|
14 | 14 |
|
15 | 15 | **2025-07-25**: Added a self-supervised deep learning framework for mapping [**individualized multi-scale hierarchical brain functional networks**](<https://www.biorxiv.org/content/10.1101/2025.04.07.647618v1.abstract>) from fMRI data. The method captures both spatially resolved FNs and their inter-scale hierarchical structure, enabling a deeper understanding of brain functional organization and its variability across individuals. |
16 | 16 |
|
| 17 | +### 🐳 Docker Support |
| 18 | + |
| 19 | +Docker images are now available for streamlined setup and deployment! |
| 20 | + |
| 21 | +#### 🔹 CPU Version |
| 22 | +Use this image for environments without GPU support: |
| 23 | +```bash |
| 24 | +docker pull mldataanalytics/fmripnet:dl |
| 25 | +``` |
| 26 | + |
| 27 | +#### 🔸 GPU Version (CUDA-enabled) |
| 28 | +Use this image to leverage GPU acceleration: |
| 29 | +```bash |
| 30 | +docker pull mldataanalytics/fmripnet:dl_cuda |
| 31 | +``` |
| 32 | + |
| 33 | +These images come pre-configured with all necessary dependencies to run the functional network QA pipeline. Simply pull the image and start processing your data with minimal setup. |
| 34 | + |
| 35 | +#### |
| 36 | +```bash |
| 37 | +usage: fn_comp.py [-h] --input INPUT --output OUTPUT [--visualize {0,1,2,3}] [--qa [QA]] [--base_dir BASE_DIR] [--mask MASK] |
| 38 | + |
| 39 | +Compute personalized hierarchical functional networks on fMRI data. |
| 40 | + |
| 41 | +The input can be a single NIfTI file, a directory containing NIfTI files, a wildcard pattern (e.g., "*.nii.gz"), or a text file listing NIfTI files. |
| 42 | + |
| 43 | +Input images should be motion-corrected, normalized to MNI space, and smoothed with a 6-mm FWHM kernel. |
| 44 | + |
| 45 | +The output includes hierarchical functional networks, their hierarchy structure, and functional connectivity matrices, saved to the specified output directory. |
| 46 | + |
| 47 | +Examples: |
| 48 | + python fn_comp.py --input subject1.nii.gz --output ./results |
| 49 | + python fn_comp.py --input ./data/ --output ./results |
| 50 | + python fn_comp.py --input "*.nii.gz" --output ./results |
| 51 | + python fn_comp.py --input file_list.txt --output ./results |
| 52 | + |
| 53 | +options: |
| 54 | + -h, --help show this help message and exit |
| 55 | + --input INPUT Input NIfTI file, directory, wildcard, or text file with a list of NIfTI files |
| 56 | + --output OUTPUT Output directory to save results |
| 57 | + --visualize {0,1,2,3} |
| 58 | + Generate visualization HTML files for functional networks (FNs) and their hierarchy. |
| 59 | + This process may be time-consuming. |
| 60 | + Levels: 0 = no visualization (default), 1 = simple overview, 2 = FN maps, 3 = interactive viewer. |
| 61 | + --qa [QA] Generate QA measaures (default: 0 - False) |
| 62 | + --base_dir BASE_DIR Base directory where provided mask files are located (default: /app, DO NOT CHANGE IF USING DOCKER IMAGE) |
| 63 | +``` |
| 64 | +
|
| 65 | +
|
17 | 66 | See [./Hierarchical-FNs/README.md](https://github.com/MLDataAnalytics/pNet/blob/main/Hierarchical-FNs/README.md) for details. |
18 | 67 |
|
19 | 68 | --- |
|
0 commit comments