You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
|**Tic Tac Toe**|[🏋️ Train agent](https://colab.research.google.com/github/openpipe/art-notebooks/blob/main/examples/tic_tac_toe/tic-tac-toe.ipynb)|Qwen 2.5 3B learns to play Tic Tac Toe | <ahref="https://github.com/OpenPipe/ART/blob/main/examples/tic_tac_toe/display-benchmarks.ipynb"><imgsrc="https://github.com/OpenPipe/ART/raw/main/assets/benchmarks/tic-tac-toe-local/accuracy-training-progress.svg"width="72"style={{margin: "0"}} /></a> |
18
-
|**Codenames**|[🏋️ Train agent](https://colab.research.google.com/github/openpipe/art-notebooks/blob/main/examples/codenames/Codenames_RL.ipynb)|Qwen 2.5 3B learns to play Codenames | <ahref="https://github.com/OpenPipe/art-notebooks/blob/main/examples/codenames/Codenames_RL.ipynb"><imgsrc="https://github.com/OpenPipe/ART/raw/main/assets/benchmarks/codenames/win_rate_over_time.png"width="72"style={{margin: "0"}} /></a> |
19
-
|**AutoRL [RULER]**|[🏋️ Train agent](https://colab.research.google.com/github/openpipe/art-notebooks/blob/main/examples/auto_rl.ipynb)| Train Qwen 2.5 7B to master any task |[Link coming soon]|
12
+
|**ART•E [Serverless]**|[🏋️ Train agent](https://colab.research.google.com/github/openpipe/art-notebooks/blob/main/examples/art-e.ipynb)|Qwen3 14B learns to search emails using RULER | <ahref="https://github.com/OpenPipe/ART/blob/main/dev/art-e/art_e/evaluate/display_benchmarks.ipynb"><imgsrc="https://github.com/OpenPipe/ART/raw/main/assets/benchmarks/email_agent/accuracy-training-progress.svg"width="72"style={{margin: "0"}} /></a> |
13
+
|**2048 [Serverless]**|[🏋️ Train agent](https://colab.research.google.com/github/openpipe/art-notebooks/blob/main/examples/2048/2048.ipynb)|Qwen3 14B learns to play 2048 | <ahref="https://github.com/OpenPipe/ART/blob/main/examples/2048/display_benchmarks.ipynb"><imgsrc="https://github.com/OpenPipe/ART/raw/main/assets/benchmarks/2048/accuracy-training-progress.svg"width="72"style={{margin: "0"}} /></a> |
14
+
|**ART•E LangGraph**|[🏋️ Train agent](https://colab.research.google.com/github/openpipe/art-notebooks/blob/main/examples/langgraph/art-e-langgraph.ipynb)|Qwen2.5 7B learns to search emails using LangGraph |[Link coming soon]|
15
+
|**MCP•RL**|[🏋️ Train agent](https://colab.research.google.com/github/openpipe/art-notebooks/blob/main/examples/mcp-rl/mcp-rl.ipynb)|Qwen2.5 3B masters the NWS MCP server |[Link coming soon]|
|**Tic Tac Toe**|[🏋️ Train agent](https://colab.research.google.com/github/openpipe/art-notebooks/blob/main/examples/tic_tac_toe/tic-tac-toe.ipynb)|Qwen2.5 3B learns to play Tic Tac Toe | <ahref="https://github.com/OpenPipe/ART/blob/main/examples/tic_tac_toe/display-benchmarks.ipynb"><imgsrc="https://github.com/OpenPipe/ART/raw/main/assets/benchmarks/tic-tac-toe-local/accuracy-training-progress.svg"width="72"style={{margin: "0"}} /></a> |
18
+
|**Codenames**|[🏋️ Train agent](https://colab.research.google.com/github/openpipe/art-notebooks/blob/main/examples/codenames/Codenames_RL.ipynb)|Qwen2.5 3B learns to play Codenames | <ahref="https://github.com/OpenPipe/art-notebooks/blob/main/examples/codenames/Codenames_RL.ipynb"><imgsrc="https://github.com/OpenPipe/ART/raw/main/assets/benchmarks/codenames/win_rate_over_time.png"width="72"style={{margin: "0"}} /></a> |
19
+
|**AutoRL [RULER]**|[🏋️ Train agent](https://colab.research.google.com/github/openpipe/art-notebooks/blob/main/examples/auto_rl.ipynb)| Train Qwen2.5 7B to master any task |[Link coming soon]|
Copy file name to clipboardExpand all lines: docs/getting-started/quick-start.mdx
+1-1Lines changed: 1 addition & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -4,7 +4,7 @@ description: "Get started with ART in a few quick steps."
4
4
icon: "forward"
5
5
---
6
6
7
-
In this Quick Start tutorial, we'll be training Qwen 2.5 14B to play [2048](https://play2048.co/), a simple game that requires forward planning and basic math skills.
7
+
In this Quick Start tutorial, we'll be training Qwen3 14B Instruct to play [2048](https://play2048.co/), a simple game that requires forward planning and basic math skills.
We currently only support the following model for serverless training. We are actively adding support for both larger and smaller models. If there's a particular model you'd like to see serverless support for, please send a request to [email protected].
- Additionally, the [Qwen 3](https://huggingface.co/collections/Qwen/qwen3-67dd247413f0e2e4f653967f) family of models is well supported for single-turn workflows. For multi-turn workflows the Qwen 3 chat template removes the `<think>` tokens from previous turns, which makes training more complicated. It is still possible to use for multi-turn workflows by splitting each turn into a separate message history with our `additional_histories` trajectory parameter (see [Additional Histories](/features/additional-histories)).
29
37
30
38
If you're curious about a model that is not listed above, ask in the Discord [#support](https://discord.com/channels/1359674493949448375/1359674622965973185) channel.
0 commit comments