diff --git a/.github/actions/docker-build/action.yml b/.github/actions/docker-build/action.yml
index 33458a4551..cf5c8a7d28 100644
--- a/.github/actions/docker-build/action.yml
+++ b/.github/actions/docker-build/action.yml
@@ -16,9 +16,6 @@ inputs:
image_tag:
description: 'Custom image tag (optional, defaults to framework:latest)'
required: false
- ngc_ci_access_token:
- description: 'NGC CI Access Token'
- required: false
ci_token:
description: 'CI Token'
required: false
@@ -49,6 +46,12 @@ inputs:
torch_backend:
description: 'Optional override for TORCH_BACKEND build-arg (e.g., cu129)'
required: false
+ enable_kvbm:
+ description: 'Enable KVBM support (optional)'
+ required: false
+ dynamo_base_image:
+ description: 'Pre-built Dynamo base image to use instead of building from scratch'
+ required: false
outputs:
image_tag:
@@ -61,20 +64,9 @@ runs:
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@e468171a9de216ec08956ac3ada2f0791b6bd435 #v3.11.1
with:
- driver: docker
+ driver: docker-container
# Enable BuildKit for enhanced metadata
buildkitd-flags: --debug
- - name: Login to ECR
- shell: bash
- env:
- ECR_HOSTNAME: ${{ inputs.aws_account_id }}.dkr.ecr.${{ inputs.aws_default_region }}.amazonaws.com
- run: |
- aws ecr get-login-password --region ${{ inputs.aws_default_region }} | docker login --username AWS --password-stdin ${ECR_HOSTNAME}
- - name: Login to NGC
- if: github.event.pull_request.head.repo.full_name == github.repository || github.event_name == 'push'
- shell: bash
- run: |
- echo "${{ inputs.ngc_ci_access_token }}" | docker login nvcr.io -u '$oauthtoken' --password-stdin
- name: Cleanup
if: always()
shell: bash
@@ -90,9 +82,12 @@ runs:
AWS_ACCESS_KEY_ID: ${{ inputs.aws_access_key_id }}
AWS_SECRET_ACCESS_KEY: ${{ inputs.aws_secret_access_key }}
PLATFORM: ${{ inputs.platform }}
+ ECR_HOSTNAME: ${{ inputs.aws_account_id }}.dkr.ecr.${{ inputs.aws_default_region }}.amazonaws.com
GITHUB_RUN_ID: ${{ github.run_id }}
GITHUB_JOB: ${{ github.job }}
+ GITHUB_REF_NAME: ${{ github.ref_name }}
run: |
+ set -x
# Determine image tag
if [ -n "${{ inputs.image_tag }}" ]; then
IMAGE_TAG="${{ inputs.image_tag }}"
@@ -112,18 +107,34 @@ runs:
echo "๐ Build log will be saved to: ${BUILD_LOG_FILE}"
# Collect optional overrides provided by the workflow
+ # Set base cache args and set --cache-to if this is a main commit
EXTRA_ARGS=""
+ EXTRA_ARGS="--cache-to type=inline "
+ EXTRA_ARGS+="--cache-from type=registry,ref=${ECR_HOSTNAME}/ai-dynamo/dynamo:${{ inputs.framework }}-${PLATFORM##*/}-cache "
+ EXTRA_ARGS+="--cache-from type=registry,ref=${ECR_HOSTNAME}/ai-dynamo/dynamo:main-${{ inputs.framework }}-${PLATFORM##*/} "
+ if [[ "$GITHUB_REF_NAME" == "main" ]]; then
+ EXTRA_ARGS+="--cache-to type=registry,ref=${ECR_HOSTNAME}/ai-dynamo/dynamo:${{ inputs.framework }}-${PLATFORM##*/}-cache,mode=max "
+ fi
+
+ echo "$EXTRA_ARGS"
+ # Collect optional overrides provided by the workflow
if [ -n "${{ inputs.base_image_tag }}" ]; then
- EXTRA_ARGS+=" --base-image-tag ${{ inputs.base_image_tag }}"
+ EXTRA_ARGS+="--base-image-tag ${{ inputs.base_image_tag }} "
fi
if [ -n "${{ inputs.runtime_image_tag }}" ]; then
- EXTRA_ARGS+=" --build-arg RUNTIME_IMAGE_TAG=${{ inputs.runtime_image_tag }}"
+ EXTRA_ARGS+="--build-arg RUNTIME_IMAGE_TAG=${{ inputs.runtime_image_tag }} "
fi
if [ -n "${{ inputs.cuda_version }}" ]; then
- EXTRA_ARGS+=" --build-arg CUDA_VERSION=${{ inputs.cuda_version }}"
+ EXTRA_ARGS+="--build-arg CUDA_VERSION=${{ inputs.cuda_version }} "
fi
if [ -n "${{ inputs.torch_backend }}" ]; then
- EXTRA_ARGS+=" --build-arg TORCH_BACKEND=${{ inputs.torch_backend }}"
+ EXTRA_ARGS+="--build-arg TORCH_BACKEND=${{ inputs.torch_backend }} "
+ fi
+ if [ -n "${{ inputs.dynamo_base_image }}" ]; then
+ EXTRA_ARGS+=" --dynamo-base-image ${{ inputs.dynamo_base_image }}"
+ fi
+ if [ -n "${{ inputs.enable_kvbm }}" ]; then
+ EXTRA_ARGS+=" --build-arg ENABLE_KVBM=${{ inputs.enable_kvbm }}"
fi
# Execute build and capture output (show on console AND save to file)
@@ -144,6 +155,26 @@ runs:
# Exit with the build's exit code
exit ${BUILD_EXIT_CODE}
+ - name: Run Sanity Check on Runtime Image
+ if: inputs.target == 'runtime'
+ shell: bash
+ run: |
+ IMAGE_TAG="${{ steps.build.outputs.image_tag }}"
+ echo "Running sanity check on image: $IMAGE_TAG"
+
+ # Run the sanity check script inside the container
+ # The script is located in /workspace/deploy/sanity_check.py in runtime containers
+ set +e
+ docker run --rm "$IMAGE_TAG" python /workspace/deploy/sanity_check.py --runtime-check --no-gpu-check
+ SANITY_CHECK_EXIT_CODE=$?
