raiforukraine-MARIA/
├── data/ # Data: lisa sheets, generated mcqs
├── notebooks/ # Jupyter notebooks
├── src/
│ ├── eval/ # Evaluation criterion
│ ├── ollama/ # Inference and convertion with Ollama
│ ├── prepare_data/ # Data preparation
│ ├── __init__.py
│ ├── dpo_training_runner.py # Direct Preference Optimization training script
│ ├── inference.py # Model inference
│ ├── main.py # Main application entry point
│ └── rag.py # Retrieval-Augmented Generation
├── LICENSE # Project license
├── README.md # Project documentation
├── requirements.txt # Python dependencies
└── run_dpo.sh # Shell script to run DPO training
The Lisa sheets are available at data\lisa_sheets.
They were split into folders, and this is available in data\train_test_split.
You can determine whether a file is for training or testing by the folder name.
Python =< 3.10
-
Clone the repository:
git clone https://github.com/Its-OP/raiforukraine-MARIA.git cd raiforukraine-MARIA -
Create and activate a virtual environment:
python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate
-
Install dependencies:
pip install -r requirements.txt
-
Configure environment variables:
- Create a
.envfile in the project root directory - Add the following required variables:
OPENAI_API_KEY=Your_open_ai_key LISA_SHEETS_PATH=path_to_lisa_sheet_csv MODEL_MCQ_PATH=path_to_generated_mcqs_csv MODEL_MCQ_EVAL_EXPORT_PATH=path_to_export_csv
- Create a
This project is licensed under the terms of the LICENSE file included in the repository.