Skip to content

Commit 8edca26

Browse files
Update README.md
1 parent e39f9ce commit 8edca26

File tree

1 file changed

+49
-0
lines changed

1 file changed

+49
-0
lines changed

README.md

Lines changed: 49 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -14,6 +14,55 @@
1414

1515
**2025-07-25**: Added a self-supervised deep learning framework for mapping [**individualized multi-scale hierarchical brain functional networks**](<https://www.biorxiv.org/content/10.1101/2025.04.07.647618v1.abstract>) from fMRI data. The method captures both spatially resolved FNs and their inter-scale hierarchical structure, enabling a deeper understanding of brain functional organization and its variability across individuals.
1616

17+
### 🐳 Docker Support
18+
19+
Docker images are now available for streamlined setup and deployment!
20+
21+
#### 🔹 CPU Version
22+
Use this image for environments without GPU support:
23+
```bash
24+
docker pull mldataanalytics/fmripnet:dl
25+
```
26+
27+
#### 🔸 GPU Version (CUDA-enabled)
28+
Use this image to leverage GPU acceleration:
29+
```bash
30+
docker pull mldataanalytics/fmripnet:dl_cuda
31+
```
32+
33+
These images come pre-configured with all necessary dependencies to run the functional network QA pipeline. Simply pull the image and start processing your data with minimal setup.
34+
35+
####
36+
```bash
37+
usage: fn_comp.py [-h] --input INPUT --output OUTPUT [--visualize {0,1,2,3}] [--qa [QA]] [--base_dir BASE_DIR] [--mask MASK]
38+
39+
Compute personalized hierarchical functional networks on fMRI data.
40+
41+
The input can be a single NIfTI file, a directory containing NIfTI files, a wildcard pattern (e.g., "*.nii.gz"), or a text file listing NIfTI files.
42+
43+
Input images should be motion-corrected, normalized to MNI space, and smoothed with a 6-mm FWHM kernel.
44+
45+
The output includes hierarchical functional networks, their hierarchy structure, and functional connectivity matrices, saved to the specified output directory.
46+
47+
Examples:
48+
python fn_comp.py --input subject1.nii.gz --output ./results
49+
python fn_comp.py --input ./data/ --output ./results
50+
python fn_comp.py --input "*.nii.gz" --output ./results
51+
python fn_comp.py --input file_list.txt --output ./results
52+
53+
options:
54+
-h, --help show this help message and exit
55+
--input INPUT Input NIfTI file, directory, wildcard, or text file with a list of NIfTI files
56+
--output OUTPUT Output directory to save results
57+
--visualize {0,1,2,3}
58+
Generate visualization HTML files for functional networks (FNs) and their hierarchy.
59+
This process may be time-consuming.
60+
Levels: 0 = no visualization (default), 1 = simple overview, 2 = FN maps, 3 = interactive viewer.
61+
--qa [QA] Generate QA measaures (default: 0 - False)
62+
--base_dir BASE_DIR Base directory where provided mask files are located (default: /app, DO NOT CHANGE IF USING DOCKER IMAGE)
63+
```
64+
65+
1766
See [./Hierarchical-FNs/README.md](https://github.com/MLDataAnalytics/pNet/blob/main/Hierarchical-FNs/README.md) for details.
1867
1968
---

0 commit comments

Comments
 (0)