+ set -e
+ if [ ${SANITY_CHECK_EXIT_CODE} -ne 0 ]; then
+ echo "ERROR: Sanity check failed - ai-dynamo packages not properly installed"
+ exit ${SANITY_CHECK_EXIT_CODE}
+ else
+ echo "โ
Sanity check passed"
+ fi
+
- name: Capture Build Metrics
id: metrics
shell: bash
@@ -223,8 +254,7 @@ runs:
chmod +x .github/scripts/parse_buildkit_output.py
# Check for build logs and build stage arguments dynamically
- BASE_BUILD_LOG="build-logs/base-image-build.log"
- FRAMEWORK_BUILD_LOG="build-logs/framework-${FRAMEWORK_LOWER}-build.log"
+ BUILD_LOG="build-logs/single-stage-build.log"
# Path to container metadata created in previous step
CONTAINER_METADATA="build-metrics/metrics-${{ inputs.framework }}-${PLATFORM_ARCH}-${WORKFLOW_ID}-${JOB_ID}.json"
@@ -237,18 +267,11 @@ runs:
# Build stage arguments dynamically based on which logs exist
STAGE_ARGS=()
- if [ -f "$BASE_BUILD_LOG" ]; then
- echo " โ Found base image log: ${BASE_BUILD_LOG}"
- STAGE_ARGS+=("base:${BASE_BUILD_LOG}")
- else
- echo " โน๏ธ No base image log found"
- fi
-
- if [ -f "$FRAMEWORK_BUILD_LOG" ]; then
- echo " โ Found framework log: ${FRAMEWORK_BUILD_LOG}"
- STAGE_ARGS+=("runtime:${FRAMEWORK_BUILD_LOG}")
+ if [ -f "$BUILD_LOG" ]; then
+ echo " โ Found base image log: ${BUILD_LOG}"
+ STAGE_ARGS+=("runtime:${BUILD_LOG}")
else
- echo " โน๏ธ No framework log found"
+ echo " โน๏ธ No image log found"
fi
# Check for any additional stage logs (e.g., build-logs/stage3-*.log)
@@ -280,13 +303,6 @@ runs:
if [ ${PARSER_EXIT_CODE} -eq 0 ] && [ -f "$COMPREHENSIVE_JSON" ]; then
echo "โ
Comprehensive build metrics generated successfully"
echo "๐ Output file: ${COMPREHENSIVE_JSON}"
- echo ""
- echo "=========================================="
- echo "๐ FULL JSON OUTPUT (for debugging)"
- echo "=========================================="
- cat "$COMPREHENSIVE_JSON"
- echo ""
- echo "=========================================="
else
echo "โ ๏ธ Metrics generation had issues but continuing..."
fi
@@ -296,7 +312,7 @@ runs:
uses: actions/upload-artifact@v4
if: always()
with:
- name: build-metrics-${{ inputs.framework }}-${{ env.PLATFORM_ARCH }}-${{ github.run_id }}-${{ job.check_run_id }}
+ name: build-metrics-${{ inputs.framework }}-${{ inputs.target }}-${{ env.PLATFORM_ARCH }}-${{ github.run_id }}-${{ job.check_run_id }}
path: build-metrics/build-${{ inputs.framework }}-${{ env.PLATFORM_ARCH }}-${{ github.run_id }}-${{ job.check_run_id }}.json
retention-days: 7
diff --git a/.github/actions/docker-login/action.yml b/.github/actions/docker-login/action.yml
new file mode 100644
index 0000000000..1e24aff400
--- /dev/null
+++ b/.github/actions/docker-login/action.yml
@@ -0,0 +1,46 @@
+name: 'Docker Login'
+description: 'Login to multiple container registries (ECR, NGC, ACR)'
+
+inputs:
+ ngc_ci_access_token:
+ description: 'NGC CI Access Token'
+ required: false
+ aws_default_region:
+ description: 'AWS Default Region'
+ required: false
+ aws_account_id:
+ description: 'AWS Account ID'
+ required: false
+ azure_acr_hostname:
+ description: 'Azure ACR hostname'
+ required: false
+ azure_acr_user:
+ description: 'Azure ACR user'
+ required: false
+ azure_acr_password:
+ description: 'Azure ACR password'
+ required: false
+
+runs:
+ using: "composite"
+ steps:
+ - name: ECR Login
+ shell: bash
+ if: ${{ inputs.aws_default_region != '' && inputs.aws_account_id != '' }}
+ env:
+ ECR_HOSTNAME: ${{ inputs.aws_account_id }}.dkr.ecr.${{ inputs.aws_default_region }}.amazonaws.com
+ run: |
+ set -euo pipefail
+ aws ecr get-login-password --region ${{ inputs.aws_default_region }} | docker login --username AWS --password-stdin "${ECR_HOSTNAME}"
+ - name: NGC Login
+ if: ${{ inputs.ngc_ci_access_token != '' }}
+ shell: bash
+ run: |
+ set -euo pipefail
+ echo "${{ inputs.ngc_ci_access_token }}" | docker login nvcr.io -u '$oauthtoken' --password-stdin
+ - name: ACR Login
+ shell: bash
+ if: ${{ inputs.azure_acr_hostname != '' && inputs.azure_acr_user != '' && inputs.azure_acr_password != '' }}
+ run: |
+ set -euo pipefail
+ echo "${{ inputs.azure_acr_password }}" | docker login "${{ inputs.azure_acr_hostname }}" --username "${{ inputs.azure_acr_user }}" --password-stdin
diff --git a/.github/actions/docker-tag-push/action.yml b/.github/actions/docker-tag-push/action.yml
index 51428e9985..4b1a96b2b1 100644
--- a/.github/actions/docker-tag-push/action.yml
+++ b/.github/actions/docker-tag-push/action.yml
@@ -1,12 +1,18 @@
+name: 'Docker Tag and Push'
description: 'Tag and Push Docker Images'
inputs:
local_image:
description: 'Local Image Name:Tag'
required: true
- push_tag:
- description: 'Target Name:Tag'
+ push_tags:
+ description: 'Target Name:Tag (newline-separated list for multiple tags)'
required: true
+ # There isn't a clean way to have an additional tag that is conditional
+ # Adding this to handle this use-case (we want multiple tags for main builds)
+ conditional_tag:
+ description: 'Optional tag for conditionals'
