqUsdGRWY+NjY5w/kmHFtQiESkTDbJWWGMgVVU0IpJEAb7ili+bUEAXkURK0YiI1JQCvIhITSnAi4jUlAK8iEhNKcCLiNSUuXvRbdjDzLYC9xTdjhb7Ar8quhEDNmzHPGzHCzrmOjnI3RcnPVGqAF9GZjbl7pNFt2OQhu2Yh+14Qcc8LJSiERGpKQV4EZGaUoDv7OKiG1CAYTvmYTte0DEPBeXgRURqSj14EZGaUoAXEakpBfgUZnaomW1s+vqNmZ1bdLtCMrMVZnaHmd1uZpea2cKi2xSamb0rPt476vrzNbN/NLMHzOz2psf2MbNrzeyn8b97F9nGvKUc8+nxz3m3mQ1FuaQCfAp33+TuR7n7UcDRwA7gG8W2KhwzmwDOASbd/QhgBDiz2FaFZWZHAG8DXgg8D3i1mT2r2FYF8UXgVS2PrQS+4+7PAr4Tf18nX2TuMd8OnAZcP/DWFEQBPpsTgJ+5e9lm2eZtPjBmZvOBRcCWgtsT2nOAm9x9h7s/Afwr8NqC25Q7d78eeLDl4dcAl8T/vwRYPsg2hZZ0zO7+E3cfqjvSK8BncyZwadGNCMndp4EPA5uB+4CH3f2aYlsV3O3A75vZM8xsEfCHwIEFt2lQnunu9wHE/+5XcHskAAX4DszsKcCpwBVFtyWkOAf7GuAQYAmwl5mdVWyrwnL3nwAfAq4Fvg3cCjxRaKNEcqQA39kfALe4+/1FNySwE4G73H2ru88AVwIvKbhNwbn75939+e7++0SX9D8tuk0Dcr+Z7Q8Q//tAwe2RABTgO3sDNU/PxDYDx5jZIjMzonGHnxTcpuDMbL/436VEA3DD8LMGuAp4Y/z/NwLfLLAtEohmsrYR52XvBX7H3R8uuj2hmdl7gTOI0hQbgLe6++PFtiosM/se8AxgBvjf7v6dgpuUOzO7FDiOaLnc+4ELgTXA5cBSopP76e7eOhBbWSnH/CDwSWAxsA3Y6O4nFdTEgVCAFxGpKaVoRERqSgFeRKSmFOBFRGpKAV5EpKYU4EVEakoBXoaemT3TzL5qZj83s/Vm9gMze62ZHWdmD5vZBjPbZGbXm9mrm153kZlNx6uN3m5mpxZ5HCKt5hfdAJEixZO61gCXuPsfx48dRLQ8xUPA99z91fHjRwFrzGxnU738x9z9w2b2HOB7Zrafu+8e9HGIJFEPXobd8cBv3f3vGw+4+z3u/snWDd19I/A+4J0Jz/2EaILYvuGaKtIdBXgZdocDt3Sx/S3AYa0PmtmLgN3A1pzaJdI3BXiRJmb2aTO71cz+LW2Tlu9XmNlGoqWWz3BNDZcSUQ5eht0dwOsa37j7O8xsX2AqZftlzF6E7WPu/uGA7RPpmXrwMuyuAxaa2Z82PbYoaUMzey7wHuDTg2iYSL/Ug5eh5u5uZsuBj5nZu4ly6NuBv4g3+T0z20AU9B8AzqnjipNST1pNUkSkppSiERGpKQV4EZGaUoAXEakpBXgRkZpSgBcRqSkFeBGRmlKAFxGpqf8PVFUGcOPu03IAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "x = df['Logged GDP per capita']\n",
+ "y = df2\n",
+ "plt.scatter(x, y)\n",
+ "plt.title(\"Happiness Score per GDP\")\n",
+ "plt.xlabel(\"GDP\")\n",
+ "plt.ylabel(\"score\")\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Assignment 3\n",
+ "행복지수 상위 10개, 하위 10개를 선택 후, 각각의 Social support, Logged GDP per capita, Freedom to make life choices 의 평균을 구해서 꺾은 선 그래프로 나타내세요."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAfgklEQVR4nO3de5xVdb3/8ddbpIBQQaRSUEcNyDvoiJlaJHTypIkaXshLWB1/mmhaJ7Mr2DlWDx9WVnYRb+C18X6htEzDtFBE44CAkgkJYojglQRBPr8/1nemPcPMMMDsvYf5vp+Pxzxm1v271l7z3t/1XWt/tyICMzPLxxbVLoCZmVWWg9/MLDMOfjOzzDj4zcwy4+A3M8uMg9/MLDMOfrNNJKlGUkjaskzrnyjpf8uxbsuTg7/KJC2QNKLJuDGSHqlWmVoi6V2Sxkv6m6QVqexXS6op83aHSVpUzm2UU3pT+ECTceMlXV+tMpWDpK0lXSrpeUlvSno2DW9X5u12yP+XjszBbxviVuAo4DPANsC+wBPA8GoWCqBctW1rG0nvAh4A9gQOB7YGPgwsA4ZWsWgASOpS7TJ0JA7+zYCkCyT9XdIbkuZIOqZk2hhJf5b0M0mvSXpa0vCS6VMkfV/StDT9Lknbpmm/kXR2k23NlHR0M2UYAXwcGBkRj0fEmoh4LSJ+HhFXpXl2kHS3pOWptvdfJcs3aq5oWotPVw//nbb/mqQ6Sd0kvQe4F9gh1SLfTNsZL+lWSddLeh24QNK/JPUpWef+kpZK6trM/gyVNFXSq5JelHRZCq/66SHpjHR184qkn0tSmtZF0iWSXpb0HHBEm17IFtQfC0lfkfRSKs9pTWbrnV6vNyQ9Jmm3kuV/ImmhpNclPSHp0JJp9cepLi37pKR9mxz3r6fz6hVJ10jqlqY9JelTJfN2Tfs8uJndOBXYCTgmIuZExNqIeCki/icifpuW3z2dj69Kmi3pqJJ1T5H0hZLhRrX4ll4PSbsDvwIOSufGq2n+iZJ+Kem3klYAX5a0RCUVBEmfljSjba9S5+Lg3zz8HTiUopZ9IXC9pO1Lph8IPAdsB4wDbq8P9+RU4HPADsAa4Kdp/CTg5PqZUiD0A37bTBlGANMiYmEr5bwJWJS2Mwr4XumbUBscT1Fb3AXYBxgTESuA/wQWR0TP9LM4zT+S4iqkF/BDYEpaR72TgV9HxOpmtvUOcB7FMTuI4qrli03mORI4gOLK5njgE2n8f6VpQ4DatK+b6v0Ur28/4PPAzyX1Lpk+muK17w08C1xUMu1xYDCwLXAjcEt9eCcjgVtKpt/Z5M3wpLRvuwEDgW+l8ddScn4AnwRejIgZzZR/BHBfRLzZ3M6l7d0D/B54L3A2cIOkQc3N34J1Xo+ImAucAUxN50avkvk/Q3GctgJ+RnH18fGS6ScD123A9jsNB3/HcGeqBb2aaiy/KJ0YEbdExOJUi6oD/kbjy+eXgEsjYnWa/gyNa6HXRcRTKUS/DRyv4tL3LmCApAFpvlOAuoh4u5ky9gFebGkHJO0IHAJ8LSJWpnC4Mq2zrX6a9nM5RUgMXs/8UyPiznRc3qLkjSzt32ha+MeOiCci4tF05bIAuBz4aJPZfhARr0bE88AfS8pzPMXxXpjK+v0N2MeWrAa+m17D3wJvAqWheHtETIuINcANJWUhIq6PiGVpX34IvLvJsk9ExK3pDfBHQDfgQyXTLyvZl4sojhvA9cAnJW2dhk+h5aBs9fxI2+tJcUzfjogHgckl22qLll6PltwVEX9O58dKGp8f21K82d24AdvvNBz8HcPREdGr/ocmNU9Jp0qaUfLGsBdFTbXeC9G4t71/UNS66y1sMq0rsF1ErAJuBk6WtAWtBCVFbWn7FqaRtrc8It5osq1+rSzT1D9L/v4XRVC0punVx13AHpJ2pajZvRYR05pbUNJASZMl/TM1FX2Pxse0tfLswLrHtDXvUBzzUl0pwr7eshTqzW2vtbKQmojmpiayVymuHEr3paGsEbGWf1+VrTOdknMnXVn9Gfi0pF4UV143tLCPbTk/Fqbtl26rkufH9cCnJPWkePN+OCJae7PqtBz8HZyknYErgLFAn/TG8BSgktn61bc/JzsBi0uGd2wybTXwchqeRHGpPxz4V0RMbaEofwCGSurfwvTFwLaStmqyrRfS3yuAHiXT3t/CeprTUheyjcanWt3NFPvTWu0U4JfA08CAiNga+AaNj2lrXmTdY9qa54GaJuN2Yf1vGOuV2vO/RhFkvdP58RqN92XHkvm3APrT+vlROq2+lnwcxRXWCzTvD8AnVNyTac5iYMe0/dJtVfL8eAGYChzD+s+PTs3B3/G9h+IEXgqQbvrt1WSe9wLnpJtvxwG707id/mRJe0jqAXwXuDUi3gFIQb+Woo28xX+EiPgDcD9wh4qbpltK2irdcPtcavv/C/B9FTdl96Foq66vIc6gaDbYVtL7gXM34BgsAfpI2qYN814LjKF4+qi1xyW3Al4H3pT0QeDMDSjPzRTHu39qh79gPfPXAd9K82+h4kb5pyjuT2yqrSju2ywFtpT0HYonakrtL+nYdGPzXGAV8GjJ9LNS2baleAOsK5l2J7Af8CWKY9uS6yhq2LdJ+mDazz6SviHpk8BjFOF+fjpPh1Ecg1+n5WcAx0rqoeLR189vwDFYAvRXyc35VlwLnA/sDdyxAdvoVBz8HVxEzKEI5akUJ/jeFJffpR4DBlDU4i8CRkXEspLp1wETKS6VuwHnNFn+2rTe9T1XPoriDaWOolb5FMXNzT+k6aMparaLKf6pxkXE/SVl+D9gAcUNvtJwaVVEPE1x4/i51Ny1Qyvz/pnijezJ1Hbfkv+muPn3BsUVVZvLk+b/HcX+PAncvp75v0vxpvgI8ApwMXBSRDy1Adtsye8onnqaR3EFsZLmm8BOSNs+BTi2yQ3vGylek+fST8PTV+neyW0UVygt7mdqNhxBcRV1P8Wb6jSKJqfH0n2joyiai16muI91anptAX4MvE1xjk+i5Sal5jwIzAb+Kenl9cx7B7AzcEe655Ul+YtYNm+SxgBfiIhDWpg+Bbg+Iq5sZR2nAqe3tI7NjaQHgRtb2+dcSBoPfCAiTm5h+gKK8+cPzU1P83wHGNjSOjY3kv4O/L/W9rmz84deMpeaf75IkyeJNleSDqBomhhZ7bJ0Bqn55/Ns2NNZHZakT1M0nT5Y7bJUk5t6MibpExRtw0voBI+1SZpE0ex0bpOni2wjqPgA3kLg3oj4U7XLs6nS1e8vgbOaPF2UHTf1mJllxjV+M7PMbBZt/Nttt13U1NRUuxhmZpuVJ5544uWI6Nt0/GYR/DU1NUyfPr3axTAz26xIavZDgm7qMTPLjIPfzCwzDn4zs8xsFm38Zta5rV69mkWLFrFy5cpqF2Wz1K1bN/r370/Xrut851CzHPxmVnWLFi1iq622oqamhsYdzdr6RATLli1j0aJF7LLLLm1axk09ZlZ1K1eupE+fPg79jSCJPn36bNDVkoPfzDoEh/7G29Bj5+A3M8uM2/jNrMPRhe1b+49x6++TrGfPnrz55r+/K37ixIlMnz6dyy67rF3L0hE4+K3Da+8Q2FhtCQ+zzYGbeszM1uOee+7hwAMPZMiQIYwYMYIlS5YAMH78eE455RQOO+wwBgwYwBVXXAHAlClT+MhHPsIxxxzDHnvswRlnnMHatWu56qqrOO+88xrWe8UVV/DlL3+54vvjGr+ZGfDWW28xePDghuHly5dz1FFHAXDIIYfw6KOPIokrr7ySiy++mB/+8IcAzJw5k0cffZQVK1YwZMgQjjjiCACmTZvGnDlz2HnnnTn88MO5/fbbOfHEE9lnn324+OKL6dq1K9dccw2XX355xffVwW9mBnTv3p0ZM2Y0DNe38UPxOYMTTjiBF198kbfffrvR8/IjR46ke/fudO/enY997GNMmzaNXr16MXToUHbddVcARo8ezSOPPMKoUaM47LDDmDx5MrvvvjurV69m7733ruh+gpt6zMzW6+yzz2bs2