|
| 1 | +```markdown |
| 2 | +# 基于CARLA的智能代理系统 |
| 3 | + |
| 4 | +## 项目概述 |
| 5 | + |
| 6 | +本项目旨在利用神经网络技术,实现CARLA模拟器中车辆和行人的全栈智能代理,涵盖感知、规划与控制三大核心模块。通过深度学习算法赋予虚拟智能体环境理解、决策规划和动态控制能力,同时包含具身人仿真、机械臂控制等扩展功能,构建多智能体协同的仿真系统。 |
| 7 | + |
| 8 | +## 环境配置 |
| 9 | + |
| 10 | +* **支持平台**:Windows 10/11,Ubuntu 20.04/22.04 |
| 11 | +* **核心软件**: |
| 12 | + * Python 3.7-3.12(需兼容3.7版本) |
| 13 | + * PyTorch(优先采用,不依赖TensorFlow) |
| 14 | + * CARLA 0.9.11+(推荐0.9.13/0.9.15版本) |
| 15 | +* **依赖安装**: |
| 16 | + ```bash |
| 17 | + # 基础依赖 |
| 18 | + pip install -r requirements.txt -i http://mirrors.aliyun.com/pypi/simple --trusted-host mirrors.aliyun.com |
| 19 | + |
| 20 | + # CARLA客户端安装(需替换为对应版本) |
| 21 | + pip install carla==0.9.15 |
| 22 | + |
| 23 | + # 文档生成工具 |
| 24 | + pip install mkdocs |
| 25 | + ``` |
| 26 | + |
| 27 | +## 文档生成 |
| 28 | + |
| 29 | +1. 安装文档工具链: |
| 30 | + ```bash |
| 31 | + pip install mkdocs -i http://mirrors.aliyun.com/pypi/simple --trusted-host mirrors.aliyun.com |
| 32 | + pip install -r requirements.txt |
| 33 | + ``` |
| 34 | + |
| 35 | +2. 构建并预览文档: |
| 36 | + ```bash |
| 37 | + # 进入项目根目录 |
| 38 | + cd nn |
| 39 | + |
| 40 | + # 构建静态文档 |
| 41 | + mkdocs build |
| 42 | + |
| 43 | + # 启动本地文档服务 |
| 44 | + mkdocs serve |
| 45 | + ``` |
| 46 | + |
| 47 | +3. 浏览器访问 [http://127.0.0.1:8000](http://127.0.0.1:8000) 查看文档。 |
| 48 | + |
| 49 | +## 核心功能模块 |
| 50 | + |
| 51 | +1. **车辆智能代理** |
| 52 | + * **感知系统**:基于CNN的目标检测(车辆、行人、交通信号灯)、车道线识别 |
| 53 | + * **规划系统**:全局路径规划(A*、RRT*算法)、局部避障 |
| 54 | + * **控制系统**:强化学习车辆控制(油门、刹车、转向)、PID参数自适应调优 |
| 55 | + * **手动控制**:支持键盘操作的车辆交互模式(WASD控制方向,空格/左Shift控制升降) |
| 56 | + |
| 57 | +2. **具身人仿真** |
| 58 | + * **感知模块**:william开发的具身人环境感知系统(`humanoid_perception`) |
| 59 | + * **运动模拟**:基于Mujoco的物理引擎实现具身人运动控制(`Mujoco_manrun`) |
| 60 | + |
| 61 | +3. **神经网络模型** |
| 62 | + * **CNN模型**:图像识别与目标检测(`chap05_CNN`),包含完整训练流程(Adam优化器、交叉熵损失) |
| 63 | + * **RNN模型**:序列数据处理与生成(`chap06_RNN`),基于LSTM实现唐诗生成等文本任务 |
| 64 | + * **FNN模型**:基础神经网络结构(`chap04_simple_neural_network`),包含测试评估函数 |
| 65 | + |
| 66 | +4. **辅助系统** |
| 67 | + * **车道辅助**:Active-Lane-Keeping-Assistant实现车道偏离预警与辅助 |
| 68 | + * **机械臂测试**:humantest模块提供机械臂力控仿真与交互功能 |
| 69 | + |
| 70 | +## 快速启动 |
| 71 | + |
| 72 | +1. 启动CARLA服务器: |
| 73 | + ```bash |
| 74 | + # Linux |
| 75 | + ./CarlaUE4.sh |
| 76 | + |
| 77 | + # Windows |
| 78 | + CarlaUE4.exe |
| 79 | + ``` |
| 80 | + |
| 81 | +2. 运行示例场景: |
| 82 | + ```bash |
| 83 | + # 自动驾驶车辆(强化学习) |
| 84 | + python src/driverless_car/main.py |
| 85 | + |
| 86 | + # 车辆手动控制 |
| 87 | + python src/manual_control/main.py |
| 88 | + |
| 89 | + # CNN模型训练 |
| 90 | + python src/chap05_CNN/CNN_pytorch.py |
| 91 | + |
| 92 | + # RNN文本生成 |
| 93 | + python src/chap06_RNN/tangshi_for_pytorch/rnn.py |
| 94 | + ``` |
| 95 | + |
| 96 | +## 关键代码说明 |
| 97 | + |
| 98 | +### 神经网络训练框架 |
| 99 | +```python |
| 100 | +# CNN训练示例(chap05_CNN/CNN_pytorch.py) |
| 101 | +def train(cnn): |
| 102 | + optimizer = torch.optim.Adam(cnn.parameters(), lr=learning_rate) |
| 103 | + loss_func = nn.CrossEntropyLoss() |
| 104 | + |