+ required: false
aws_push:
description: 'Push to AWS Boolean'
required: false
@@ -21,54 +27,56 @@ inputs:
aws_default_region:
description: 'AWS Default Region'
required: false
- aws_access_key_id:
- description: 'AWS Access Key ID'
- required: false
- aws_secret_access_key:
- description: 'AWS Secret Access Key'
- required: false
azure_acr_hostname:
description: 'Azure ACR hostname'
required: false
- azure_acr_user:
- description: 'Azure ACR user'
- required: false
- azure_acr_password:
- description: 'Azure ACR password'
- required: false
outputs:
- image_tag:
- description: 'Image Tag'
- value: ${{ inputs.push_tag }}
+ image_tags:
+ description: 'Image Tags'
+ value: ${{ inputs.push_tags }}
runs:
using: "composite"
steps:
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- - name: ACR Login
- shell: bash
- if: ${{ inputs.azure_push == 'true' }}
- run: |
- echo "${{ inputs.azure_acr_password }}" | docker login ${{ inputs.azure_acr_hostname }} --username ${{ inputs.azure_acr_user }} --password-stdin
- name: ECR Tag and Push
shell: bash
if: ${{ inputs.aws_push == 'true' }}
env:
LOCAL_IMAGE: ${{ inputs.local_image }}
- PUSH_TAG: ${{ inputs.push_tag }}
+ PUSH_TAGS: ${{ inputs.push_tags }}
+ CONDITIONAL_TAG: ${{ inputs.conditional_tag }}
ECR_HOSTNAME: ${{ inputs.aws_account_id }}.dkr.ecr.${{ inputs.aws_default_region }}.amazonaws.com
run: |
- docker tag ${LOCAL_IMAGE} ${ECR_HOSTNAME}/${PUSH_TAG}
- docker push ${ECR_HOSTNAME}/${PUSH_TAG}
+ set -euo pipefail
+ if [[ ${CONDITIONAL_TAG} != '' ]]; then
+ docker tag ${LOCAL_IMAGE} ${ECR_HOSTNAME}/${CONDITIONAL_TAG}
+ docker push ${ECR_HOSTNAME}/${CONDITIONAL_TAG}
+ fi
+ while IFS= read -r TAG; do
+ if [ -z "$TAG" ]; then
+ continue
+ fi
+ echo "Tagging and pushing: ${ECR_HOSTNAME}/${TAG}"
+ docker tag "${LOCAL_IMAGE}" "${ECR_HOSTNAME}/${TAG}"
+ docker push "${ECR_HOSTNAME}/${TAG}"
+ done <<< "$PUSH_TAGS"
- name: ACR Tag and Push
shell: bash
if: ${{ inputs.azure_push == 'true' }}
env:
LOCAL_IMAGE: ${{ inputs.local_image }}
- PUSH_TAG: ${{ inputs.push_tag }}
+ PUSH_TAGS: ${{ inputs.push_tags }}
AZURE_ACR_HOSTNAME: ${{ inputs.azure_acr_hostname }}
run: |
- docker tag ${LOCAL_IMAGE} ${AZURE_ACR_HOSTNAME}/${PUSH_TAG}
- docker push ${AZURE_ACR_HOSTNAME}/${PUSH_TAG}
+ set -euo pipefail
+ while IFS= read -r TAG; do
+ if [ -z "$TAG" ]; then
+ continue
+ fi
+ echo "Tagging and pushing: ${AZURE_ACR_HOSTNAME}/${TAG}"
+ docker tag "${LOCAL_IMAGE}" "${AZURE_ACR_HOSTNAME}/${TAG}"
+ docker push "${AZURE_ACR_HOSTNAME}/${TAG}"
+ done <<< "$PUSH_TAGS"
diff --git a/.github/actions/pytest/action.yml b/.github/actions/pytest/action.yml
index 0f44baf3a7..5cc89b4bc5 100644
--- a/.github/actions/pytest/action.yml
+++ b/.github/actions/pytest/action.yml
@@ -24,6 +24,10 @@ inputs:
description: 'Platform architecture (amd64, arm64)'
required: false
default: 'amd64'
+ dry_run:
+ description: 'Run pytest in dry-run mode (collect tests only, do not execute)'
+ required: false
+ default: 'false'
runs:
@@ -54,31 +58,50 @@ runs:
# Run pytest with detailed output and JUnit XML
set +e # Don't exit on test failures
- # Detect GPU availability and conditionally add GPU flags
- GPU_FLAGS=""
- if command -v nvidia-smi &> /dev/null && nvidia-smi &> /dev/null; then
- echo "GPU detected, enabling GPU runtime"
- GPU_FLAGS="--runtime=nvidia --gpus all"
+ # Determine docker runtime flags and pytest command based on dry_run mode
+ if [[ "${{ inputs.dry_run }}" == "true" ]]; then
+ echo "๐ Running pytest in dry-run mode (collect-only, no GPU required)"
+ GPU_FLAGS=""
+ PYTEST_CMD="pytest -v --collect-only -m \"${{ inputs.pytest_marks }}\""
else
- echo "No GPU detected, running in CPU-only mode"
+ echo "๐ Running pytest in normal mode"
+ PYTEST_CMD="pytest -v --tb=short --basetemp=/tmp -o cache_dir=/tmp/.pytest_cache --junitxml=/workspace/test-results/${{ env.PYTEST_XML_FILE }} --durations=10 -m \"${{ inputs.pytest_marks }}\""
+
+ # Detect GPU availability and conditionally add GPU flags
+ GPU_FLAGS=""
+ if command -v nvidia-smi &> /dev/null && nvidia-smi &> /dev/null; then
+ echo "โ GPU detected, enabling GPU runtime"
+ GPU_FLAGS="--runtime=nvidia --gpus all"
+ else
+ echo "โ ๏ธ No GPU detected, running in CPU-only mode"
+ fi
fi
+ # Get absolute path for test-results directory and ensure it has proper permissions
+ TEST_RESULTS_DIR="$(pwd)/test-results"
+ chmod 777 "${TEST_RESULTS_DIR}"
+ echo "๐ Test results will be saved to: ${TEST_RESULTS_DIR}"
+
docker run ${GPU_FLAGS} --rm -w /workspace \
--cpus=${NUM_CPUS} \
--network host \
--name ${{ env.CONTAINER_ID }}_pytest \
+ -v "${TEST_RESULTS_DIR}:/workspace/test-results" \
${{ inputs.image_tag }} \
- bash -c "mkdir -p /workspace/test-results && pytest -v --tb=short --basetemp=/tmp -o cache_dir=/tmp/.pytest_cache --junitxml=/workspace/test-results/${{ env.PYTEST_XML_FILE }} --durations=10 -m \"${{ inputs.pytest_marks }}\""
+ bash -c "${PYTEST_CMD}"
TEST_EXIT_CODE=$?