LHMmjWLyy+/vNEz800fpawfbmn8F77wBSZOnMg111zDaaedVuaSN8/Bb2a2Hq+99hr9+vUDYNKkSY2m3XXXXaxcuZJly5YxZcoUDjjgAKBo6pk/fz5r166lrq6OQw45BIADDzyQhQsXcuONNzJ69OjK7kjiph4z63A62hNU48eP57jjjqNfv3586EMfYv78+Q3Thg4dyhFHHMHzzz/Pt7/9bXbYYQfmzZvHQQcdxAUXXMCsWbMabvTWO/7445kxYwa9e/euxu44+M3MgEbP8AOMGTOGMWPGAEU7/siRI5tdbuDAgUyYMGGd8T169KCurq7ZZR555JFGT/dUmpt6zMwq5NVXX2XgwIF0796d4cOHV60crvGbmW2k8ePHNzt+2LBhDBs2bJ3xvXr1Yt68eeUtVBu4xm9mlhkHv5lZZhz8ZmaZcfCbmWXGwW9mHY7Uvj9tsWDBAvbaa69G48aPH88ll1zS4jITJ05k7Nixm7KrVVG24Jd0taSXJD1VMm5bSfdL+lv6XZ1PL5iZZaycNf6JwOFNxl0APBARA4AH0rCZWYc2bNgwvva1rzF06FAGDhzIww8/3DBt8eLFHH744QwYMIDzzz+/YfyZZ55JbW0te+65J+PGjWsYX1NT07CuoUOH8uyzzwLFB8bOOOMMDj30UAYOHMjkyZMBOPTQQxt1HnfwwQczc+bMTdqfsgV/RPwJWN5k9EigvqOLScDR5dq+mVl7WrNmDdOmTePSSy/lwgsvbBg/Y8YM6urqmDVrFnV1dSxcuBCAiy66iOnTpzNz5kweeuihRmG99dZbM23aNMaOHcu5557bMH7BggU89NBD/OY3v+GMM85g5cqVDZ26AcybN49Vq1axzz77bNK+VLqN/30R8SJA+v3elmaUdLqk6ZKmL126tGIFNLM8tfSF5fXjjz32WAD2339/FixY0DB9+PDhbLPNNnTr1o099tiDf/zjHwDcfPPN7LfffgwZMoTZs2czZ86chmXqO2cbPXo0U6dObRh//PHHs8UWWzBgwAB23XVXnn76aY477jgmT57M6tWrufrqqxu6kdgUHfaTuxExAZgAUFtb27F6bDKzTqdPnz688sorjcYtX768oe/9d7/73QB06dKFNWvWNMxTP7502vz587nkkkt4/PHH6d27N2PGjGmxK+eW/q4f7tGjBx//+Me56667uPnmmxu+I2BTVLrGv0TS9gDp90sV3r6ZWbN69uzJ9ttvzwMPPAAUoX/fffc1dKe8IV5//XXe8573sM0227BkyRLuvffeRtPrO2+rq6vjoIMOahh/yy23sHbtWv7+97/z3HPPMWjQIKDow/+cc87hgAMOYNttt93YXWxQ6Rr/3cBngR+k33dVePtmthmIKl3jX3vttZx11ll85StfAWDcuHHstttuG7yefffdlyFDhrDnnnuy6667cvDBBzeavmrVKg488EDWrl3LTTfd1DB+0KBBfPSjH2XJkiX86le/olu3bkDRvLT11lu32xe3KMp0hCXdBAwDtgOWAOOAO4GbgZ2A54HjIqLpDeB11NbWRntc3tjmSRe28UHsMutofcR3JnPnzmX33XevdjEqoqamhunTp7Pddts1Gj9mzBiOPPJIRo0atc4yixcvZtiwYTz99NNssUXzDTXNHUNJT0REbdN5y1bjj4iWvlqmen2RmpltZq699lq++c1v8qMf/ajF0N9QHfbmrplZZ1T6RFCp+kc2mzr11FM59dRT27UM7rLBzDqEcjU752BDj52D38yqrlu3bixbtszhvxEigmXLljXcCG4LN/WYWdX179+fRYsW4Q9rbpxu3brRv3//Ns/f6YPfT4SYdXxdu3Zt+KCUlZ+beszMMuPgNzPLTKdv6jGz6usITa5ubv031/jNzDLj4Dczy4yD38wsMw5+M7PMOPjNzDLj4Dczy4yD38wsMw5+M7PMOPjNzDLj4Dczy4yD38wsMw5+M7PMOPjNzDLj4Dczy4yD38wsMw5+M7PMOPjNzDLj4Dczy4yD38wsMw5+M7PMVCX4JZ0nabakpyTdJKlbNcphZpajige/pH7AOUBtROwFdAFOrHQ5zMxyVa2mni2B7pK2BHoAi6tUDjOz7FQ8+CPiBeAS4HngReC1iPh9pcthZparajT19AZGArsAOwDvkXRyM/OdLmm6pOlLly6tdDHNzDqtajT1jADmR8TSiFgN3A58uOlMETEhImojorZv374VL6SZWWdVjeB/HviQpB6SBAwH5lahHGZmWapGG/9jwK3Ak8CsVIYJlS6HmVmutqzGRiNiHDCuGts2qwSp2iUoRFS7BNYR+ZO7ZmaZcfCbmWXGwW9mlhkHv5lZZhz8ZmaZcfCbmWXGwW9mlhkHv5lZZhz8ZmaZcfCbmWXGwW9mlhkHv5lZZhz8ZmaZcfCbmWXGwW9mlpmq9MdvZtbRdebvVHCN38wsMw5+M7PMOPjNzDLj4Dczy4yD38wsMw5+M7PMOPjNzDLj4Dczy4w/wNUBdeYPjphZ9bnGb2aWmTYHv6TukgaVszBmZlZ+bQp+SZ8CZgD3peHBku4uY7nMzKxM2lrjHw8MBV4FiIgZQE05CmRmZuXV1uBfExGvtddGJfWSdKukpyXNlXRQe63bzMxa19anep6S9Bmgi6QBwDnAXzZhuz8B7ouIUZLeBfTYhHWZmdkGaGuN/2xgT2AVcCPwGnDuxmxQ0tbAR4CrACLi7Yh4dWPWZWZmG269NX5JXYC7I2IE8M122OauwFLgGkn7Ak8AX4qIFU22ezpwOsBOO+3UDps1MzNoQ40/It4B/iVpm3ba5pbAfsAvI2IIsAK4oJntToiI2oio7du3bztt2szM2trGvxKYJel+iqAGICLO2YhtLgIWRcRjafhWmgl+MzMrj7YG/2/SzyaLiH9KWihpUEQ8AwwH5rTHus3MbP3aFPwRMSk9fTMwjXomIlZvwnbPBm5I63wOOG0T1mVmZhugTcEvaRgwCVgACNhR0mcj4k8bs9H0AbDajVnWzMw2TVuben4I/EdqmkHSQOAmYP9yFczMzMqjrc/xd60PfYCImAd0LU+RzMysnNpa458u6SrgujR8EsXz92Zmtplpa/CfCZxF0VWDgD8BvyhXoczMrHzaGvxbAj+JiB9Bw6d53122UpmZWdm0tY3/AaB7yXB34A/tXxwzMyu3tgZ/t4h4s34g/e0eNc3MNkNtDf4VkvarH5BUC7xVniKZmVk5tbWN/1zgFkmLgQB2AE4oV6HMzKx8Wq3xSzpA0vsj4nHgg0AdsIbiu3fnV6B8ZmbWztbX1HM58Hb6+yDgG8DPgVeACWUsl5mZlcn6mnq6RMTy9PcJwISIuA24TdKMspbMzMzKYn01/i6S6t8chgMPlkxr6/0BMzPrQNYX3jcBD0l6meIpnocBJH2A4nt3zcxsM9Nq8EfERZIeALYHfh8RkSZtQdGnvpmZbWbW21wTEY82M25eeYpjZmbl1tYPcJmZWSfh4Dczy4yD38wsMw5+M7PMOPjNzDLj4Dczy4yD38wsMw5+M7PMOPjNzDLj4Dczy4yD38wsMw5+M7PMOPjNzDJTteCX1EXSXyVNrlYZzMxyVM0a/5eAuVXcvplZlqoS/JL6A0cAV1Zj+2ZmOatWjf9S4HxgbUszSDpd0nRJ05cuXVqxgpmZdXYVD35JRwIvRcQTrc0XERMiojYiavv27Vuh0pmZdX7VqPEfDBwlaQHwa+AwSddXoRxmZlmqePBHxNcjon9E1AAnAg9GxMmVLoeZWa78HL+ZWWa2rObGI2IKMKWaZTAzy41r/GZmmXHwm5llxsFvZpYZB7+ZWWYc/GZmmXHwm5llxsFvZpYZB7+ZWWYc/GZmmXHwm5llxsFvZpYZB7+ZWWYc/GZmmXHwm5llxsFvZpYZB7+ZWWYc/GZmmXHwm5llxsFvZpYZB7+ZWWYc/GZmmXHwm5llxsFvZpYZB7+ZWWYc/GZmmXHwm5llxsFvZpYZB7+ZWWYc/GZmmal48EvaUdIfJc2VNFvSlypdBjOznG1ZhW2uAb4SEU9K2gp4QtL9ETGnCmUxM8tOxWv8EfFiRDyZ/n4DmAv0q3Q5zMxyVdU2fkk1wBDgsWamnS5puqTpS5curXjZzMw6q6oFv6SewG3AuRHxetPpETEhImojorZv376VL6CZWSdVleCX1JUi9G+IiNurUQYzs1xV46keAVcBcyPiR5XevplZ7qpR4z8YOAU4TNKM9PPJKpTDzCxLFX+cMyIeAVTp7ZqZWcGf3DUzy4yD38wsMw5+M7PMOPjNzDLj4Dczy4yD38wsMw5+M7PMOPjNzDLj4Dczy4yD38wsMw5+M7PMOPjNzDLj4Dczy4yD38wsMw5+M7PMOPjNzDLj4Dczy4yD38wsMw5+M7PMOPjNzDLj4Dczy4yD38wsMw5+M7PMOPjNzDLj4Dczy4yD38wsMw5+M7PMOPjNzDLj4Dczy0xVgl/S4ZKekfSspAuqUQYzs1xVPPgldQF+DvwnsAcwWtIelS6HmVmuqlHjHwo8GxHPRcTbwK+BkVUoh5lZlraswjb7AQtLhhcBBzadSdLpwOlp8E1Jz1SgbGWj8Wpp0nbAyxUsSpupxSLnqYXXsMO+fuDXsNTm+D8Im/wa7tzcyGoEf3O7EeuMiJgATCh/capL0vSIqK12OWzj+PXb/OX4GlajqWcRsGPJcH9gcRXKYWaWpWoE/+PAAEm7SHoXcCJwdxXKYWaWpYo39UTEGkljgd8BXYCrI2J2pcvRgXT65qxOzq/f5i+711AR6zSvm5lZJ+ZP7pqZZcbBb2aWGQd/O5H0TUmzJc2UNEPSOp9NWM/ytZJ+up55hkmavGkltbaS9D5JN0p6TtITkqZKOia9Dq9J+mvqeuRPko4sWW68pBfSefCUpKOquR+djaR30rGt/6lp5/WPkXRZe66zo6nGc/ydjqSDgCOB/SJilaTtgHdtyDoiYjowvRzlsw0nScCdwKSI+EwatzNwFPAK8HBEHJnGDwbulPRWRDyQVvHjiLhE0u7Aw5LeGxFrK70fndRbETG4uQnpdZOPdetc428f2wMvR8QqgIh4OSIWSxqeaoWzJF0t6d0Akg6Q9BdJ/ydpmqStSmvzkoam6X9NvwdVcd9ydRjwdkT8qn5ERPwjIn7WdMaImAF8FxjbzLS5wBqKT4daGUiqkTRX0i+AJ4EdJX1V0uPpCvzCknlPTv9zMyRdnvoOQ9JpkuZJegg4uGT+nSU9kNbzgKSd0viJkn4p6Y/pivCj6X98rqSJlT0CG87B3z5+T3GyzZP0i3QSdAMmAidExN4UV1dnps8u1AFfioh9gRHAW03W9zTwkYgYAnwH+F6ldsQa7EkRIm31JPDBpiNTk99aYGk7lcuge0kzzx1p3CDg2vQ/MwgYQNEv2GBgf0kfSVdfJwAHpyuGd4CTJG0PXEgR+B+n6Dyy3mVpvfsANwClzbG9KSoI5wH3AD+mOG/2TleBHZabetpBRLwpaX/gUOBjFMH+fWB+RMxLs00CzgIeAF6MiMfTsq8DqHGHHNsAkyQNoOjOomsl9sNaJunnwCHA28BXm5ulyfB5kk4G3qB48/dz0+2nUVNPauP/R0Q8mkb9R/r5axruSfFGsA+wP/B4+n/rDrxE0VfYlIhYmtZXBwxMyx4EHJv+vg64uKQc90RESJoFLImIWWn52UANMKNd9rYMHPztJCLeAaYAU9KJ8NkWZhXN9E3UxP8Af4yIY9JJPaWdimltNxv4dP1ARJyV7t20dB9mCDC3ZPjHEXFJGctnja0o+VvA9yPi8tIZJJ1Ncc/m603GH836/yfrlc63Kv1eW/J3/XCHzlY39bQDSYNS7bzeYGAJUCPpA2ncKcBDFM04O0g6IC27laSmJ8k2wAvp7zHlKre16kGgm6QzS8b1aG5GSfsA36b4ngmrvt8Bn5PUE0BSP0nvpbjaHpX+RtK26Yb9Y8AwSX0kdQWOK1nXXyi6lQE4CXikUjtRTh36XWkz0hP4maReFDfynqXoUvom4JYU7I8Dv4qItyWdkObvTtG+P6LJ+i6maOr5MkUAWYWlS/ijgR9LOp+ijX4F8LU0y6GS/krxZvAScE7JEz1WRRHx+9SePzU16bwJnBwRcyR9C/i9pC2A1cBZEfGopPHAVOBFivs1XdLqzgGulvRVinPgtMruTXm4ywYzs8y4qcfMLDMOfjOzzDj4zcwy4+A3M8uMg9/MLDMOfsuKit41Q9IH0/BgSZ8smT5M0odbWf4oSRekvydKGrWB2//GxpbdrL04+C03oyk+hFP/oZzBwCdLpg8Dmg1+SVtGxN0R8YNN2L6D36rOz/FbNtInOZ+h6E/pboq+W56l6LPlBYoP3J1H0XnXUuBs4PPAcoouGZ4EZgG1ETE29cK4kqJjrvcBX46IyZLG1M+TtjsZuAQ4nKKfn1nA7Ig4KfXncw5FN96PAV9M3X+YlY0/uWs5ORq4LyLmSVoO7EXR+2lpSHcH3qzvZ0fS5yk67BoREe+kUC9VA3wU2A34Y0kXHeuIiAskja3vYKxJb5GrU7fCJwHXttP+mjXLwW85GQ1cmv7+dRqe3YblbmmlFn5z+tKPv0l6jma6Zm7FcJrvLdKsrBz8lgVJfSj6Tt9LUlD0xRLAuDYsvqKVaU3bSoOiv6bS+2fdWioWzfQWaVZuvrlruRhF8YUaO0dETUTsCMwHdgK2KpnvjSbD63OcpC0k7QbsSnEPYQEwOI3fkeILQeqtTj1AQsu9RZqVlYPfcjEauKPJuNuA9wN7pG9zOoHim5SOScOHtmG9z1B0t30vcEZErAT+TPGmMovipm7pN3lNAGZKuiEi5gD1vUXOBO6n+BpPs7LyUz1mZplxjd/MLDMOfjOzzDj4zcwy4+A3M8uMg9/MLDMOfjOzzDj4zcwy8/8BAjtEfi7JuVQAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAVDUlEQVR4nO3df5DV9X3v8edbJFkQfwLJKCSupMD1Z0AXCBc1iKbDrY7EFH/QqMVOxtERjSa3xo5NwXRy27Eksa1tFY2it4ldk3pjJc2PjhGrUxVX5YKK5RpBJXpxg4lGryiE9/3jfHfdXfmx7Dns8oHnY2Zn9/v5/np/93vOa7/nc77ns5GZSJLKs89AFyBJ6hsDXJIKZYBLUqEMcEkqlAEuSYXatz93NmLEiGxubu7PXUpS8Z544olfZubInu39GuDNzc20tbX15y4lqXgR8eLW2u1CkaRCGeCSVCgDXJIK1a994JL2bJs2bWLdunVs3LhxoEspUlNTE6NHj2bw4MG9Wt4Al9Qw69atY//996e5uZmIGOhyipKZbNiwgXXr1nHEEUf0ah27UCQ1zMaNGxk+fLjh3QcRwfDhw3fq1YsBLqmhDO++29nfnQEuSYWyD1zSLhPXNfZqPOfv+P8XDBs2jLfeeqtzevHixbS1tXHjjTc2tJbdgQGuftPoJ3Nf9SYEpBLYhSJpr3HfffcxZcoUJk6cyGmnncb69esBWLBgARdccAEzZsxg7Nix3HLLLQAsXbqUk08+mbPOOoujjjqKSy65hC1btvDtb3+bq666qnO7t9xyC1/60pf6/Xi8Ape0R3nnnXeYMGFC5/Trr7/OmWeeCcCJJ57Io48+SkRw6623cv311/ONb3wDgBUrVvDoo4/y9ttvM3HiRE4//XQAli1bxrPPPsvhhx/OzJkzueeeezjvvPM47rjjuP766xk8eDC33347N998c78fqwEuaY8yZMgQli9f3jnd0QcOtfvUzz33XF599VXee++9bvdbz5o1iyFDhjBkyBBOOeUUli1bxkEHHcTkyZMZM2YMAHPmzOHhhx9m9uzZzJgxgyVLlnDkkUeyadMmjj322H49TrALRdJe5PLLL2fevHmsXLmSm2++uds91z1v4euY3lb7F77wBRYvXsztt9/ORRddtIsr3zoDXNJe44033mDUqFEA3HHHHd3m3XvvvWzcuJENGzawdOlSJk2aBNS6UNasWcOWLVtobW3lxBNPBGDKlCm8/PLLfPe732XOnDn9eyAVu1Ak7TK72x0/CxYs4Oyzz2bUqFF86lOfYs2aNZ3zJk+ezOmnn85LL73EV7/6VQ477DBWr17N1KlTueaaa1i5cmXnG5odzjnnHJYvX87BBx88EIdjgEvas3S9Bxxg7ty5zJ07F6j1c8+aNWur640bN45FixZ9oH3o0KG0trZudZ2HH364290o/c0uFEnaSb/+9a8ZN24cQ4YM4dRTTx2wOrwCl7TXW7BgwVbbp0+fzvTp0z/QftBBB7F69epdW1QveAUuSYUywCWpUAa4JBXKAJekQhngknaZiMZ+9cbatWs55phjurUtWLCAhQsXbnOdxYsXM2/evHoOdUDsMMAj4raIeC0inu7SdkhE/FtE/J/q+8DcxS5Je7HeXIEvBmb2aLsGuD8zxwL3V9OStFubPn06X/nKV5g8eTLjxo3joYce6pz3yiuvMHPmTMaOHcvVV1/d2X7ppZfS0tLC0Ucfzfz58zvbm5ubO7c1efJknn/+eaD2waFLLrmEk046iXHjxrFkyRIATjrppG6DbE2bNo0VK1bUdTw7DPDM/Hfg9R7Ns4COgQTuAD5bVxWS1E82b97MsmXLuOGGG7juuus625cvX05raysrV66ktbWVl19+GYCvf/3rtLW1sWLFCh588MFuoXvAAQewbNky5s2bx5VXXtnZvnbtWh588EF++MMfcskll7Bx48bOwa8AVq9ezbvvvstxxx1X17H0tQ/8o5n5KkD1/SPbWjAiLo6Itohoa29v7+PuJKl3tvWPgTvaP/e5zwFwwgknsHbt2s75p556KgceeCBNTU0cddRRvPjiiwDcfffdHH/88UycOJFnnnmGZ599tnOdjkGs5syZwyOPPNLZfs4557DPPvswduxYxowZw3PPPcfZZ5/NkiVL2LRpE7fddlvnx/vrscs/iZmZi4BFAC0tLbvXyDaS9jjDhw/nV7/6Vbe2119/vXPs7w9/+MMADBo0iM2bN3cu09Hedd6aNWtYuHAhjz/+OAcffDBz587d5hC02/q5Y3ro0KF85jOf4d577+Xuu+/uHKO8Hn29Al8fEYdWhR0KvFZ3JZLUAMOGDePQQw/l/vvvB2rh/eMf/7hzGNid8eabb7Lffvtx4IEHsn79en70ox91m98xyFVraytTp07tbP/e977Hli1b+PnPf84LL7zA+PHjgdoY4ldccQWTJk3ikEMO6eshdurrFfi/AH8I/GX1/d66K5G0x8kBes195513ctlll/HlL38ZgPnz5/OJT3xip7fzyU9+kokTJ3L00UczZswYpk2b1m3+u+++y5QpU9iyZQt33XVXZ/v48eP59Kc/zfr167nppptoamoCat02BxxwQMP+AUTkDn7DEXEXMB0YAawH5gM/AO4GPg68BJydmT3f6PyAlpaWbMTLBpXJ/0q/51u1ahVHHnnkQJfRL5qbm2lra2PEiBHd2ufOncsZZ5zB7NmzP7DOK6+8wvTp03nuuefYZ5+td4Bs7XcYEU9kZkvPZXd4BZ6Z2/pXEwM3hqIkFebOO+/k2muv5Zvf/OY2w3tnOZysJPVB1ztYuuq4VbCnCy+8kAsvvLChNfhRekkNtaNuWW3bzv7uDHBJDdPU1MSGDRsM8T7ITDZs2ND5hmdv2IUiqWFGjx7NunXr8EN7fdPU1MTo0aN7vbwBLqlhBg8e3PmBGe16dqFIUqEMcEkqlAEuSYUywCWpUAa4JBXKAJekQhngklQoA1ySCmWAS1KhDHBJKpQBLkmFMsAlqVAGuCQVygCXpEIZ4JJUKANckgplgEtSoQxwSSqUAS5JhTLAJalQBrgkFcoAl6RCGeCSVKi6AjwiroqIZyLi6Yi4KyKaGlWYJGn7+hzgETEKuAJoycxjgEHAeY0qTJK0ffV2oewLDImIfYGhwCv1lyRJ6o0+B3hm/gJYCLwEvAq8kZk/bVRhkqTtq6cL5WBgFnAEcBiwX0Scv5XlLo6Itohoa29v73ulkqRu6ulCOQ1Yk5ntmbkJuAf4rz0XysxFmdmSmS0jR46sY3eSpK7qCfCXgE9FxNCICOBUYFVjypIk7Ug9feCPAd8HngRWVtta1KC6JEk7sG89K2fmfGB+g2qRdjsRA11BTeZAV6DdkZ/ElKRCGeCSVCgDXJIKZYBLUqEMcEkqlAEuSYUywCWpUAa4JBXKAJekQhngklQoA1ySCmWAS1KhDHBJKpQBLkmFMsAlqVAGuCQVygCXpEIZ4JJUKANckgplgEtSoQxwSSqUAS5JhTLAJalQBrgkFcoAl6RCGeCSVCgDXJIKZYBLUqEMcEkqVF0BHhEHRcT3I+K5iFgVEVMbVZgkafv2rXP9vwZ+nJmzI+JDwNAG1CRJ6oU+B3hEHACcDMwFyMz3gPcaU5YkaUfq6UIZA7QDt0fEUxFxa0Ts13OhiLg4Itoioq29vb2O3UmSuqonwPcFjgf+ITMnAm8D1/RcKDMXZWZLZraMHDmyjt1JkrqqJ8DXAesy87Fq+vvUAl2S1A/6HOCZ+X+BlyNifNV0KvBsQ6qSJO1QvXehXA58p7oD5QXgovpLkiT1Rl0BnpnLgZbGlCJJ2hl+ElOSCmWAS1KhDHBJKpQBLkmFMsAlqVAGuCQVygCXpEIZ4JJUKANckgplgEtSoQxwSSqUAS5JhTLAJalQBrgkFcoAl6RCGeCSVCgDXJIKZYBLUqEMcEkqlAEuSYUywCWpUAa4JBXKAJekQhngklQoA1ySCmWAS1KhDHBJKpQBLkmFMsAlqVB1B3hEDIqIpyJiSSMKkiT1TiOuwL8IrGrAdiRJO6GuAI+I0cDpwK2NKUeS1Fv1XoHfAFwNbNnWAhFxcUS0RURbe3t7nbuTJHXoc4BHxBnAa5n5xPaWy8xFmdmSmS0jR47s6+4kST3UcwU+DTgzItYC/wTMiIh/bEhVkqQd6nOAZ+afZObozGwGzgN+lpnnN6wySdJ2eR+4JBVq30ZsJDOXAksbsS1JUu94BS5JhTLAJalQBrgkFcoAl6RCGeCSVCgDXJIKZYBLUqEMcEkqlAEuSYUywCWpUAa4JBXKAJekQhngklQoA1ySCmWAS1KhDHBJKpQBLkmFMsAlqVAGuCQVygCXpEIZ4JJUKANckgplgEtSoQxwSSqUAS5JhTLAJalQBrgkFcoAl6RCGeCSVKg+B3hEfCwiHoiIVRHxTER8sZGFSZK2b9861t0MfDkzn4yI/YEnIuLfMvPZBtUmSdqOPl+BZ+armflk9fNvgFXAqEYVJknavob0gUdEMzAReGwr8y6OiLaIaGtvb2/E7iRJNCDAI2IY8M/AlZn5Zs/5mbkoM1sys2XkyJH17k6SVKkrwCNiMLXw/k5m3tOYkiRJvVHPXSgBfBtYlZnfbFxJkqTeqOcKfBpwATAjIpZXX7/XoLokSTvQ59sIM/NhIBpYiyRpJ/hJTEkqlAEuSYUywCWpUAa4JBXKAJekQhngklQoA1ySCmWAS1KhDHBJKpQBLkmFMsAlqVAGuCQVygCXpEIZ4JJUqHr+K32/iut2j5Frc34OdAnSgNkdnoc+B9/nFbgkFcoAl6RCGeCSVCgDXJIKVcybmJLUFzHw77sCkLvgvVcDfBfakx84kgaeXSiSVCgDXJIKZYBLUqEMcEkqlAEuSYUywCWpUAa4JBXKAJekQtUV