|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "id": "46a6ad6d", |
| 7 | + "metadata": {}, |
| 8 | + "outputs": [], |
| 9 | + "source": [ |
| 10 | + "%load_ext autoreload\n", |
| 11 | + "%autoreload 2" |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "code", |
| 16 | + "execution_count": null, |
| 17 | + "id": "96d51078", |
| 18 | + "metadata": {}, |
| 19 | + "outputs": [], |
| 20 | + "source": [ |
| 21 | + "%%html\n", |
| 22 | + "<style>\n", |
| 23 | + ".cell-output-ipywidget-background {\n", |
| 24 | + " background-color: transparent !important;\n", |
| 25 | + "}\n", |
| 26 | + ":root {\n", |
| 27 | + " --jp-widgets-color: var(--vscode-editor-foreground);\n", |
| 28 | + " --jp-widgets-font-size: var(--vscode-editor-font-size);\n", |
| 29 | + "} \n", |
| 30 | + "</style>" |
| 31 | + ] |
| 32 | + }, |
| 33 | + { |
| 34 | + "cell_type": "code", |
| 35 | + "execution_count": null, |
| 36 | + "id": "7dd70e04", |
| 37 | + "metadata": {}, |
| 38 | + "outputs": [], |
| 39 | + "source": [ |
| 40 | + "import polars as pl\n", |
| 41 | + "\n", |
| 42 | + "splits = {\n", |
| 43 | + " \"testmini\": \"data/testmini-00000-of-00001-725687bf7a18d64b.parquet\",\n", |
| 44 | + " \"test\": \"data/test-*.parquet\",\n", |
| 45 | + "}\n", |
| 46 | + "df = pl.read_parquet(\"hf://datasets/AI4Math/MathVista/\" + splits[\"testmini\"]).sample(\n", |
| 47 | + " fraction=1.0, shuffle=True, seed=42\n", |
| 48 | + ")" |
| 49 | + ] |
| 50 | + }, |
| 51 | + { |
| 52 | + "cell_type": "code", |
| 53 | + "execution_count": null, |
| 54 | + "id": "81e02b97", |
| 55 | + "metadata": {}, |
| 56 | + "outputs": [], |
| 57 | + "source": [ |
| 58 | + "from typing import Iterator, TypedDict, cast\n", |
| 59 | + "\n", |
| 60 | + "\n", |
| 61 | + "class DecodedImage(TypedDict):\n", |
| 62 | + " bytes: bytes\n", |
| 63 | + "\n", |
| 64 | + "\n", |
| 65 | + "class Scenario(TypedDict):\n", |
| 66 | + " pid: int\n", |
| 67 | + " question: str\n", |
| 68 | + " answer: str\n", |
| 69 | + " image: str\n", |
| 70 | + " decoded_image: DecodedImage\n", |
| 71 | + "\n", |
| 72 | + "\n", |
| 73 | + "val_scenarios = cast(list[Scenario], df.head(64).to_dicts())\n", |
| 74 | + "train_scenarios_iter = cast(Iterator[Scenario], df.tail(-64).iter_rows(named=True))" |
| 75 | + ] |
| 76 | + }, |
| 77 | + { |
| 78 | + "cell_type": "code", |
| 79 | + "execution_count": null, |
| 80 | + "id": "9287d8fe", |
| 81 | + "metadata": {}, |
| 82 | + "outputs": [], |
| 83 | + "source": [ |
| 84 | + "import re\n", |
| 85 | + "\n", |
| 86 | + "import art\n", |
| 87 | + "from art.local import LocalBackend\n", |
| 88 | + "\n", |
| 89 | + "model = art.TrainableModel(\n", |
| 90 | + " name=\"002\",\n", |
| 91 | + " project=\"math-vista\",\n", |
| 92 | + " base_model=\"Qwen/Qwen2.5-VL-7B-Instruct\",\n", |
| 93 | + ")\n", |
| 94 | + "backend = LocalBackend()\n", |
| 95 | + "await model.register(backend)\n", |
| 96 | + "client = model.openai_client()" |
| 97 | + ] |
| 98 | + }, |
| 99 | + { |
| 100 | + "cell_type": "code", |
| 101 | + "execution_count": null, |
| 102 | + "id": "c92b4b11", |
| 103 | + "metadata": {}, |
| 104 | + "outputs": [], |
| 105 | + "source": [ |
| 106 | + "async def rollout(scenario: Scenario) -> art.Trajectory:\n", |
| 107 | + " image_path = f\"/tmp/{scenario['image']}\"\n", |
| 108 | + "\n", |
| 109 | + " import os\n", |
| 110 | + "\n", |
| 111 | + " os.makedirs(os.path.dirname(image_path), exist_ok=True)\n", |
| 112 | + "\n", |
| 113 | + " with open(image_path, \"wb\") as f:\n", |
| 114 | + " f.write(scenario[\"decoded_image\"][\"bytes\"])\n", |
| 115 | + "\n", |