echo "TEST_EXIT_CODE=${TEST_EXIT_CODE}" >> $GITHUB_ENV
echo "๐งช Tests completed with exit code: ${TEST_EXIT_CODE}"
- # Copy test results from container to host
- docker cp ${{ env.CONTAINER_ID }}_pytest:/workspace/test-results . || echo "Failed to copy test results"
-
- # Clean up container
- docker rm -f ${{ env.CONTAINER_ID }}_pytest || echo "Failed to clean up container"
+ # Verify test results were written (only in normal mode)
+ if [[ "${{ inputs.dry_run }}" != "true" ]]; then
+ if [[ -f "${TEST_RESULTS_DIR}/${{ env.PYTEST_XML_FILE }}" ]]; then
+ echo "โ
Test results file found: ${TEST_RESULTS_DIR}/${{ env.PYTEST_XML_FILE }}"
+ else
+ echo "โ ๏ธ Test results file not found: ${TEST_RESULTS_DIR}/${{ env.PYTEST_XML_FILE }}"
+ fi
+ fi
# Always continue to results processing
exit 0
@@ -103,23 +126,9 @@ runs:
ERROR_TESTS=$(grep -o 'errors="[0-9]*"' "$JUNIT_FILE" | grep -o '[0-9]*' | head -1 || echo "0")
echo "๐ ${TOTAL_TESTS} tests completed (${FAILED_TESTS} failed, ${ERROR_TESTS} errors)"
- # Create uniquely named metadata file with step context information
- # Use framework-testtype-arch to make it unique per test run
- METADATA_FILE="test-results/test_metadata_${{ inputs.framework }}_${STR_TEST_TYPE}_${{ inputs.platform_arch }}.json"
- JUNIT_NAME="pytest_test_report_${{ inputs.framework }}_${STR_TEST_TYPE}_${{ inputs.platform_arch }}.xml"
-
# Rename XML file to unique name
+ JUNIT_NAME="pytest_test_report_${{ inputs.framework }}_${STR_TEST_TYPE}_${{ inputs.platform_arch }}_${{ github.run_id }}_${{ job.check_run_id }}.xml"
mv "$JUNIT_FILE" "test-results/$JUNIT_NAME"
-
- echo '{' > "$METADATA_FILE"
- echo ' "job_name": "${{ github.job }}",' >> "$METADATA_FILE"
- echo ' "framework": "${{ inputs.framework }}",' >> "$METADATA_FILE"
- echo ' "test_type": "${{ inputs.test_type }}",' >> "$METADATA_FILE"
- echo ' "platform_arch": "${{ inputs.platform_arch }}",' >> "$METADATA_FILE"
- echo ' "junit_xml_file": "'"$JUNIT_NAME"'",' >> "$METADATA_FILE"
- echo ' "step_name": "Run ${{ inputs.test_type }} tests"' >> "$METADATA_FILE"
- echo '}' >> "$METADATA_FILE"
- echo "๐ Created test metadata file: $METADATA_FILE"
echo "๐ Renamed XML file to: $JUNIT_NAME"
else
echo "โ ๏ธ JUnit XML file not found - test results may not be available for upload"
@@ -135,8 +144,6 @@ runs:
uses: actions/upload-artifact@v4
if: always() # Always upload test results, even if tests failed
with:
- name: test-results-${{ inputs.framework }}-${{ env.STR_TEST_TYPE }}-${{ env.PLATFORM_ARCH }}
- path: |
- test-results/pytest_test_report_${{ inputs.framework }}_${{ env.STR_TEST_TYPE }}_${{ inputs.platform_arch }}.xml
- test-results/test_metadata_${{ inputs.framework }}_${{ env.STR_TEST_TYPE }}_${{ inputs.platform_arch }}.json
- retention-days: 7
\ No newline at end of file
+ name: test-results-${{ inputs.framework }}-${{ env.STR_TEST_TYPE }}-${{ env.PLATFORM_ARCH }}-${{ github.run_id }}-${{ job.check_run_id }}
+ path: test-results/pytest_test_report_${{ inputs.framework }}_${{ env.STR_TEST_TYPE }}_${{ inputs.platform_arch }}_${{ github.run_id }}_${{ job.check_run_id }}.xml
+ retention-days: 7
diff --git a/.github/workflows/container-validation-backends.yml b/.github/workflows/container-validation-backends.yml
index c8af077259..eeec8c9500 100644
--- a/.github/workflows/container-validation-backends.yml
+++ b/.github/workflows/container-validation-backends.yml
@@ -69,14 +69,15 @@ jobs:
uses: actions/checkout@08eba0b27e820071cde6df949e0beb9ba4906955 # v4.3.0
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
+ - name: Docker Login
+ uses: ./.github/actions/docker-login
with:
- driver: docker
- - name: Login to ECR
- shell: bash
- env:
- ECR_HOSTNAME: ${{ secrets.AWS_ACCOUNT_ID }}.dkr.ecr.${{ secrets.AWS_DEFAULT_REGION }}.amazonaws.com
- run: |
- aws ecr get-login-password --region ${{ secrets.AWS_DEFAULT_REGION }} | docker login --username AWS --password-stdin ${ECR_HOSTNAME}
+ ngc_ci_access_token: ${{ secrets.NGC_CI_ACCESS_TOKEN }}
+ aws_default_region: ${{ secrets.AWS_DEFAULT_REGION }}
+ aws_account_id: ${{ secrets.AWS_ACCOUNT_ID }}
+ azure_acr_hostname: ${{ secrets.AZURE_ACR_HOSTNAME }}
+ azure_acr_user: ${{ secrets.AZURE_ACR_USER }}
+ azure_acr_password: ${{ secrets.AZURE_ACR_PASSWORD }}
- name: Linter
shell: bash
env:
@@ -91,7 +92,6 @@ jobs:
run: |
cd deploy/cloud/operator
docker build --target tester --progress=plain --build-arg DOCKER_PROXY=${ECR_HOSTNAME}/dockerhub/ .
-
- name: Set up Go
uses: actions/setup-go@44694675825211faa026b3c33043df3e48a5fa00 # v6.0.0
with:
@@ -120,14 +120,10 @@ jobs:
uses: ./.github/actions/docker-tag-push
with:
local_image: dynamo-operator:latest
- push_tag: ai-dynamo/dynamo:${{ github.sha }}-operator-${{ matrix.platform.arch }}
+ push_tags: ai-dynamo/dynamo:${{ github.sha }}-operator-${{ matrix.platform.arch }}
aws_push: 'false'
azure_push: 'true'
- aws_account_id: ${{ secrets.AWS_ACCOUNT_ID }}
- aws_default_region: ${{ secrets.AWS_DEFAULT_REGION }}
azure_acr_hostname: ${{ secrets.AZURE_ACR_HOSTNAME }}
- azure_acr_user: ${{ secrets.AZURE_ACR_USER }}
- azure_acr_password: ${{ secrets.AZURE_ACR_PASSWORD }}
vllm:
needs: changed-files
@@ -147,6 +143,15 @@ jobs:
echo ${K8S_NODE_NAME}
- name: Checkout code
uses: actions/checkout@08eba0b27e820071cde6df949e0beb9ba4906955 # v4.3.0
+ - name: Docker Login
+ uses: ./.github/actions/docker-login
+ with:
+ ngc_ci_access_token: ${{ secrets.NGC_CI_ACCESS_TOKEN }}
+ aws_default_region: ${{ secrets.AWS_DEFAULT_REGION }}
+ aws_account_id: ${{ secrets.AWS_ACCOUNT_ID }}
+ azure_acr_hostname: ${{ secrets.AZURE_ACR_HOSTNAME }}
+ azure_acr_user: ${{ secrets.AZURE_ACR_USER }}
+ azure_acr_password: ${{ secrets.AZURE_ACR_PASSWORD }}
- name: Build Container
id: build-image
uses: ./.github/actions/docker-build
@@ -158,27 +163,30 @@ jobs:
runtime_image_tag: ${{ matrix.platform.arch == 'arm64' && '12.9.0-runtime-ubuntu24.04' || '' }}
cuda_version: ${{ matrix.platform.arch == 'arm64' && '129' || '' }}
torch_backend: ${{ matrix.platform.arch == 'arm64' && 'cu129' || '' }}
- ngc_ci_access_token: ${{ secrets.NGC_CI_ACCESS_TOKEN }}
ci_token: ${{ secrets.CI_TOKEN }}
aws_default_region: ${{ secrets.AWS_DEFAULT_REGION }}
sccache_s3_bucket: ${{ secrets.SCCACHE_S3_BUCKET }}
aws_account_id: ${{ secrets.AWS_ACCOUNT_ID }}