| 105 | + for epoch in range(max_epoch): |
| 106 | + for step, (x_, y_) in enumerate(train_loader): |
| 107 | + x, y = Variable(x_), Variable(y_) |
| 108 | + output = cnn(x) |
| 109 | + loss = loss_func(output, y) |
| 110 | + optimizer.zero_grad(set_to_none=True) |
| 111 | + loss.backward() |
| 112 | + optimizer.step() |
| 113 | + |
| 114 | + if step != 0 and step % 20 == 0: |
| 115 | + print(f"测试准确率: {test(cnn)}") |
| 116 | +``` |
| 117 | + |
| 118 | +### 强化学习智能体 |
| 119 | +```python |
| 120 | +# 车辆强化学习(driverless_car/main.py) |
| 121 | +def main(): |
| 122 | + env = DroneEnv() |
| 123 | + agent = Agent() |
| 124 | + episodes = 1000 |
| 125 | + epsilon = 1.0 # 探索率 |
| 126 | + |
| 127 | + for episode in range(episodes): |
| 128 | + state = env.reset() |
| 129 | + total_reward = 0 |
| 130 | + |
| 131 | + while True: |
| 132 | + action = agent.get_action(state, epsilon) # 根据状态和探索率获取动作 |
| 133 | + next_state, reward, done = env.step(action) |
| 134 | + agent.remember(state, action, reward, next_state, done) # 存储经验 |
| 135 | + agent.train(batch_size=32) # 训练模型 |
| 136 | + |
| 137 | + if done: |
| 138 | + epsilon = max(0.01, epsilon * 0.995) # 衰减探索率 |
| 139 | + break |
| 140 | +``` |
| 141 | + |
| 142 | +### RNN模型结构 |
| 143 | +```python |
| 144 | +# 唐诗生成RNN(chap06_RNN/tangshi_for_pytorch/rnn.py) |
| 145 | +class RNN_model(nn.Module): |
| 146 | + def __init__(self, batch_sz, vocab_len, word_embedding, embedding_dim, lstm_hidden_dim): |
| 147 | + super(RNN_model, self).__init__() |
| 148 | + self.word_embedding_lookup = word_embedding |
| 149 | + self.rnn_lstm = nn.LSTM(input_size=embedding_dim, |
| 150 | + hidden_size=lstm_hidden_dim, |
| 151 | + num_layers=2, |
| 152 | + batch_first=False) |
| 153 | + self.fc = nn.Linear(lstm_hidden_dim, vocab_len) |
| 154 | + self.softmax = nn.LogSoftmax(dim=1) |
| 155 | + |
| 156 | + def forward(self, sentence, is_test=False): |
| 157 | + batch_input = self.word_embedding_lookup(sentence).view(1, -1, self.word_embedding_dim) |
| 158 | + h0 = torch.zeros(2, batch_input.size(1), self.lstm_dim) |
| 159 | + c0 = torch.zeros(2, batch_input.size(1), self.lstm_dim) |
| 160 | + |
| 161 | + output, (hn, cn) = self.rnn_lstm(batch_input, (h0, c0)) |
| 162 | + out = self.fc(output.contiguous().view(-1, self.lstm_dim)) |
| 163 | + return self.softmax(out) |
| 164 | +``` |
| 165 | + |
| 166 | +## 贡献指南 |
| 167 | + |
| 168 | +请在提交代码前阅读 [贡献指南](https://github.com/OpenHUTB/.github/blob/master/CONTRIBUTING.md),代码优化方向包括: |
| 169 | + |
| 170 | +* 遵循 [PEP 8 代码风格](https://peps.pythonlang.cn/pep-0008/) 并完善注释 |
| 171 | +* 实现神经网络在CARLA场景中的端到端应用 |
| 172 | +* 撰写模块功能说明与API文档 |
| 173 | +* 添加自动化测试(模型性能、场景稳定性、数据一致性) |
| 174 | +* 优化感知-规划-控制链路的实时性 |
| 175 | + |
| 176 | +## 参考资源 |
| 177 | + |
| 178 | +* [CARLA官方文档](https://carla.readthedocs.io/) |
| 179 | +* [PyTorch神经网络教程](https://pytorch.org/tutorials/) |
| 180 | +* [项目文档中心](https://openhutb.github.io/nn/) |
| 181 | +* [代理模拟器文档](https://openhutb.github.io/carla_doc/) |
| 182 | +* [神经网络原理](https://github.com/OpenHUTB/neuro) |
0 commit comments