4BExMyL+MyKej4hrGlWUJGnH+hzgETEI+DvgvwFHAXMi4qhGFSZJ2r56rsAnA89n5guZ+R7wT8CsxpQlSdqResZCGQW83GV6HTCl50IRcTFwcTX5VkT8Zx37HHCxYJsDnIwAftmPpfTa7jImy+5iG+dwtz1/4DnsqsTnINR9Dg/fWmM9Ab61cj4wbFJmLgIW1bGfIkREW2a2DHQd6hvPX/n2xnNYTxfKOuBjXaZHA6/UV44kqbfqCfDHgbERcUREfAg4D/iXxpQlSdqRPnehZObmiJgH/AQYBNyWmc80rLLy7PHdRHs4z1/59rpzGOlo/5JUJD+JKUmFMsAlqVAGeA8RcW1EPBMRKyJieUR84N72HazfEhF/s4NlpkfEkvoq3XNExEcj4rsR8UJEPBERj0TEWdW86RHxRkQ8VQ3b8O8RcUaXdRdExC+qc/V0RJy5nf3cGxGP9GibGxGHdZm+MiKGbmcbt3Z84jgi3trJ45wQEb+3M+vsySLit9V56/hqbvD250bEjY3c5u7Gf2rcRURMBc4Ajs/MdyNiBPChndlGZrYBbbuivj1RRATwA+COzPyDqu1woGsQP5SZZ1TzJgA/iIh3MvP+av63MnNhRBwJPBQRH8nMLT32cxBwPLUPkx2RmWuqWXOBp3n/FtgrgX8E/t9Wah2UmV+o43AnAC3Av9axjT3JO5k5YWszqsdF9DyP6s4r8O4OBX6Zme8CZOYvM/OViDi1ugJcGRG3RcSHASJiUkT8R0T874hYFhH7d726jojJ1fynqu/jB/DYdlczgPcy86aOhsx8MTP/dmsLZ+Zy4GvAvK3MWwVspvaJvJ5+H7iP2pAP5wFExGxqgfqd6grwi8BhwAMR8UC1zFsR8bWIeAyYGhFLI6LzwyIR8Y2IeDIi7o+IkVVb5zIRMSIi1la32n4NOLfa17kRsV/1eHq8eozs1UNRRERzRKyKiL8HngQ+FhF/XP1+VkTEdV2WPb96zi2PiJursZmIiIsiYnVEPAhM67L84dU5WlF9/3jVvjgi/iEiHqheAX66OierImJx//4Gdp4B3t1PqT1oVkfE31cnswlYDJybmcdSe9VyafWEbAW+mJmfBE4D3umxveeAkzNzIvBnwP/orwMpyNHUnqw740ngv/RsjFp31xagfSvrzAHuqr7mAGTm96m9Wvp8Zk7IzL+mdiV+SmaeUq23H/B0Zk7JzId7bHM/4MnMPB54EJi/rYKr8YL+DGit9tUKXAv8LDMnAacAfxUR+/XqN7BnGNKl++R/VW3jgTur58x4YCy1cZcmACdExMnVK61zgWnVFfxvgc9HxKHAddSC+zPUBtnrcGO13eOA7wBduzkPpnYhcRW1P/Lfova4PLZ6xbfbsguli8x8KyJOAE6i9oRqBf4CWJOZq6vF7gAuA+4HXs3Mx6t13wSI7gMeHAjcERFjqQ0zMLg/jqNkEfF3wInUrsonbWuxHtNXRcT5wG+o/aHtdm9sRHwU+B3g4czMiNgcEcdk5tO9KOm3wD9vY94Wao8RqHW73NOL7XX1u8CZEfHfq+km4OPAqp3cTqm6daFUfeAvZuajVdPvVl9PVdPDqAX6ccAJwOPV820I8Bq1sZiWZmZ7tb1WYFy17lTgc9XP/xO4vksd91WPi5XA+sxcWa3/DNAMLG/I0e4CBngPmflbYCmwtDqhf7iNRYOtjP3Sw58DD2TmWdWDc2mDytyTPEOtewOAzLyseu9he+8jTKR7yH0rMxduZ/lzqV1lrame8AdQ60b5017Ut7F6TPRGx+NhM++/um3azvIB/H5mFj3AW4O93eXnAP4iM2/uukBEXE7tPZM/6dH+WXb8nOzQdbl3q+9buvzcMb1bZ6RdKF1ExPjqarnDBGA90BwRv1O1XUDt5fJzwGERMalad/+I6HmyDwR+Uf08d1fVXbifAU0RcWmXtu3dBXIc8FVqY9H31hxgZmY2Z2Yztau386p5vwH277Jsz+nt2QeYXf38B0BHF8vaah90mb+1bf8EuLx6w46ImNjL/e4tfgL8UUQMA4iIURHxEWqvfmdXPxMRh0Ttje/HgOkRMTwiBgNnd9nWf/D+Of8875+rou3Wf10GwDDgb6N2x8Jm4HlqQ+HeBXyvCujHgZsy872IOLdafgi1/u/TemzvempdKF+iFlTqoXrp+lngWxFxNbX+67eBr3RZ7KSIeIpasL8GXNHlDpTtql75fBzoeFlOZq6JiDerPvPFwE0R8Q61l9mLgB9FxKtd+sG35W3g6Ih4AniD2pU+wELg7oi4gO7n/QHgmohYTq1r7s+BG4AVVYivpXYXlIDM/GnV3/1I9TfuLeD8zHw2Iv4U+GlE7ANsAi7LzEcjYgHwCPAqtfdKBlWbuwK4LSL+mNpj7KL+PZpdw4/SS1Kh7EKRpEIZ4JJUKANckgplgEtSoQxwSSqUAS5JhTLAJalQ/x8SJXZtO+TrywAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "xx = ['Social', 'GDP Attribute', \"Freedom\"]\n",
+ "yy1 = [df3['Social support'], df3['Logged GDP per capita'], df3['Freedom to make life choices']]\n",
+ "yy2 = [df4['Social support'], df4['Logged GDP per capita'], df4['Freedom to make life choices']]\n",
+ "\n",
+ "\n",
+ "# 'a', 'b', 'c'...는 숫자 value가 아니기 때문에 axis를 지정해 주어야 함.\n",
+ "xx_axis = np.arange(len(xx))\n",
+ "plt.xticks(xx_axis, xx)\n",
+ "\n",
+ "plt.bar(xx_axis - 0.2, yy1, width=0.3, color='green', align='center', label='Happy')\n",
+ "plt.bar(xx_axis + 0.2, yy2, width=0.3, color='blue', align='center', label='Unhappy') # 좌표 느낌으로 각 x_axis에 대하여 일정 간격을 두고 막대그래프 생성\n",
+ "plt.legend(loc=1)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbgAAAEICAYAAAAtAOHGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABJUUlEQVR4nO3dd3gU5fbA8e9JIwQIITTpvdck2LuCBVFQpAfFcgVUvPZr+13wWq7tehVRwGtBQ5ciKggoNhQF0+ggVUIPBEILqe/vj5noEtPZ3dlszud58mSzMzvvyezsninvmVeMMSillFL+JsDpAJRSSilP0ASnlFLKL2mCU0op5Zc0wSmllPJLmuCUUkr5JU1wSiml/JImOKXcQESMiLT20LLHichUTyxbKX+mCc5HiMhOEelZ4LkRIvKjUzH5ChFpbieQIKdjKQ99bz2jom8XyvM0wSm/oF9yqjC6XVRumuAqEBF5QkS2ichxEdkgIje7TBshIj+JyFsiki4im0Tkapfp34nIv0VklT19gYhE2tMWisiYAm2tEZF+RcRxiYisEJGjIpIiIiPs52uKyMcikioiv4vIMyISYE874zRbwb1vO77n7P/huIgsFZE69uw/2L+PisgJEbnQ5f/9r4ikAc+JSJqIdHFpo56IZIhI3UL+h1Yi8o2IHBaRQyIyTUQiXKbvFJFH7fWQLiKzRCTUZfpjIrJPRPaKyJ3Fv3PFc1kXt4vILjuepwvMFmKv2+Misl5Eeri8XrcLN20Xyr9ogqtYtgGXAjWBZ4GpItLAZfr5wHagDjAWmJf/ZWW7DbgTaAjkAOPt5z8CYvNnEpFuQCNgUcEARKQp8CXwFlAX6A4k25PfsmNrCVxut3dHGf6/ofb89YAQ4FH7+cvs3xHGmOrGmJ8L/L/1gH8BM13/D2AI8LUxJrWQtgT4N9a66AA0AcYVmGcgcB3QAugKjAAQkevs2HoBbYCeuMclQDvgauCfItLBZdpNWP9fBPAZMMFlmm4X7tsulD8xxuiPD/wAO4ETwFGXn1PAj8W8Jhnoaz8eAewFxGX6KmC4/fg74CWXaR2BLCAQqAKkAW3saa8B7xTR5pPA/EKeDwQygY4uz40EvrMfjwOmukxrDhggyCW+Z1ym3wssLmxel/93V4EYzgdSgAD773hgYCnXfz8gqcD7Eevy9yvAJPvxBwXWZVs7vtbFvLc9Czw3Iv+9dfn/Ghd47wa7rLuvC7x3GbpdeH670J+K/aNHcL6lnzEmIv8H68P8BxG5TUSS7VNAR4HOWHvl+fYY+xNs+x1rrzxfSoFpwUAdY0wmMBuItU8dDQHiioixCdYRQ0F1sPaufy/QRqMillOY/S6PTwHVS5jf9f/BGLMSOAlcLiLtgdZYRzt/YZ+mmikie0TkGDCVM9dlcfE05K/rsjg5WOvaVTCQXcr2CpsW6nIaT7eLM5V7u1D+RRNcBSEizYD/AfcDte0EuA7rVFu+RiLi+ndTrL33fE0KTMsGDtl/fwQMwzo9dsr8ebqnoBSgVSHPH7KX16xAG3vsxyeBMJdp5xSx/MIUNeRFYc/nn1YbDswxxpwu4rX/tl/f1RgTbr9Gipi3oH38dV0WZxfW0YarFpScGEuk20Wpny/tdqH8iCa4iqMa1gc3FUBE7sDaU3dVD3hARIJFZADWtSXX6yWxItJRRMKwrk3MMcbkAthfXHnAfyh6Lx1gGtBTRAaKSJCI1BaR7vZyZgMviEgN+4v3YawjI7BOm10mIk1FpCbWKa3SSrVja1mKeeOAm7G+zD4uZr4a2KeERaQR8FgZ4pkNjHBZl2NLmH8W8KCItBdLD6xrXjPL0GZRdLtw73ah/IgmuArCGLMB60vmZ+AA0AX4qcBsK7E6PRwCXgBuNcYcdpkeB0zBOuUTCjxQ4PUf28stsqjYGLML6A08gnV9JhnoZk8eg7VHvh34EZiOdb0KY8xXWF/0a4AE4ItS/Nv5bZ6y/5+f7NNwFxQz724gEetLf3kxi30WiAbSgYXAvDLE8yXwBvANsNX+XZz/AR8Cn9vtfQw8bYxZXNo2i4lFtwv3bhfKj8iZp+ZVRWV3yb7bGHNJEdO/w7qY/14xy7gNuKeoZVQUIvIBsNcY84zTsThNt4s/6XZR+WgRpALAPj11L/CO07GcDRFpDtwCRDkcil/Q7UJVZHqKUiEi12JdzziAdfqoQhKR57A6WLxqjNnhdDwVnW4XqqLTU5RKKaX8kh7BKaWU8ksV4hpcnTp1TPPmzZ0OQymlKpSEhIRDxphKe8/NCpHgmjdvTnx8vNNhKKVUhSIiZ30zgYpMT1EqpZTyS5rglFJK+SVNcEoppfySJjillFJ+SROcUkopv6QJTimllF/SBKeUUsovaYJTqpxSj2fySXwKuXl6uzulfFGFKPRWyteczs7l7o9+ZfXudFLSTvHwNe2cDkkpVYAewSlVRsYYxi5Yz+rd6cQ0q8X4b7aydP1+p8NSShWgCU6pMpq+ahez4lO4/8rWTLv7fLo0qsnDs1ezLfWE06EppVxoglOqDBJ+P8K4z9Zzedu6PNSrLaHBgUwaHkNIUAAj4xI4kZnjdIhKKZsmOKVK6eDx09w7LYEGNasyfnAUgQECQKOIqkwYEsX21BM8Ons1OsaiUr5BE5xSpZCVk8d90xI5lpHD5OEx1AwLPmP6Ra3r8OT1HVi8fj8Tv9/mUJRKKVea4JQqhRcWbuDXnUd4+daudGgQXug8d1/agj5dG/Daks388FuqlyNUShWkCU6pEsxN2M1HP//O3Ze04KZuDYucT0R45dautKlXgzEzkkhJO+XFKJVSBWmCU6oY6/ak89T8tVzYsjZPXN++xPnDQoKYPDwGYwwj4xLIyMr1QpRKqcJoglOqCGknsxgZl0DtaiFMGBpFUGDpPi7N61TjzcFRbNx/jKfmr9VOJ0o5RBOcUoXIyc1jzIxEUk9kMml4DLWrVynT669sX48Hr27L/KQ9TFmx0zNBKqWKpQlOqUK8umQzP209zPP9OtO1cUS5ljHmqtb07FCf5xduZOX2w+4NUClVIk1wShXwxZq9TP5hO7EXNGVgjyblXk5AgPD6oG40iwzjvumJ7E8/7cYolVIl0QSnlIvN+4/z+Jw1xDSrxT/7dDrr5YWHBjN5eAynsnIZNTWBzBztdKKUt2iCU8qWnpHNyLh4qlUJ4p1h0YQEuefj0aZ+DV4b0I3klKOM+2yDW5aplCqZxxKciHwgIgdFZJ3Lc5Ei8pWIbLF/1/JU+0qVRV6e4cGZSew+ksHEYdHUDw916/J7d2nAqMtbMWPVLmau2uXWZSulCufJI7gpwHUFnnsCWGaMaQMss/9WynFvLNvCt5tTGXtjR3o0j/RIG49d245L29ThnwvWk5xy1CNtKKX+5LEEZ4z5AUgr8HRf4CP78UdAP0+1r1RpfbXhAOOXbeHWmMbEXtDMY+0EBgjjB0dRt0YVRk9N4NCJTI+1pZTy/jW4+saYfQD273pebl+pM2xLPcHDs5Lp0qgmz/frjIh4tL1a1UKYPDyGtJNZ3DctkezcPI+2p1Rl5rOdTETkHhGJF5H41FS9ca1yvxOZOYyMSyA4KIBJw2MIDQ70SrudG9Xk37d0YeWONF76cpNX2lSqMvJ2gjsgIg0A7N8Hi5rRGPOuMaaHMaZH3bp1vRagqhyMMTz2yWq2p55gwpAoGkVU9Wr7t0Q3ZsRFzXn/xx0sSN7j1baVqiy8neA+A263H98OLPBy+0oBMPH7bXy5bj9PXt+Bi1rXcSSGp2/owHnNI/nH3DVs2HvMkRiU8meeLBOYAfwMtBOR3SJyF/AS0EtEtgC97L+V8qoffkvltSWbubFbQ+6+tIVjcQQHBjBhWBQ1qwYzcmo8R09lORaLUv7Ik70ohxhjGhhjgo0xjY0x7xtjDhtjrjbGtLF/F+xlqZRHpaSdYsyMJNrWr8HL/bt4vFNJSerVCOWdYTHsTz/NAzOTyc3TkQeUchef7WSilLtlZOVyT1wCxhgmD48hLCTI6ZAAiGlWi3E3deKH31L571e/OR2OUn5DE5yqFIwxPDlvDZv2H+PNIVE0q13N6ZDOMPS8pgzq0YQJ325lyfr9ToejlF/QBKcqhQ9/2smnyXt5uGdbrmzne+WXIsKzfTvRrXFNHpm9mq0HTzgdklIVniY45fd+2X6YFxZtpFfH+tx3ZWunwylSaHAgE2NjqBIUwMi4eI6fznY6JKUqNE1wyq/tS8/g/umJNKsdxusDuxEQ4GynkpI0jKjKhKHR7Dx8ikc/WU2edjpRqtw0wSm/lZmTy6ipiWRk5fLu8BhqhAY7HVKpXNiqNk9e354l6w8w8fttToejVIWlCU75rbEL1rM65Sj/Gdid1vVqOB1Omdx1SQtu7NaQ15Zu5rvNRd7wRylVDE1wyi9NX7mLmb+mcN+Vrbiu8zlOh1NmIsLL/bvQrn4N/j4zmV2HTzkdklIVjiY45XcSdx1h7GfruKxtXR7u1c7pcMotLCSIycNjMMYwcmoCGVm5ToekVIWiCU75lYPHTzN6agINalZl/ODuBPp4p5KSNKtdjTeHRLFp/zGemLcGY7TTiVKlpQlO+Y3s3Dzun5ZEekY2k2JjiAgLcTokt7iyXT0e7tmWBcl7+eCnnU6Ho1SFoQlO+Y0XFm5k1c40Xu7flY4Nw50Ox63uu7I1vTrW58VFG/ll+2Gnw1GqQtAEp/zCvMTdTFmxk7suaUHf7o2cDsftAgKE1wd2o1lkGPdPT2RfeobTISnl8zTBqQpv3Z50npy3lgtaRvLk9e2dDsdjaoQG8+5tMWRkWfV9mTna6USp4miCUxVa2sksRsYlEFkthAlDowkK9O9NunW9GvxnYDdWpxxl3GfrnQ5HKZ/m398Gyq/l5ObxwIwkUk9kMik2hjrVqzgdkldc17kB917RihmrUpixapfT4SjlszTBqQrr1aWb+XHrIZ7v25luTSKcDserHrmmHZe2qcPYBetJ2nXE6XCU8kma4FSFtHDNPiZ/v51h5zdl4LlNnA7H6wIDhPGDo6gXXoXRUxNJPZ7pdEhK+RxNcKrC2bz/OI/NWU100wjG3tjJ6XAcU6taCJOHx3A0I4v7pieSnZvndEhK+RRNcKpCSc/IZmRcPNWqBDExNoaQoMq9CXdqWJOXbunKqh1pvLhoo9PhKOVTgpwOQKnSysszPDwrmd1HMphxzwXUDw91OiSf0C+qEat3H+XDn3bStXFNbo5q7HRISvmEyr37qyqUN5dtYdmmg/zzxo6c2zzS6XB8ylO9O3Bei0ienLeW9XvTnQ5HKZ+gCU5VCF9vOMCby7bQP7oxwy9o5nQ4Pic4MIC3h0YTUTWEkXEJHD2V5XRISjlOE5zyedtTT/DQrGQ6NwrnhZs7I1KxRwjwlLo1qjAxNpqDxzIZMyOJ3DwdeUBVbprglE87kZnDyLgEgoMCmBQbQ2hwoNMh+bSoprV4tm8nlm85xH+WbnY6HKUcpQlO+SxjDI/PWc221BNMGBJF41phTodUIQw5rymDz23CO99tY/G6fU6Ho5RjNMEpnzXp++0sWrufJ65vz0Wt6zgdToXybN9OdGsSwSOzV7P14HGnw1HKEZrglE9aviWVV5dsok/XBvzt0pZOh1PhVAkKZFJsNFVDArknLoHjp7OdDkkpr9MEp3xOStopxsxIok29Grxya1ftVFJODWpWZcLQaH4/fIqHZ68mTzudqEpGE5zyKRlZuYyMSyAvzzB5eAxhIXovgrNxQcvaPNW7A19tOMDb3251OhylvMqRBCciD4nIehFZJyIzRERvSaEwxvDkvDVs3H+MNwdH0bxONadD8gt3Xtycvt0b8vrXv/Ht5oNOh6OU13g9wYlII+ABoIcxpjMQCAz2dhzK93z4004+Td7LQz3bcmX7ek6H4zdEhJdu6Ur7c8L5+4wkfj980umQlPIKp05RBgFVRSQICAP2OhSH8hG/bD/MC4s20rNDfe6/srXT4fidqiGBTI6NQUQYGZfAqawcp0NSyuO8nuCMMXuA14BdwD4g3RiztOB8InKPiMSLSHxqaqq3w1RetC89g/unJ9IsMozXB3UjIEA7lXhC09phvDm4O5sPHOcfc9dijHY6Uf7NiVOUtYC+QAugIVBNRGILzmeMedcY08MY06Nu3breDlN5SWZOLqOmJpKRlcu7t8UQHhrsdEh+7Yp29Xj0mnZ8vnov7/+4w+lwlPIoJ05R9gR2GGNSjTHZwDzgIgfiUD5g7IL1rE45yn8GdqN1vRpOh1Mp3HtFK67tVJ9/f7mJFdsOOR2OUh7jRILbBVwgImFiFThdDehIjZXQ9JW7mPlrCvde0YrrOjdwOpzyycl0OoIyExFeG9CN5rXDGDM9ib1HM5wOSSmPcOIa3EpgDpAIrLVjeNfbcShnJe46wtjP1nFZ27o8ck07p8Mpu9wc+PxB+HcTWDvH6WjKrEZoMJOH9yAzJ4/RUxM4nZ3rdEhKuZ0jvSiNMWONMe2NMZ2NMcONMRVvN1iV28Hjpxk9NYFzaoYyfnB3Aitap5KsUzB7OCR8CDXOgbl3wYoJTkdVZq3rVec/A7uxenc6Yxes104nyu/onUyUV2Xn5nH/tCTSM7KZHNuDiLAQp0Mqm1Np8HFf2Pwl9H4N7lsFHfvC0qdh8VOQl+d0hGVybadzuP/K1syKT2H6ql1Oh6OUW2mCU171wsKNrNqZxsv9u9KxYbjT4ZTN0V3w/jWwbzUM/BjO+xsEh8KtH8L5o+CXt2HunRXuutxDvdpyedu6jPtsPQm/H3E6HKXcRhOc8pp5ibuZsmInd17cgr7dGzkdTtnsXwvv9YKTB+G2T6HjTX9OCwiE616CXs/B+vkQdwtkHHUq0jILDBDeHNydBjWrcu+0BA4eP+10SEq5hSY45RXr9qTz5Ly1nN8ikid7t3c6nLLZ8QN82NtKZHcugWaFVLWIwMUPwC3vQcpK+OA6SN/t/VjLKSIshEmxMaRnZHP/tCSycyvWqValCqMJTnlc2sksRsYlEFkthLeHRRMcWIE2u3VzYWp/CG8Edy2Feh2Kn7/rAIidC8f2WEd8B9Z7J0436NgwnJf7d2XVzjReWKiVO6riq0DfNKoiysnN44EZSaQez2RibAx1qldxOqTS+/kdmHMnNOoBd34JNRuX7nUtL4c7vgQMfHA97Fju0TDdqW/3Rtx1SQumrNjJvMSKcwSqVGE0wSmPenXpZn7ceojn+nWie5MIp8Mpnbw8WPoMLHkSOtwEw+dD1VplW8Y5neGur6wygqm3WEeCFcQT17e3TiXPW8u6PelOh6NUuWmCUx6zcM0+Jn+/naHnN2XQuU2dDqd0crJg/khY8Rac+zcYMMXqKVkeEU3gzsXWEeCcOytMrVxwYABvD4smsloIo6YmcORkltMhKVUumuCUR2zef5zH5qwmqmkEY2/s6HQ4pZN5HKYPgLWz4ep/Qu9XrY4lZyMs0joCrGC1cnWqV2FibAwHj2XywMwkcvO0CFxVPJrglNulZ2QzMi6esJAgJsXGUCXoLJOENxw/YPWU3LEc+k2ESx+xeka6Q36t3HkjK1StXPcmETzXrxPLtxzi1SWbnQ5HqTILcjoA5V/y8gwPz0pm95EMZtxzAfXDy3l6z5sObbWuk508BENnQ5ue7m8jIBCufxlqNoKv/mm1NWgqVI1wf1tuNOjcpiSnpDPp+210a1yT67tU0Jtiq0pJj+CUW725bAvLNh3k//p05NzmkU6HU7LdCfDBNZB1EkZ87pnklk8ELv67VSu36xf48HpI3+O59txk3E0diWoawaOfrGbLgeNOh6NUqWmCU27z9YYDvLlsC/2jG3Pbhc2cDqdkvy2Fj/pAlRpWjVujGO+023UAxM6Boynwfi84sME77ZZTlaBAJg6LoWpIEPfEJXDsdLbTISlVKprglFtsTz3BQ7OS6dwonBdu7oy46/qVpyRNhRmDoU4bqzt/7Vbebb/lFVZtXV6uddeTnT96t/0yOqdmKO8MiyYl7RQPz0omTzudqApAE5w6aycycxgZl0BwUACTYmMIDfbhTiXGwPevwoL7rILsEQuhej1nYjmnC9xt18rF3Qzr5jkTRymd1yKSp2/owNcbDzLh261Oh6NUiTTBqbNijOHxOavZlnqCCUOiaFwrzOmQipaXCwsfgW+fh66DYcgs6/SkkyKa2rVyMTDnDvj5bWfjKcGIi5pzc1Qj/vv1b3y76aDT4ShVLE1w6qxM+n47i9bu54nr23NR6zpOh1O07AyYfRvEvw8XPwg3T4IgHxmLLiwShn9q3TVlyVOw5GmfrZUTEV68uQsdzgnngZlJ7Dx00umQlCqSJjhVbsu3pPLqkk306dqAv13a0ulwinYqDT7uB5sWwvWvQK9n3Vfj5i7BodZdU84bCT9PsEYJ99FauaohgUweHkNggDAyLoGTmTlOh6RUoTTBqXJJSTvFmBlJtKlXg1du7eq7nUqOplidOPYmwoAP4fyRTkdUtPxauV7/gvXzrFEMfHRcuSaRYYwfHMWWg8f5x9w1GKOdTpTv0QSnyiwjK5eRcQnk5RkmD48hLMRH7xdwYL01Avfx/RA7Dzrd7HREJfujVu5/Pl8rd1nbujx6bTu+WLOP95bvcDocpf5CE5wqE2MMT81fy8b9x3hzcBTN61RzOqTC7fzRGqoGY3XHb3Gp0xGVTdeBMOyTP2vlDvrm+GyjL2/F9Z3P4d9fbmTF1kNOh6PUGTTBqTKZsmIn85P28FDPtlzZ3qHu9SVZ/6nV7b7GOVaNW/1OTkdUPq2uhDsW2bVy1/pkrZyI8OqAbrSsW537ZySx52iG0yEp9QdNcKrUVm4/zPMLN9KzQ33uv7K10+EUbuW78MkIaBhtdb+PaOJ0RGenQVerVq56fZ+tlateJYjJw2PIzslj9NQETmfnOh2SUoAmOFVK+9IzuG96Is0iw3h9UDcCAnysU4kx8PU4+PIxaH8D3Pap1f3eH0Q0hTuXWEl7zp3WSOM+plXd6rw+qDtrdqfzf5+u004nyidoglMlyszJZfTURDKycnn3thjCQ4OdDulMudnw6Wj48b/Q404Y+DEEV3U6KvcKi7SSdoc+1kjjPlgr16tjfR64qjWfJOxm6spdToejVOkTnIhUFZF2ngxG+aZxn60nOeUo/xnYjdb1HL7zR0GZJ2D6IFg9A658Bm54/ewHKfVVwVVhwEdw3j1Wrdy8u32uVu7Bnm25sl1d/vX5ehJ+T3M6HFXJlSrBiciNQDKw2P67u4h85sG4lI+YsWoXM1alcO8Vrbius4+NBXbiIEy5AbZ/Bze9BZc/5nsF3O4WEGgVq/d8FtbNtWrlTqc7HdUfAgKENwZF0TCiKqOnJnLw2GmnQ1KVWGmP4MYB5wFHAYwxyUBzTwSkfEfSriOMXbCey9rW5ZFrfOzg/fA2q8YtdTMMmQHRtzkdkfeIwCUPws3vwq6frXKIY3udjuoPNcOCmTw8huOnc7h3WiJZOb51KlVVHqVNcDnGGN/ZTVQel3o8k9FTE6lfswrjB3cn0Jc6lexJtJLb6XQY8QW0vdbpiJzRbZBdK7cL3vOtWrn254Tz8q1dif/9CM8v9O3x7pT/Km2CWyciQ4FAEWkjIm8BK8rbqIhEiMgcEdkkIhtF5MLyLku5X3ZuHvdNS+RoRhaTY3sQEeYjNyUG2PI1TOkDIWFWjVvjHk5H5KxWV9m1ctl2rdxPTkf0h5u6NeRvl7bg459/Z07CbqfDUZVQaRPcGKATkAlMB9KBB8+i3TeBxcaY9kA3wHd2PRUvLNzIqp1pvNy/Kx0bhjsdzp+SZ8CMQdbgpHd9DXV8tBbP2xp0tZJ99foQ1w/Wz3c6oj/847r2XNiyNk/PX8u6PXoSSHlXiQlORAKBz4wxTxtjzrV/njHGlOvqsYiEA5cB7wMYY7KMMUfLsyzlfvOTdjNlxU7uvLgFfbs3cjocizGw/HX4dBQ0u9gapLRGfaej8i21mv1ZK/fJHfDLRKcjAiAoMIAJQ6OoXS2EkXEJpJ3McjokVYmUmOCMMbnAKRGp6aY2WwKpwIcikiQi74nIX25oKCL3iEi8iMSnpqa6qWlVnHV70nli7lrObxHJk73bOx2OJS8Xvnwclj0LXQbAsDkQ6kNHlb4kv1au/Q2w+AlY+oxP1MrVrl6FScNjSD2RyZgZieTkOh+TqhxKe4ryNLBWRN4XkfH5P+VsMwiIBiYaY6KAk8ATBWcyxrxrjOlhjOlRt27dcjalSuvIySxGTU0gsloIbw+LJjjQB+4BkH3aGuV61btw4f1Wr0FfGaTUVwVXtQrdz/0brHjLZ2rlujaO4Pm+nflp62FeXbrZ6XBUJVHacU4W2j/usBvYbYxZaf89h0ISnPKe3DzDAzOTOHgsk9mjLqRO9SpOh2SNgzZzKPz+E1z7Ilx4n9MRVRwBgdD7VajZyLp92YmDMHgahLrrJEz5DDy3Cat3H2Xy99vp2iiCG7r6WF2l8julSnDGmI9EJARoaz+12RiTXZ4GjTH7RSRFRNoZYzYDVwPaj9hBry7ZzPIth3i5fxe6N4lwOhxr/LNpt8KhLdD/fehyq9MRVTwicMlDUKMhLLjXqpWLnQPhDR0Na+yNndi47xiPzVlN63rVaXeOj90ZR/mV0t7J5ApgC/A28A7wm4hcdhbtjgGmicgaoDvw4lksS52FRWv3Men7bQw9vymDzm3qdDhWLdf7vaxx0GLnanI7W3/Uyv1u18ptcjSckKAAJsZag+SOjIsnPaNc+8lKlUppL7T8B7jGGHO5MeYy4Frgv+Vt1BiTbF9f62qM6WeMOVLeZany++3AcR79ZDVRTSMYe2NHp8OB33+2arnycq1BSlte7nRE/uGMWrlr4Pdyl7C6Rf3wUCbGRrP7SAYPz0omL09HHlCeUdoEF2yfTgTAGPMb4GO3lFdlkZ6Rzci4BMJCgpgUG0OVIIdvULzhM/i4L1SrB3cthXO6OBuPv2nQzaqVq1YPPu5nDQrroHObR/J/fTqybNNBxn+zxdFYlP8qbYKLt3tQXmH//A9I8GRgynPy8gwPz0omJe0UE2OjqR8e6mxAv74Hs2+zC5aXWjVdyv1qNbPWb8Pu1qCwv0xyNJzbLmzGLdGNeOPrLSzbeMDRWJR/Km2CGw2sBx4A/o7VKWSUp4JSnjX+my0s23SQ/+vTkXObOzgoqDGw7DlY+Ai0vQ5u+8x/Bin1VWGRcNsCu1buH7D0/xyrlRMRXry5C50ahvPgrGR2HDrpSBzKf5U2wQUBbxpjbjHG3AyMB/x00C3/tmzjAd74egu3RDfitgsdPFLKzYbP7oflr1kjAQyaat1fUnneH7Vyd8OK8TDvb47VyoUGBzIpNoagAGFkXDwnM3MciUP5p9ImuGWA6xDJVYGv3R+O8qQdh07y4KxkOjcK58WbuyBOjZ2WddKqcUuaCpc/ATeOh8DSlmQqtwgIhN6vwdVjYd0cqyzDoXHlmkSG8daQaLYePMHjc9dgjHY6Ue5R2gQXaow5kf+H/Vh3tyuQk5k53PNxPEEBwqTYGEKDHToAP3kIProRtn4Nfd6AK5/0/0FKfZUIXPow3DzZ6ln5YW/HxpW7pE0dHr+uPQvX7OPdH7Y7EoPyP6VNcCdFJDr/DxHpAWR4JiTlbsYYHpuzmm2pJ3hrSDSNazm0b5K2wxrH7cB6GDQNetzhTBzqTN0GW7VyR3Y6Wis38rKW9O5yDi8v3sRPWw85EoPyL6VNcA8Cn4jIchH5AZgJ3O+xqJRbTf5hO4vW7ucf17XnkjZ1nAlib7KV3DLSrM4k7Xs7E4cqnA/UyokIr9zajVZ1q3P/9ER2Hznl9RiUfyk2wYnIuSJyjjHmV6A9MAvIARYDO7wQnzpLy7ek8sriTdzQtQH3XNbSmSC2fQNTboCgKnDnUmh6vjNxqOIVrJXbsMDrIVSvEsTk4THk5BpGTU3gdHau12NQ/qOkI7jJQP4AThcCT2HdrusI8K4H41JukJJ2ijEzkmhTrwav9O/qTKeS1bNg2gCo1dz68qzbtsSXKAfl18o16Aazb4eVk70eQsu61XljcHfW7TnG0/PXaacTVW4lJbhAY0ya/XgQ8K4xZq4x5v8AHU7Zh53OzmXU1ARy8wyTh8dQrYqXeykaAz+9CfPvgaYXWqe/wvXu8RVCWCTc/plVK/fl447Uyl3doT5/v7oNcxN3M/WX373atvIfJSY4Ecn/Zrwa+MZlmvbr9lHGGJ6at5YN+47x5uDuNK/zl/FkPSsvD5Y8BV/9EzrdYt002eGhWlQZFayVm38P5Hh3NO6/X92Gq9rX49nPNxC/M63kFyhVQEkJbgbwvYgswOo1uRxARFoDzhTNqBJ9tGIn85L28ODVbbmqfX3vNp6TCXPvgl/egQvutYa7CfKB8eVU2f1RK/dPWPuJ12vlAgKE/w7qTuNaVRk9LZEDx057rW3lH4pNcMaYF4BHgCnAJebPk+EBWEPeKB+zakcazy/cSM8O9RlzlZfPIp9Oh6n9Yf086PWcNVBpgA+MDK7KTwQufQT6TbIGn/2wNxzb57Xma1YNZvLwHpzMzOHeaYlk5ThzWzFVMZX47WOM+cUYM98Yc9Llud+MMYmeDU2V1f7009w7LYGmkWG8PqgbAQFe7FRybJ/15bfrZ7jlf3DxA1rA7U+6D4Ghs61aufe9WyvX7pwavHJrVxJ+P8JzX+jYyKr0dPfaT2TmWJ1KMrJymTw8hvBQL45mlLrZ+tI7stMqGO460HttK+9pfbXVWSg3y66V+9lrTffp2pB7LmtJ3C+/80l8itfaVRWbJjg/Me6zDSSnHOW1Ad1oU7+G9xretdIapDQnE0YstAqGlf9q0M0qI6hW1xq/b8NnXmv68WvbcXHr2jz96TrW7D7qtXZVxaUJzg/MXLWLGat2MfqKVlzfxYtd8Tctgo9vgqqRf44zpvxfreZWwX6DbtY4fiu9UxIbFBjAW0OiqVu9CqPiEjh8wpkREFTFoQmugkvadYR/LljPpW3q8Og17bzXcPyHMGsY1O9kJbfIFt5rWzmvWm1rXLl2veHLx6ySEC/UykVWC2FSbAyHTmYxZkYSObna6UQVTRNcBZZ6PJPRUxOpF16F8YOjCPRGpxJj4NsX4YsHoXVPuP1zqObQ/S2Vs0LCYFAc9LjLLuof6ZVauS6Na/JCv86s2HaYV5Zs9nh7quLSYu0KKjs3j/umJXI0I4u5oy+iVrUQzzeamwMLH4LEjyEqFvq8qeO4VXYBgXDDfyC8IXzzHJw4YA1eGxru0WYH9GjCmt3pvPvDdro0qsmN3Rp6tD1VMekRXAX1wsKNrNqZxku3dKVTQy/cJSTrlHVKMvFjuOwxuGmCJjdlEYHLHoV+E71aK/d/fTrSo1ktHp+zhk37j3m8PVXxaIKrgOYn7WbKip3ccXFz+kU18nyDJw9bnUl+W2LtrV/1jNa4qb/qPtSuldthlY2kevb0YUhQAO8Mi6Z6aBAj4xJIz8j2aHuq4tEEV8Gs25POE3PXcn6LSJ7q3cHzDR753SoD2LfGut5y7t2eb1NVXK2vtspFcjKt8f88XCtXLzyUicOi2XMkgwdnJpGXpyMPqD9pgqtAjpzMYtTUBGqFhTBhaDTBgR5++/atsfbETx60esx1uNGz7Sn/0LA73P2V1fnIC7VyPZpHMvbGjny7OZU3lm3xaFuqYtEEV0Hk5hkemJnEwWOZTBoeQ90aHr6B8fbvrWspAcFWzVOzCz3bnvIvf9TKdfVKrVzsBc24NaYx45dt4asNBzzalqo4NMFVEK8u2czyLYf4V99OdG8S4dnG1s6xbpoc0cSqcavX3rPtKf9UrTbc9hm0u96ulRvrsVo5EeH5fp3p0qgmD89KZnvqCY+0oyoWTXAVwKK1+5j0/TaGnNeUwec19WxjKyZYw900OQ/u+BJqeqETi/JfIWEwMA563Ak/vQGfjvJYrVxocCATY6MJDgpgZFwCJzJzPNKOqjg0wfm43w4c59FPVhPVNIJxN3X0XEN5ebDkaVj6NHTsC7HzoGqE59pTlUdgENzwOlz1f7BmFkwfAKc9062/ca0wJgyJYlvqCR6fs5o/R/hSlZFjCU5EAkUkSUS+cCoGX5eekc3IuATCQoKYOCyGKkGBnmkoJwvm/Q1+ngDnjYRbP4TgUM+0pSqn/Fq5vu/Azh89Wit3Ues6PHF9exat3c/kH7Z7pA1VMTh5BPd3YKOD7fu0vDzDw7OSSUk7xTvDojmnpocSzulj1kjN6+ZAz3Fw/cvW3SmU8oSoYTB0FqRt92it3N8ubckNXRvwyuJNLN+S6pE2lO9zJMGJSGPgBuA9J9qvCMZ/s4Vlmw7yzA0dOK9FpGcaOb4fpvS27j7RbxJc8pAWcCvPa90T7nCpldv1i9ubEBFe6d+VNvVqMGZGEilpp9zehvJ9Th3BvQE8DuitwAuxbOMB3vh6C7dENeL2i5p7ppFDW6096MPbYcgsa8RmpbylYdSZtXIbP3d7E9WqBDF5eAy5eYZRUxM4nZ3r9jaUb/N6ghORPsBBY0xCCfPdIyLxIhKfmlp5TjHsOHSSB2cl06lhOC/e0gXxxBHV7ngruWWdghFfQJue7m9DqZLk18qd0wVmDYdV/3N7E83rVOPNwd3ZsO8YT81bq51OKhknjuAuBm4SkZ3ATOAqEZlacCZjzLvGmB7GmB5169b1doyOOJmZwz0fxxMUIEyKjSE02APXwjYvhil9ILSmVePWKNr9bShVWq61coseha/HWUMyudFV7evz4NVtmZe0h49//t2ty1a+zesJzhjzpDGmsTGmOTAY+MYYE+vtOHyNMYbH5qxmW+oJ3hoSTZPIMPc3kvgxzBxqFW7f9RXUbuX+NpQqq/xauZg74Mf/wnz318qNuao1PTvU47kvNrBqR5pbl618l9bB+YjJP2xn0dr9PH5dey5p4+YBRI2B71+Bz8ZAyyvg9i+geuU4KlYVRGAQ9PmvNVLFmplur5ULCBBeH9SdJpFh3Dstkf3pp922bOW7HE1wxpjvjDF9nIzBFyzfksorizdxQ5cGjLyspXsXnpcLXzwE374A3YZYXbSrVHdvG0q5g4g11mDfd2DHcquH7/H9blt8eGgwk4fHcCorh9HTEsjM0U4n/k6P4ByWknaKMTOSaF2vOq/c2tW9nUqyM6yL9wkfwiUPWwNSBga7b/lKeULUMGtcucPb4b1ekPqb2xbdtn4NXhvQjaRdR/nX5xvctlzlmzTBOeh0di6jpiaQm2eYPLwH1aq4cYTsU2lW9+vNi+D6V6HnWK1xUxVHm/xauQz4wL21cr27NGDk5S2ZtnIXs39Ncdtyle/RBOcQYwxPzVvL+r3HeGNQd1rUqea+hR9NgQ+ug71JMGAKnH+P+5atlLc0jLI6Q1WNdHut3GPXtOOS1nV45tN1rE456rblKt+iCc4hH63YybykPTzYsw1Xd6jvvgUfWG/VuB3fD8PnQ6d+7lu2Ut4W2cJKcvU7u7VWLigwgLeGRFG3RhVGTU3g0IlMtyxX+RZNcA5YtSON5xdupGeHejxwVRv3LXjHcuvIDYE7v4Tml7hv2Uo5pVptuP1zl1q5Z91SK1erWgiTh8eQdjKL+6cnkpOrN1byN5rgvGx/+mnunZZAk8gwXh/UnYAAN10XWz8fpt4C4Q2tWyDV7+Se5SrlC/6olRsBP74On452S61c50Y1efHmLvyyPY2Xvtx09nEqn+LGXg2qJJk5VqeSU1m5TP/bBYSHuqlH4y+TYPET0PQCGDwdwjx0c2alnBQYBH3egPDG8O3z1mn4QXFQpcZZLbZ/TGPW7D7Kez/uoEvjmvTtroP8+gs9gvOicZ9tIDnlKK8N6Ebb+mf3oQSsQUq/+ics/ge0v8G65qbJTfkzEbj8Mej7Nuz4wRpXzg21cs/06ci5zWvxj7lr2LjPM4OxKu/TBOclM1ftYsaqXYy6vBW9uzQ4+wXmZMGno+CnN+Hcu2HgxxBc9eyXq1RFEBVr3bTg8Da31MoFBwbw9rBowkODGRmXQPqpbDcFqpykCc4LknYd4Z8L1nNpmzo8dm27s19g5nGYMQjWzLJubdT7NR2kVFU+bXpZo2H8USu38qwWV69GKBNjY9iXnsHfZyWRm6cjD1R0muA8LPV4JqOnJlIvvArjB0cReLadSk4chCk3wPbvrdM0lz2mBdyq8moU7VIrdxNs/OKsFhfTrBZjb+zEd5tTeeNr991BRTlDE5wHZefmcd/0RI6cymJSbAy1qoWc3QIPb7Nq3A5tgSEzrNM0SlV2kS2soZ/qd4bZZ18rN+z8pgzs0Zi3vtnK0vXuuxem8j5NcB704qKNrNqRxkv9u9C5Uc2zW9ieBCu5ZR63RgNoe617glTKH1SrY9XKtbn2rGvlRIR/9e1M18Y1eXi2NYSVqpg0wXnI/KTdfPjTTu64uDk3RzU+u4Vt+coapDSkujUCcuMY9wSplD8JCYNBU8+slcstX2eR0OBAJsbGEBIUwMi4BE5k5rg3VuUVmuA8YP3edJ6ct5bzW0TyVO8OZ7ewpGkwfRDUbm1da6jT2j1BKuWP8mvlrnwaVs+A6QOtsx7l0CiiKhOGRrHj0Ekenb0a4+aRxpXnaYJzsyMnsxgZl0BE1RAmDI0mOLCcq9gY+OE1WHAvtLgM7lgENdx4z0ql/JUIXP443DTB6oz1YW84fqBci7qoVR2evL49i9fvZ+L329wcqPI0TXBulJtneGBmEgePZTJpeAx1a1Qp34Lycq3rCN88B10GWmNjneXdGpSqdKKH27VyW+H9nlbnrHK465IW3NitIa8t2cwPv6W6OUjlSZrg3Oi1pZtZvuUQ/+rbie5NIsq3kOzT8Mnt8Ot7cNEDcPNkCDrL3pdKVVZtesGIhdbgv+/3gpRVZV6EiPBy/y60rV+DMTOSSEk75YFAlSdognOTL9fuY+J32xhyXlMGn9e0fAvJOAJxN1u1PNe9BNc8BwH6Fil1VhpFW2UEVWvBRzeWq1YuLCSIycNjMMYwMi6BjKxcDwSq3E2/Pd1gy4HjPPrJaqKaRjDupo7lW0j6bvjgetgTD7d+ABeMdm+QSlVmkS3tceU6WbVyv75X5kU0q12NN4dEsXH/MZ6av1Y7nVQAmuDO0rHT2dwTl0DVkCAmDouhSlA5bpl1YIN1P71jeyB2LnS+xf2BKlXZ/VErdw0sfASW/avMtXJXtqvHQz3bMj9pD1NW7PRMnMptNMGdhbw8w8OzkklJO8U7w6I5p2Zo2Rey8yf48DoweVZPyRaXuT9QpZQlpBoMmgbRt8Py/5SrVu7+K1vTs0N9nl+4kZXbD3soUOUOmuDOwlvfbOXrjQd55oYOnNeiHMPUbFhgXXOrVs8apPScLu4PUil1psAguPFNl1q5QWWqlQsIEF4f1I1mkWHcNz2R/emnPRisOhua4Mrpm00HeGPZb9wS1YjbL2pe9gWs+h/Mvh0adLMugEeUs2OKUqrszqiV+866gXkZauXCQ4OZPDyGjCxrEOPMHO104os0wZXDjkMn+fvMZDo2COfFW7ogZbmbvzHWuf9Fj0K76+G2BTpIqVJOiR4OQ2ZaNXJlrJVrU78Grw3oRnLKUcZ9tsGDQary0gRXRiczcxgZF09QgDApNobQ4DJ0KsnNhgX3Wef+Y0bAwDjr/nlKKee0vcYaVy7rFLx/TZlq5a7v0oDRV7RixqpdzFy1y4NBqvLQBFcGxhgen7uGrQdP8NaQaJpEliE5ZZ6AGUMgeRpc8ZR1v7zAII/FqpQqg0Yx1nXwqhFWrdymhaV+6aPXtOPSNnX454L1JKcc9ViIquw0wZXBuz9sZ+GafTx+XXsuaVOn9C88kQof9YFty+DG8XDFP3SQUqV8jWut3KxY+PX9Ur0sMEAYPziKeuFVGD01gUMnMj0cqCotTXCl9OOWQ7y8eBM3dGnAyMtalv6Fadvhg2vg4CYYPB1ibvdckEqps5NfK9e6Fyx8GJY9V6pauVrVQpgUG0PaySzum5ZIdm6eF4JVJdEEVwopaacYMyOR1vWq88qtXUvfqWRvknVOP+OI9aFpd71nA1VKnb2QatbOaPTtsPw1+PTeUtXKdW5Uk5f6d2HljjT+vWiTFwJVJfF6ghORJiLyrYhsFJH1IvJ3b8dQFqezrW7AOXmGycN7UK1KKa+bbf0aPrwBgqpag5Q2OdezgSql3Ce/Vu6Kp2D19FLXyt0c1ZgRFzXng592sCB5jxcCVcVx4gguB3jEGNMBuAC4T0TKeQNHzzLG8NT8tazfe4w3BnWnRZ1qpXvh6pnWByKypVXjVretZwNVSrmfiHW9/Ka3ylQr9/QNHTiveST/mLuGDXuPeT5OVSSvJzhjzD5jTKL9+DiwEWjk7ThK4+Off2de4h4e7NmGqzuUYrBRY+DHN2D+SGh2EdyxEMIbeDxOpZQHRd/mUivXCw5tLXb24MAAJgyLombVYEZOjefoqSwvBaoKcvQanIg0B6KAlYVMu0dE4kUkPjXV+4MMrtqRxnNfbKBnh3o8cFWbkl+QlweLn4Cvx0Ln/jBsDoTW9HygSinP+6NW7qQ9rtyvxc5er0YoE2Nj2J9+mgdmJpObpyMPOMGxBCci1YG5wIPGmL8cxxtj3jXG9DDG9Khbt65XY9uffpp7pyXSJDKM1wd1JyCghE4l2adhzh2wchJceD/c8h4ElXM0b6WUb2oUY11yCK1p18otKnb26Ka1ePamzvzwWyr//eo3LwWpXDmS4EQkGCu5TTPGzHMihqJk5uQyeloCp7JymDw8hvDQ4OJfkHEUpvaHDZ/CNc/DtS/oIKVK+avaraxauXodYNYwiP+g2NmHnt+Uwec2YcK3W1myfr+XglT5nOhFKcD7wEZjzOvebr8kz36+gaRdR3ltQDfa1q9R/MzH9sKHvSFlpXXUdtEY7wSplHJO9brW6crWPeGLh+Cb54utlRt3Uye6Na7JI7NXs/XgCS8Gqpw41LgYGA5cJSLJ9k9vB+L4i1m/7mL6yl2MurwVvbuU0DkkdbM1SOnRXRA7B7oO8E6QSinnhVSDwTOsDig/vGrdY7aIWrnQ4EAmxsZQJSiAkXHxHD9dtvHnVPk50YvyR2OMGGO6GmO62z/Fn8z2guSUo/zfp+u5tE0dHru2XfEz7/rFKuDOzbJ6Sra8wisxKqV8SGCQfeu9J617zE4fZN1zthANI6ry9rBodh4+xaOfrCZPO514hV4sAg6dyGT01ATqhVdh/OAoAovrVLLxC/i4L4TVtm7O2qCb9wJVSvkWEbjiiTNr5U4cLHTWC1rW5qneHViy/gATv9/m3TgrqUqf4LJz87hvWiJpJ7OYFBtDrWohRc/86/swezjU72xdaK7V3GtxKqV8WPRtMGQGHPoN3utZZK3cnRc3p2/3hry2dDPfbS48ESr3qfQJ7t+LNrFyRxov9e9C50ZF1K0ZA9+8YN18tXUvuP0zqFbbu4EqpXxb22vh9i8g60SRtXIiwku3dKVd/Rr8fWYyuw6fciDQyqNSJ7gFyXv44KcdjLioOTdHNS58ptwc+GwM/PAKRMVaN2ENKeUtu5RSlUvjGOvsTn6t3OYv/zJL1ZBA3h3eA4CRUxPIyMr1dpSVRqVNcOv3pvOPuWs4r0UkT9/QofCZsk7CzKGQFAeXPQ43TdBBSpVSxfujVq699f1RSK1c09phvDm4O5v2H+OJeWswpRiSR5VdpUxwR09lMWpqAhFVQ3h7aDTBgYWshpOH4aObYOtX0Oe/cNXTOkipUqp0qte1Tlf+USv3wl9q5a5oV49HerVlQfJePvhppzNx+rlKl+By8wxjZiRxID2TibHR1K1RyC21juy0Bik9sA4GxkGPO70ep1KqgqtS3aqVixpuXeJYcP9fauXuvaI113Ssz4uLNvLL9sMOBeq/Kl2C+8/SzSzfcohn+3Yiqmmtv86wb7VV43byENy2ADr08X6QSin/EBhklRBc/gQkT4UZg8+olQsIEP4zsBvNa4dx//RE9qVnOBis/6lUCW7xun288902hpzXhCHnNf3rDNu+tQYpDQi2bqra9ALvB6mU8i8icOWTVlH4tm//UitXIzSYycN7cDo7j1FTE8nM0U4n7lJpEtyWA8d5ZPZqujeJYNxNnf46w5pPYNoAiGhqFXDXLeFuJkopVRYxt/9ZK/d+Lzj8Z7F363rVeW1AN1anHGXsgvUOBulfKkWCO3Y6m3viEqgaEsjE2GiqBAWeOcOKt2De3dDkfLhjEYQ3dCZQpZR/y6+VyzxuJbnd8X9Muq7zOdx3ZStm/prCjFW7HAzSf/h9gsvLMzw8K5mUtFO8PTSaBjWruk6ExU/B0megYz+InQtVI5wKVSlVGeTXylWpAVP6wObFf0x6uFc7Lmtbl7EL1pO064iDQfoHv09wb32zla83HuTpGzpwfkuXu4/kZFpHbb+8DeePgls/hOBQ5wJVSlUeZ9TKDYH4DwEIDBDGD+5O/ZpVGD01kdTjmQ4HWrH5dYL7ZtMB3lj2GzdHNWLERc3/nHD6GEy7FdbNhZ7PwnUv6SClSinvql7POl3Z6mr44sE/auUiwkKYHNuDoxlZ3DctkezcPKcjrbD8+ls9fucROjYI58WbuyD5RdrH91uDlP6+Am6eDJc8qAXcSilnVKludTyJij2jVq5jw3Be7t+VVTvTdCTwsyAV4RYxPXr0MPHx8SXPWIhTWTmEhdi31zq0BeJugVOHYVActL7ajVEqpVQ5GQPf/Ru+f9m6ofuAKVClOkm7jhRer1tKIpJgjOnhvkArFr8+ggP+TG4pq6xeSzkZ1iClmtyUUr5CBK58Cm58E7Yt+6NW7mySm6oECQ6w7uj90U1QtZZVwN0wyumIlFLqr2JGWLf3St38l1o5VXb+n+ASPrLu6F2vA9y5FCJbOh2RUkoVrd11MMKlVm5PgtMRVVj+neB+eA0+fwBaXQW3f27d4VsppXxd4x5WGUGtFlCliIGYVYn8e3Cz2q2t3kl93oDAYKejUUqp0qvdCu7+Wnt5nwX/TnCd+lk/SilVEWlyOyv+fYpSKaVUpaUJTimllF/SBKeUUsovaYJTSinllzTBKaWU8kua4JRSSvklTXBKKaX8kiY4pZRSfqlCDJcjIqnA7+V8eR3gkBvDUcqVbl/K085mG2tmjKm09yisEAnubIhIfGUeD0l5lm5fytN0Gys/PUWplFLKL2mCU0op5ZcqQ4J71+kAlF/T7Ut5mm5j5eT31+CUUkpVTpXhCE4ppVQlpAlOKaWUX/JYghORp0VkvYisEZFkETm/HMvoISLjS5jnChH5ovyRepaIRIjIvU7H4SQR2SkidRyOobmIrCtiWhsR+UJEtolIgoh8KyKX2dNGiEiqiCSJyBYRWSIiF7m8doqI7LC38UQRudBb/9PZEpEV9u/mIjLUwThy7fWX/9PczcsfISIT3LlMe7kPikiYu5dbTHtFbsOleO0f60BERonIbfbj9vY6TxKRVmcRW5nXsYgsEpGI8rZZGh5JcPaHvA8QbYzpCvQEUsq6HGNMvDHmAXfH5y0iEghEAJU6wfkyEQkFFgLvGmNaGWNigDFAS5fZZhljoowxbYCXgHki0sFl+mPGmO7AE8BkN8cX6M7luTLG5Cfq5oBjCQ7IMMZ0d/nZmT9BLL56pulBwGsJzl2MMZOMMR/bf/YDFtjb9zYvx9HbGHPUk214asNpABwyxmQCGGMOGWP2AojI1fbewloR+UBEqtjPnysiK0RktYisEpEarkdnInKePT3J/t2uuABEpJO9nGT7KLJNwT0gEXlURMbZj78TkTfsZa8TkfPs58eJSJyIfGPvwf/Nfl5E5FV73rUiMsh+/gr7CGA6sBbrC7GVHcerbl3LFZiINBORZfZ7s0xEmtrPtxKRX0TkVxH5l4icsJ8PEJF3xDor8IW993erPS1GRL63j76WiEgDl+dXi8jPwH1FhDIM+NkY81n+E8aYdcaYKYXNbIz5FqtX2z2FTP4BaF3I/zpFRCaJyHIR+U1E+tjPB9rb0K/2ehhpP19wGyq4vOvso8XVIrLMfq7Qz4e9Z71ARBaLyGYRGeuynBP2w5eAS+1t9CH7c7LcbiNRXI5YvcFuf6OIvAMkAk1E5DGX9fSsy7yxLp/zyWLvEIjIHfa6/h642GX+ora7KSIy0V7v20XkcrG+nzaKyJRCYnwAaAh8KyLf2s8Nsb8L1onIy0X8bztF5EUR+VlE4kUk2t5mt4nIKHue6nZsifby+haynJb2e32u/ZlZbG//y0WkfQnrd5xY3329sZL03S7/Q6Hrs8Dr//JdbU9qaMexRURecZm/0PUiLmd2ROQ2+z1ZLSJx9nN1RWSu/b7/KiIX289fLn8e7Se5tP9Xxhi3/wDVgWTgN+Ad4HL7+VCsI7m29t8f2ys4BNgOnGs/Hw4EAVcAX7g+Zz/uCcy1H/8xT4EY3gKG2Y9DgKpYe6rrXOZ5FBhnP/4O+J/9+LL8+YBxwGr79XXs+BsC/YGvgECgPrALK7FfAZwEWtivP6PNyvgD7ATqFHjuc+B2+/GdwKf24y+AIfbjUcAJ+/GtwCKsnbJzgCP2c8HACqCuPd8g4AP78RqXbe/Vwt4H4HXg78XEPgKYUOC5fsCX9uMpwK324wHAykKWMQVYbMfeBthtfxbuAZ6x56kCxAMtCm5DBZZV194G87evyBI+HyOAfUBtexteB/Swp+Wv2ytw+QxhHZWE2o/bAPEe3j5ysb4vkoH59mcmD7jAnn4N1k6F2OvwC6zPaAd7Owq253sHuA3rc7jLXlchwE/57yFFb3dTgJl2G32BY0AXu70EoHtx2zXWd0J+m0HAN0C/Il4z2n78X6xttIb9uoP280FAuP24DrDVjqu5/f61A5LyYwKWAW3sx+cD3xS3HWN9pz1ayONC12eB5RT1XT3Cfr4m1rb9O9CkuPWSv/6ATsBml3WZv01PBy6xHzcFNrq8hxfbj6tjb/eF/QThAcaYEyISA1wKXAnMEpEnsN6UHcaY3+xZP8Las14G7DPG/Gq//hiAiLgutibwkYi0AQzWF1txfgaeFpHGwDxjzJYCyyvMDLv9H0QkXP48P7zAGJMBZNh7OucBlwAzjDG5wAF7T/FcrA/GKmPMjpIaq+QuBG6xH8cBr7g8389+PB14zX58CfCJMSYP2J+/x4n1Ye8MfGW/v4HAPhGpCUQYY753aeP6koISkflYX+q/GWNuKWq2An+/KiLPAKnAXUW8ZrYd+xYR2Q60x/ri7ir2kSjWNt4GyKLobegC4If8acaYNJfXFvX5+MoYc9j+/+Zhrcv4IuLEfu0EEemOlXzaFjOvO2QY6xQvYB3BAb8bY36xn7rG/kmy/66OtZ66AjHAr/Z7XxU4iPUl/50xJtVe3iyX/6Go7Q7gc2OMEZG1wAFjzFr79euxkktyMf/DuQXanIaVhD8tZN78swVrgerGmOPAcRE5bX/nnAReFOs6cB7QCGsnGqxEsQDob4xZLyLVgYuAT1y+36oUE2dxrqbw9emqHUV/Vy8zxqTbf28AmmHtWJW0Xq4C5hhjDtnLzN+mewIdXf6vcPto7SfgdXtZ84wxu4v6hzyS4Owgc7GOir6zN5jbKXoDEawPZXGeA741xtxsfwC+K6H96SKyErgBWCIid2MdUbqelg0t+LIi/i7s+eKy5cniYlOFKun9L2p9C7DeGHNG5w77i6I0RZ7rsT5wVhDW9tWDPxNrYaKAjS5/P2aMmVNCO0VtQ2OMMUtcJ4jIFRS9DRX1WSnu81HUdl2Uh4ADQDesz8vpEub3BNf/X4B/G2POuL4pImOAj4wxTxZ4vh+le+8pMF+m/TvP5XH+3yV9V5a491yGdoZhJbIYY0y2iOzkz++qdKwj+Iuxtt0A4KjrDsJZEApZn4XMU9S6df1fcrH+l9Ksl6KWGQBcaB9cuHpJRBYCvYFfRKSnMWZTYQv2VCeTdvaeZL7uWIesm4DmIpJ/nWI48L39fEMROdd+fQ0RKbhB1QT22I9HlCKGlsB2Y8x4rD2mrlgf2noiUlusa399Crws/zraJUB6/t4I0FdEQkWkNtbpnF+xrrcMEus6Sl2sL8lVhYRyHOsUhDrTCmCw/XgY8KP9+Bes07+4TMee3l+sa3H1sd4HsE5t1BW796KIBItIJ2NdvE6338v8NgozHbhYRG5yea7IjgMicjnWqcX/Ff/v/cUAO/ZWWB1YNgNLgNEiEmwvu62IVCthOT8Dl4tIC/s1kfbzxX0+eolIpIhUxTo6/qnA9ILbaE2svfQ8rM+oxzq6lNIS4E77aAURaSQi9bDO/NxqP8b+H5sBK4Er7M95MNap43xFbXfl4breVmK9L3Xs61ZDsL7byqMm1unKbBG5EutIKF8W1nt4m4gMtY+gdojIAPijb0C3crZb1Pp0VZrvalelWS/LgIH296vrNr0UuD9/JvuMAiLSyhiz1hjzMtaZiCKvOXrqCK468Ja9F52DdQ75HmPMaRG5A+twOggrUUwyxmSJ1UnjLftDmIF1eOrqFaxTMA9jncctySAgVkSygf3Av+wN5l9YK30H1pvl6ohYXafDsc7P51uF1dOuKfCcMWavfSrrQqzrcwZ43BizXwpc4DXGHBaRn8Tq3PKlMeaxUsTuj9aISJ79eDbwAPCBiDyGdWrvDnvag8BUEXkEa53n72TMxTqFsg7rSHwl1k5Iln2Kb7x9WjIIeANr7/YOu41TWF+Sf2GMyRCr08frIvIG1k7QceB5l9kG2YkyDGu76W+M2fiXhRVvM9YHuz4wyv4svId16itRrPMwqfx5erZQxphUEbkHqydnANYppF4U//n4Eet0XGtgujGm4OnJNUCOiKzGuhb1DjDX/tL8FofPSBhjlorVa/Vn+3TVCSDWGLNBrFPDS+11kQ3cZ4z5RazOYz9jXX9M5M8kXdR2Vx7vAl+KyD5jzJUi8iTW+hJgkTFmQTmXOw34XETisc56nfE9ZYw5aW+zX4nISaxEPdFeF8FY1xJXl7XRotYnLkOVlfK72nWZ+0paL/ap1heA70UkF+tU9Ais9+ptEVmD9bn+Aeu6/IN24s8FNgBfFtW+3qrLJiLfYV1sjS/w/Disi/HFnbJSbiJWXVGGfS1kMFaHk772tOr29d3aWDsdFxtj9jsZb2mI1Qvvi1KcxvRE2yOwOpXcX9K8Svkbj12DU6qcYrA6OAhwlDOPpL+wzwqEYB1J+3xyU0o5R4/glFJK+SVfvUOAUkopdVY0wSmllPJLmuCUUkr5JU1wSiml/JImOKWUUn7p/wGjo83CBP9KkwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df3 = df.loc[:10, \"Logged GDP per capita\" : 'Freedom to make life choices'].mean()\n",
+ "df4 = df.loc[139:, \"Logged GDP per capita\" : 'Freedom to make life choices'].mean()\n",
+ "\n",
+ "x_axis = ['Social support', ' Logged GDP per capita', 'Freedom to make life choices']\n",
+ "y1 = [df3['Social support'], df3['Logged GDP per capita'], df3['Freedom to make life choices']]\n",
+ "y2 = [df4['Social support'], df4['Logged GDP per capita'], df4['Freedom to make life choices']]\n",
+ "\n",
+ "plt.plot(x_axis, y1)\n",
+ "plt.plot(x_axis, y2)\n",
+ "plt.ylabel('Score')\n",
+ "plt.title(\"Happy country and Unhappy country\")\n",
+ "plt.show()"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/assignments/JeongHongjae/test b/assignments/JeongHongjae/test
new file mode 100644
index 0000000..8b13789
--- /dev/null
+++ b/assignments/JeongHongjae/test
@@ -0,0 +1 @@
+