aws_access_key_id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws_secret_access_key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
+ - name: Login to Container Registries
+ uses: ./.github/actions/docker-login
+ with:
+ azure_acr_hostname: ${{ secrets.AZURE_ACR_HOSTNAME }}
+ azure_acr_user: ${{ secrets.AZURE_ACR_USER }}
+ azure_acr_password: ${{ secrets.AZURE_ACR_PASSWORD }}
+ ngc_ci_access_token: ${{ secrets.NGC_CI_ACCESS_TOKEN }}
- name: Docker Tag and Push
uses: ./.github/actions/docker-tag-push
with:
local_image: ${{ steps.build-image.outputs.image_tag }}
- push_tag: ai-dynamo/dynamo:${{ github.sha }}-vllm-${{ matrix.platform.arch }}
- # OPS-1145: Switch aws_push to true
- aws_push: 'false'
+ push_tags: ai-dynamo/dynamo:${{ github.sha }}-vllm-${{ matrix.platform.arch }}
+ conditional_tag: ${{ github.ref_name == 'main' && format('ai-dynamo/dynamo:main-vllm-{0}', matrix.platform.arch) || '' }}
+ aws_push: 'true'
azure_push: 'true'
aws_account_id: ${{ secrets.AWS_ACCOUNT_ID }}
aws_default_region: ${{ secrets.AWS_DEFAULT_REGION }}
azure_acr_hostname: ${{ secrets.AZURE_ACR_HOSTNAME }}
- azure_acr_user: ${{ secrets.AZURE_ACR_USER }}
- azure_acr_password: ${{ secrets.AZURE_ACR_PASSWORD }}
-
- name: Run tests
if: ${{ matrix.platform.arch != 'arm64' }}
uses: ./.github/actions/pytest
@@ -207,7 +215,15 @@ jobs:
echo ${K8S_NODE_NAME}
- name: Checkout repository
uses: actions/checkout@08eba0b27e820071cde6df949e0beb9ba4906955 # v4.3.0
-
+ - name: Docker Login
+ uses: ./.github/actions/docker-login
+ with:
+ ngc_ci_access_token: ${{ secrets.NGC_CI_ACCESS_TOKEN }}
+ aws_default_region: ${{ secrets.AWS_DEFAULT_REGION }}
+ aws_account_id: ${{ secrets.AWS_ACCOUNT_ID }}
+ azure_acr_hostname: ${{ secrets.AZURE_ACR_HOSTNAME }}
+ azure_acr_user: ${{ secrets.AZURE_ACR_USER }}
+ azure_acr_password: ${{ secrets.AZURE_ACR_PASSWORD }}
- name: Build Container
id: build-image
uses: ./.github/actions/docker-build
@@ -215,28 +231,23 @@ jobs:
framework: sglang
target: runtime
platform: 'linux/${{ matrix.platform.arch }}'
- ngc_ci_access_token: ${{ secrets.NGC_CI_ACCESS_TOKEN }}
ci_token: ${{ secrets.CI_TOKEN }}
aws_default_region: ${{ secrets.AWS_DEFAULT_REGION }}
sccache_s3_bucket: ${{ secrets.SCCACHE_S3_BUCKET }}
aws_account_id: ${{ secrets.AWS_ACCOUNT_ID }}
aws_access_key_id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws_secret_access_key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
-
- name: Docker Tag and Push
uses: ./.github/actions/docker-tag-push
with:
local_image: ${{ steps.build-image.outputs.image_tag }}
- push_tag: ai-dynamo/dynamo:${{ github.sha }}-sglang-${{ matrix.platform.arch }}
- # OPS-1145: Switch aws_push to true
- aws_push: 'false'
+ push_tags: ai-dynamo/dynamo:${{ github.sha }}-sglang-${{ matrix.platform.arch }}
+ conditional_tag: ${{ github.ref_name == 'main' && format('ai-dynamo/dynamo:main-sglang-{0}', matrix.platform.arch) || '' }}
+ aws_push: 'true'
azure_push: 'true'
aws_account_id: ${{ secrets.AWS_ACCOUNT_ID }}
aws_default_region: ${{ secrets.AWS_DEFAULT_REGION }}
azure_acr_hostname: ${{ secrets.AZURE_ACR_HOSTNAME }}
- azure_acr_user: ${{ secrets.AZURE_ACR_USER }}
- azure_acr_password: ${{ secrets.AZURE_ACR_PASSWORD }}
-
- name: Run tests
if: ${{ matrix.platform.arch != 'arm64' }}
uses: ./.github/actions/pytest
@@ -265,7 +276,15 @@ jobs:
echo ${K8S_NODE_NAME}
- name: Checkout code
uses: actions/checkout@08eba0b27e820071cde6df949e0beb9ba4906955 # v4.3.0
-
+ - name: Docker Login
+ uses: ./.github/actions/docker-login
+ with:
+ ngc_ci_access_token: ${{ secrets.NGC_CI_ACCESS_TOKEN }}
+ aws_default_region: ${{ secrets.AWS_DEFAULT_REGION }}
+ aws_account_id: ${{ secrets.AWS_ACCOUNT_ID }}
+ azure_acr_hostname: ${{ secrets.AZURE_ACR_HOSTNAME }}
+ azure_acr_user: ${{ secrets.AZURE_ACR_USER }}
+ azure_acr_password: ${{ secrets.AZURE_ACR_PASSWORD }}
- name: Build Container
id: build-image
uses: ./.github/actions/docker-build
@@ -273,28 +292,23 @@ jobs:
framework: trtllm
target: runtime
platform: 'linux/${{ matrix.platform.arch }}'
- ngc_ci_access_token: ${{ secrets.NGC_CI_ACCESS_TOKEN }}
ci_token: ${{ secrets.CI_TOKEN }}
aws_default_region: ${{ secrets.AWS_DEFAULT_REGION }}
sccache_s3_bucket: ${{ secrets.SCCACHE_S3_BUCKET }}
aws_account_id: ${{ secrets.AWS_ACCOUNT_ID }}
aws_access_key_id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws_secret_access_key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
-
- name: Docker Tag and Push
uses: ./.github/actions/docker-tag-push
with:
local_image: ${{ steps.build-image.outputs.image_tag }}
- push_tag: ai-dynamo/dynamo:${{ github.sha }}-trtllm-${{ matrix.platform.arch }}
- # OPS-1145: Switch aws_push to true
- aws_push: 'false'
+ push_tags: ai-dynamo/dynamo:${{ github.sha }}-trtllm-${{ matrix.platform.arch }}
+ conditional_tag: ${{ github.ref_name == 'main' && format('ai-dynamo/dynamo:main-trtllm-{0}', matrix.platform.arch) || '' }}
+ aws_push: 'true'
azure_push: 'true'
aws_account_id: ${{ secrets.AWS_ACCOUNT_ID }}
aws_default_region: ${{ secrets.AWS_DEFAULT_REGION }}
azure_acr_hostname: ${{ secrets.AZURE_ACR_HOSTNAME }}
- azure_acr_user: ${{ secrets.AZURE_ACR_USER }}
- azure_acr_password: ${{ secrets.AZURE_ACR_PASSWORD }}
-
- name: Run tests
if: ${{ matrix.platform.arch != 'arm64' }}
uses: ./.github/actions/pytest
@@ -396,6 +410,7 @@ jobs:
export KUBECONFIG=$(pwd)/.kubeconfig
kubectl config set-context --current --namespace=$NAMESPACE
- name: Run Fault Tolerance Tests
+ id: run-ft-tests
run: |
set -x
export KUBECONFIG=$(pwd)/.kubeconfig
@@ -417,14 +432,49 @@ jobs:
pip install -r container/deps/requirements.test.txt
pip install kubernetes==32.0.1 kubernetes_asyncio kr8s pyyaml requests tabulate pydantic
- # Run the pytest command (tests orchestrate K8s, don't need dynamo package)
+ # Create test-results directory
+ mkdir -p test-results
+
+ # Run the pytest command with JUnit XML output
+ set +e # Don't exit on test failures
pytest tests/fault_tolerance/deploy/test_deployment.py \
-m 'k8s and fault_tolerance' \
-k '${{ matrix.framework.test_scenario }}' \
-s -v \
--namespace ${NAMESPACE} \
--image ${IMAGE} \
- --client-type legacy
+ --client-type legacy \
+ --junitxml=test-results/pytest_ft_report.xml \
+ --tb=short
+
+ TEST_EXIT_CODE=$?