| 116 | + " trajectory = art.Trajectory(messages_and_choices=[], reward=0.0)\n", |
| 117 | + " trajectory.messages_and_choices = [\n", |
| 118 | + " {\n", |
| 119 | + " \"role\": \"user\",\n", |
| 120 | + " \"content\": [\n", |
| 121 | + " {\n", |
| 122 | + " \"type\": \"text\",\n", |
| 123 | + " \"text\": scenario[\"question\"]\n", |
| 124 | + " + \"\\n\\nNote: Provide your answer in a LaTeX box.\",\n", |
| 125 | + " },\n", |
| 126 | + " {\"type\": \"image_url\", \"image_url\": {\"url\": f\"file://{image_path}\"}},\n", |
| 127 | + " ],\n", |
| 128 | + " }\n", |
| 129 | + " ]\n", |
| 130 | + " chat_completion = await client.chat.completions.create(\n", |
| 131 | + " model=model.name, messages=trajectory.messages()\n", |
| 132 | + " )\n", |
| 133 | + " choice = chat_completion.choices[0]\n", |
| 134 | + " trajectory.messages_and_choices.append(choice)\n", |
| 135 | + " content = choice.message.content\n", |
| 136 | + " assert content is not None\n", |
| 137 | + " if matches := list(re.finditer(r\"\\\\boxed\\{(.*?)\\}\", content, re.DOTALL)):\n", |
| 138 | + " match = matches[-1]\n", |
| 139 | + " answer = match.group(1)\n", |
| 140 | + " if answer.lower() == scenario[\"answer\"].lower():\n", |
| 141 | + " trajectory.reward = 1.0\n", |
| 142 | + " return trajectory" |
| 143 | + ] |
| 144 | + }, |
| 145 | + { |
| 146 | + "cell_type": "code", |
| 147 | + "execution_count": null, |
| 148 | + "id": "359e530d", |
| 149 | + "metadata": {}, |
| 150 | + "outputs": [], |
| 151 | + "source": [ |
| 152 | + "import asyncio\n", |
| 153 | + "import itertools\n", |
| 154 | + "\n", |
| 155 | + "SCENARIOS_PER_STEP = 8\n", |
| 156 | + "TRAJECTORY_GROUP_SIZE = 8\n", |
| 157 | + "start = await model.get_step()\n", |
| 158 | + "train_scenarios_iter = itertools.cycle(train_scenarios_iter)\n", |
| 159 | + "for _ in range(start * SCENARIOS_PER_STEP):\n", |
| 160 | + " next(train_scenarios_iter)\n", |
| 161 | + "\n", |
| 162 | + "for i in range(start, 1000):\n", |
| 163 | + " train_scenarios = [next(train_scenarios_iter) for _ in range(SCENARIOS_PER_STEP)]\n", |
| 164 | + " val_trajectories, train_trajectory_groups = await asyncio.gather(\n", |
| 165 | + " art.gather_trajectories(\n", |
| 166 | + " (rollout(scenario) for scenario in val_scenarios),\n", |
| 167 | + " pbar_desc=\"gather(val)\",\n", |
| 168 | + " max_exceptions=32,\n", |
| 169 | + " ),\n", |
| 170 | + " art.gather_trajectory_groups(\n", |
| 171 | + " (\n", |
| 172 | + " art.TrajectoryGroup(\n", |
| 173 | + " rollout(scenario) for _ in range(TRAJECTORY_GROUP_SIZE)\n", |
| 174 | + " )\n", |
| 175 | + " for scenario in train_scenarios\n", |
| 176 | + " ),\n", |
| 177 | + " pbar_desc=\"gather(train)\",\n", |
| 178 | + " max_exceptions=32,\n", |
| 179 | + " ),\n", |
| 180 | + " )\n", |
| 181 | + " await model.log(val_trajectories)\n", |
| 182 | + " await model.train(train_trajectory_groups)" |
| 183 | + ] |
| 184 | + } |
| 185 | + ], |
| 186 | + "metadata": { |
| 187 | + "kernelspec": { |
| 188 | + "display_name": ".venv", |
| 189 | + "language": "python", |
| 190 | + "name": "python3" |
| 191 | + }, |
| 192 | + "language_info": { |
| 193 | + "codemirror_mode": { |
| 194 | + "name": "ipython", |
| 195 | + "version": 3 |
| 196 | + }, |
| 197 | + "file_extension": ".py", |
| 198 | + "mimetype": "text/x-python", |
| 199 | + "name": "python", |
| 200 | + "nbconvert_exporter": "python", |
| 201 | + "pygments_lexer": "ipython3", |
| 202 | + "version": "3.10.13" |
| 203 | + } |
| 204 | + }, |
| 205 | + "nbformat": 4, |
| 206 | + "nbformat_minor": 5 |
| 207 | +} |
0 commit comments