+ echo "TEST_EXIT_CODE=${TEST_EXIT_CODE}" >> $GITHUB_ENV
+ echo "๐งช Fault tolerance tests completed with exit code: ${TEST_EXIT_CODE}"
+
+ exit ${TEST_EXIT_CODE}
+ continue-on-error: true
+
+ - name: Process Fault Tolerance Test Results
+ if: always()
+ run: |
+ set -x
+
+ # Rename JUnit XML with unique naming if it exists
+ if [ -f "test-results/pytest_ft_report.xml" ]; then
+ mv "test-results/pytest_ft_report.xml" "test-results/pytest_ft_report_${{ matrix.framework.name }}_amd64_${{ github.run_id }}_${{ job.check_run_id }}.xml"
+ echo "โ
JUnit XML report renamed with unique identifier"
+ else
+ echo "โ ๏ธ JUnit XML report not found"
+ fi
+
+ - name: Upload Fault Tolerance Test Results
+ uses: actions/upload-artifact@v4
+ if: always()
+ with:
+ name: test-results-${{ matrix.framework.name }}-fault_tolerance-amd64-${{ github.run_id }}-${{ job.check_run_id }}
+ path: test-results/pytest_ft_report_${{ matrix.framework.name }}_amd64_${{ github.run_id }}_${{ job.check_run_id }}.xml
+ retention-days: 7
+
- name: Cleanup
if: always()
timeout-minutes: 5
@@ -448,56 +498,6 @@ jobs:
kubectl delete namespace $NAMESPACE || true
echo "Namespace $NAMESPACE completed."
- # Upload metrics for this workflow and all its jobs
- upload-workflow-metrics:
- name: Upload Workflow Metrics
- runs-on: gitlab
- if: always() # Always run, even if other jobs fail
- needs: [backend-status-check] # Wait for the status check which waits for all build jobs
-
- steps:
- - name: Check out repository
- uses: actions/checkout@v4
-
- - name: Set up Python
- uses: actions/setup-python@v4
- with:
- python-version: '3.x'
-
- - name: Install dependencies
- run: |
- python -m pip install --upgrade pip
- pip install requests
-
- - name: Download build metrics
- uses: actions/download-artifact@v4
- with:
- pattern: build-metrics-*
- path: build-metrics/
- merge-multiple: true
- continue-on-error: true # Don't fail if artifacts don't exist
-
- - name: Download test results
- uses: actions/download-artifact@v4
- with:
- pattern: test-results-*
- path: test-results/
- merge-multiple: true
- continue-on-error: true # Don't fail if artifacts don't exist
-
- - name: Upload Complete Workflow Metrics
- env:
- GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
- WORKFLOW_INDEX: ${{ secrets.WORKFLOW_INDEX }}
- JOB_INDEX: ${{ secrets.JOB_INDEX }}
- STEPS_INDEX: ${{ secrets.STEPS_INDEX }}
- # Container and test index configuration
- CONTAINER_INDEX: ${{ secrets.CONTAINER_INDEX }}
- TEST_INDEX: ${{ secrets.TEST_INDEX }}
- run: |
- # Upload complete workflow metrics including container metrics
- python3 .github/workflows/upload_complete_workflow_metrics.py
-
deploy-operator:
runs-on: cpu-amd-m5-2xlarge
# TODO: Uncomment this when we have a way to test the deploy-operator job in CI.
@@ -617,6 +617,7 @@ jobs:
kubectl config set-context --current --namespace=$NAMESPACE --kubeconfig "${KUBECONFIG}"
kubectl config get-contexts
- name: Run Tests
+ id: run-tests
env:
NAMESPACE: ${{ needs.deploy-operator.outputs.NAMESPACE }}
run: |
@@ -624,6 +625,9 @@ jobs:
export KUBECONFIG=$(pwd)/.kubeconfig
kubectl config set-context --current --namespace=$NAMESPACE
+ # Redirect all output to a log file while still showing it
+ exec > >(tee -a test-output.log) 2>&1
+
cd examples/backends/$FRAMEWORK
export FRAMEWORK_RUNTIME_IMAGE="${{ secrets.AZURE_ACR_HOSTNAME }}/ai-dynamo/dynamo:${{ github.sha }}-${FRAMEWORK}-amd64"
export KUBE_NS=$NAMESPACE
@@ -716,6 +720,32 @@ jobs:
echo "Test passed: Response matches expected format and content"
fi
exit $TEST_RESULT
+ continue-on-error: true
+
+ - name: Process Deployment Test Results
+ if: always()
+ run: |
+ set -x
+
+ # Create test-results directory
+ mkdir -p test-results
+
+ # Copy and rename the test output log with unique naming
+ if [ -f "test-output.log" ]; then
+ cp test-output.log "test-results/deploy_test_output_${{ env.FRAMEWORK }}_${{ matrix.profile }}_amd64_${{ github.run_id }}_${{ job.check_run_id }}.log"
+ echo "โ
Test output log copied to test-results/"
+ else
+ echo "โ ๏ธ test-output.log not found"
+ fi
+
+ - name: Upload Deployment Test Results
+ uses: actions/upload-artifact@v4
+ if: always()
+ with:
+ name: test-results-${{ env.FRAMEWORK }}-deploy-${{ matrix.profile }}-amd64-${{ github.run_id }}-${{ job.check_run_id }}
+ path: test-results/deploy_test_output_${{ env.FRAMEWORK }}_${{ matrix.profile }}_amd64_${{ github.run_id }}_${{ job.check_run_id }}.log
+ retention-days: 7
+
- name: Cleanup
if: always()
timeout-minutes: 5
diff --git a/.github/workflows/container-validation-dynamo.yml b/.github/workflows/container-validation-dynamo.yml
index c068eecabb..8a0e182fc6 100644
--- a/.github/workflows/container-validation-dynamo.yml
+++ b/.github/workflows/container-validation-dynamo.yml
@@ -33,8 +33,9 @@ jobs:
uses: docker/setup-buildx-action@v3
- name: Login to NGC
if: github.event.pull_request.head.repo.full_name == github.repository || github.event_name == 'push'
- run: |
- echo "${{ secrets.NGC_CI_ACCESS_TOKEN }}" | docker login nvcr.io -u '$oauthtoken' --password-stdin
+ uses: ./.github/actions/docker-login
+ with:
+ ngc_ci_access_token: ${{ secrets.NGC_CI_ACCESS_TOKEN }}
- name: Define Image Tag
id: define_image_tag
run: |
@@ -43,20 +44,20 @@ jobs:
env:
GITHUB_TOKEN: ${{ secrets.CI_TOKEN }}
run: |
- ./container/build.sh --tag ${{ steps.define_image_tag.outputs.image_tag }} --target dev --framework none
+ ./container/build.sh --tag ${{ steps.define_image_tag.outputs.image_tag }} --target dev --framework none --enable-kvbm
- name: Start services with docker-compose
working-directory: ./deploy
run: |
docker compose up -d nats-server etcd-server
- - name: Run Rust checks (block-manager + integration tests)
+ - name: Run Rust checks (block-manager + media-nixl + integration tests)
run: |
docker run --rm -w /workspace/lib/llm \
--name ${{ env.CONTAINER_ID }}_rust_checks \
${{ steps.define_image_tag.outputs.image_tag }} \
bash -ec 'rustup component add rustfmt clippy && \
cargo fmt -- --check && \
- cargo clippy --features block-manager --no-deps --all-targets -- -D warnings && \
- cargo test --locked --all-targets --features=block-manager && \
+ cargo clippy --features block-manager,media-nixl --no-deps --all-targets -- -D warnings && \
+ cargo test --locked --all-targets --features=block-manager,media-nixl && \
cargo test --locked --features integration -- --nocapture'
- name: Cleanup services
if: always()
diff --git a/.github/workflows/generate-docs.yml b/.github/workflows/generate-docs.yml
index e281129925..24f1a6cdea 100644
--- a/.github/workflows/generate-docs.yml
+++ b/.github/workflows/generate-docs.yml
@@ -13,18 +13,56 @@
# See the License for the specific language governing permissions and
# limitations under the License.
-name: Generate Documentation
+# Dynamo docs build and publish workflow
+# Build:
+# - Builds documentation using Docker container
+# - Creates artifact for downstream use
+# - Runs on: main, release/*, tags, PRs (docs changes only), manual dispatch
+#
+# Publish:
+# - Main branch: publish to S3 under 'dev' (development docs)
+# - Tagged commits: publish to S3 under 'archive/X.Y.Z' AND update 'latest' to match the release
+# - Manual dispatch: publish specified version to archive (does NOT update 'latest')
+# - PRs: no S3 publish (only internal preview deployment if targeting release branch)
+# - Version manifest: automatically updated in S3 when publishing new versions (versions1.json)
+# - Akamai: flushes cache for the target path after publish (when DOCS_AKAMAI_ENABLED=true)
+#
+# Required Configuration:
+# - Repository variable: DOCS_PUBLISH_S3_TARGET_PATH (prefix under S3 bucket, e.g., "dynamo")
+# - Repository variable: DOCS_BASE_URL (base URL for docs site, e.g., "https://docs.nvidia.com/dynamo")
+# - Secrets: AWS credentials (DOCS_AWS_ACCESS_KEY_ID, DOCS_AWS_SECRET_ACCESS_KEY, DOCS_AWS_S3_BUCKET, DOCS_AWS_REGION)
+# - Secrets: DOCS_TOKEN (GitHub PAT for PR preview deployment to external repo)
+# - Secrets (optional): DOCS_AWS_IAM_STS_ROLE (for OIDC authentication instead of IAM keys)
+# - Secrets (optional): DOCS_AKAMAI_* EdgeGrid credentials for cache flush
+# - Variable (optional): DOCS_AKAMAI_ENABLED (set to 'true' to enable Akamai cache flush)
+#
+# Commit message flags:
+# - '/skip-dev': skip publishing 'dev' on main branch
+# - '/not-latest': publish version to archive but don't update 'latest'
+name: Generate and Publish Documentation
on:
push:
branches:
- main
- release/*
+ tags:
+ - '*'
pull_request:
paths:
- 'docs/**'
- 'container/Dockerfile.docs'
- '.github/workflows/generate-docs.yml'
+ workflow_dispatch:
+ inputs:
+ version:
+ description: 'Optional: Version to publish (e.g., 1.2.3). If not provided, publishes as dev.'
+ required: false
+ type: string
+ ref:
+ description: 'Optional: Git ref to checkout (tag, branch, or SHA). Use to build docs from older tags.'
+ required: false
+ type: string
jobs:
build-docs:
@@ -33,13 +71,40 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@v4
+ with:
+ ref: ${{ inputs.ref || github.ref }}
+
+ - name: Determine docs version
+ id: version
+ shell: bash
+ run: |
+ VERSION="dev"
+ # Option 1: Tag push (e.g., v0.3.0 -> 0.3.0)
+ if [[ "${{ github.ref_type }}" == "tag" ]]; then
+ TAG="${{ github.ref_name }}"
+ if [[ "${TAG}" =~ ^v([0-9]+(\.[0-9]+){1,2}([._-](post|rc|dev)[0-9]+)?)$ ]]; then
+ VERSION="${BASH_REMATCH[1]}"
+ echo "::notice::Detected version from tag: ${VERSION}"
+ fi
+ # Option 2: Manual dispatch with version input
+ elif [[ -n "${{ inputs.version || '' }}" ]]; then
+ VERSION="${{ inputs.version }}"
+ echo "::notice::Using version from manual input: ${VERSION}"
+ fi
+
+ echo "version=${VERSION}" >> "$GITHUB_OUTPUT"
+ echo "Building docs for version: ${VERSION}"
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Generate documentation
+ env:
+ DOCS_VERSION: ${{ steps.version.outputs.version }}
run: |
- docker build -t docs-builder -f container/Dockerfile.docs .
+ docker build -t docs-builder \
+ --build-arg DYNAMO_DOCS_VERSION="${DOCS_VERSION}" \
+ -f container/Dockerfile.docs .
- name: Copy documentation out of container
run: |
@@ -159,3 +224,388 @@ jobs:
body: comment
});
}
+
+ publish-s3:
+ name: Publish docs to S3 and flush Akamai
+ needs: [build-docs]
+ runs-on: ubuntu-latest
+ if: ${{ github.event_name != 'pull_request' }}
+
+ permissions:
+ contents: read
+ id-token: write
+ actions: read
+
+ env:
+ S3_BUCKET: ${{ secrets.DOCS_AWS_S3_BUCKET }}
+ DOCS_DIR: dynamo-docs
+
+ steps:
+ - name: Checkout repository
+ uses: actions/checkout@v4
+
+ - name: Configure AWS credentials
+ uses: aws-actions/configure-aws-credentials@v4
+ with:
+ # Use OIDC (role assumption) if available, otherwise use IAM keys
+ role-to-assume: ${{ secrets.DOCS_AWS_IAM_STS_ROLE }}
+ aws-access-key-id: ${{ secrets.DOCS_AWS_ACCESS_KEY_ID }}
+ aws-secret-access-key: ${{ secrets.DOCS_AWS_SECRET_ACCESS_KEY }}
+ aws-region: ${{ secrets.DOCS_AWS_REGION }}
+
+ - name: Verify AWS identity
+ run: |
+ aws sts get-caller-identity >/dev/null || {
+ echo "::error::Failed to authenticate with AWS. Check credentials configuration."
+ exit 1
+ }
+
+ - name: Download documentation artifacts
+ uses: actions/download-artifact@v4
+ with:
+ pattern: dynamo-docs-*
+ path: ${{ env.DOCS_DIR }}
+
+ - name: Validate documentation artifacts
+ run: |
+ # The artifact is downloaded into a subdirectory, move contents up one level
+ ARTIFACT_DIR=$(find "${{ env.DOCS_DIR }}" -mindepth 1 -maxdepth 1 -type d | head -n 1)
+ if [[ -z "${ARTIFACT_DIR}" ]]; then
+ echo "::error::No artifact directory found"
+ exit 1
+ fi
+
+ echo "::notice::Moving contents from ${ARTIFACT_DIR} to ${{ env.DOCS_DIR }}"
+ mv "${ARTIFACT_DIR}"/* "${{ env.DOCS_DIR }}/"
+ rmdir "${ARTIFACT_DIR}"
+
+ # Validate extraction
+ if [[ ! -d "${{ env.DOCS_DIR }}" ]] || [[ -z "$(ls -A ${{ env.DOCS_DIR }})" ]]; then
+ echo "::error::Documentation directory is empty after extraction"
+ exit 1
+ fi
+
+ echo "::notice::Documentation size: $(du -sh ${{ env.DOCS_DIR }} | cut -f1)"
+
+ - name: Determine version and validate inputs
+ id: vars
+ env:
+ ARTIFACTS_PATH: dynamo-docs
+ TARGET_PATH: ${{ vars.DOCS_PUBLISH_S3_TARGET_PATH }}
+ COMMIT_MSG: ${{ github.event.head_commit.message || '' }}
+ shell: bash
+ run: |
+ set -euo pipefail
+
+ if [[ -z "${TARGET_PATH}" ]]; then
+ echo "::error::target-path was not provided. Set repository variable DOCS_PUBLISH_S3_TARGET_PATH."
+ exit 1
+ fi
+
+ if [[ ! -d "${ARTIFACTS_PATH}" ]]; then
+ echo "::error::Failed to find documentation artifacts at ${ARTIFACTS_PATH}"
+ exit 1
+ fi
+
+ # Determine version from various sources
+ VERSION=""
+ PUBLISH_TO_LATEST="false"
+
+ # Option 1: Direct tag push
+ if [[ "${{ github.ref_type }}" == "tag" ]]; then
+ TAG="${{ github.ref_name }}"
+ if [[ "${TAG}" =~ ^v([0-9]+(\.[0-9]+){1,2}([._-](post|rc|dev)[0-9]+)?)$ ]]; then
+ VERSION="${BASH_REMATCH[1]}"
+ echo "Detected version from tag: ${VERSION}"
+ PUBLISH_TO_LATEST="true"
+ fi
+
+ # Check for /not-latest flag in commit message
+ if [[ "${COMMIT_MSG}" =~ /not-latest ]]; then
+ PUBLISH_TO_LATEST="false"
+ echo "Detected /not-latest flag in commit message"
+ fi
+
+ # Option 2: Manual dispatch with version input
+ elif [[ -n "${{ inputs.version || '' }}" ]]; then
+ VERSION="${{ inputs.version }}"
+ echo "Using version from manual input: ${VERSION}"
+
+ # Don't publish to latest on manual dispatch
+ PUBLISH_TO_LATEST="false"
+ echo "Manual dispatch detected - will not publish to latest"
+ fi
+
+ echo "version=${VERSION}" >> "$GITHUB_OUTPUT"
+ echo "artifacts_path=${ARTIFACTS_PATH}" >> "$GITHUB_OUTPUT"
+ echo "publish_to_latest=${PUBLISH_TO_LATEST}" >> "$GITHUB_OUTPUT"
+
+ if [[ -n "${VERSION}" ]]; then
+ echo "::notice::Publishing version: ${VERSION}"
+ if [[ "${PUBLISH_TO_LATEST}" == "true" ]]; then
+ echo "::notice::Will also publish to 'latest'"
+ else
+ echo "::notice::Will NOT publish to 'latest'"
+ fi
+ else
+ echo "::notice::Publishing as dev (no version detected)"
+ fi
+
+ - name: Normalize S3 path
+ id: paths
+ env:
+ S3_TARGET_ROOT: ${{ env.S3_BUCKET }}
+ TARGET_PATH: ${{ vars.DOCS_PUBLISH_S3_TARGET_PATH }}
+ shell: bash
+ run: |
+ set -euo pipefail
+ S3_ROOT="${S3_TARGET_ROOT%/}"
+ S3_PATH="${TARGET_PATH#/}"
+ S3_PATH="${S3_PATH%/}"
+ echo "S3_TARGET_PATH...${S3_PATH}"
+ echo "s3_root=${S3_ROOT}" >> "$GITHUB_OUTPUT"
+ echo "s3_path=${S3_PATH}" >> "$GITHUB_OUTPUT"
+
+ - name: Publish version
+ if: ${{ steps.vars.outputs.version != '' }}
+ working-directory: ${{ env.DOCS_DIR }}
+ id: publish_version
+ env:
+ S3_ROOT: ${{ steps.paths.outputs.s3_root }}
+ S3_PATH: ${{ steps.paths.outputs.s3_path }}
+ VERSION: ${{ steps.vars.outputs.version }}
+ shell: bash
+ run: |
+ set -euo pipefail
+ echo "Publishing version ${VERSION} to ${S3_ROOT}/${S3_PATH}/archive/${VERSION}"
+ aws s3 sync . "${S3_ROOT}/${S3_PATH}/archive/${VERSION}" --exclude .buildinfo --exclude .doctrees --delete
+ echo "published=true" >> "$GITHUB_OUTPUT"
+
+ - name: Update versions manifest in S3
+ if: ${{ steps.publish_version.outputs.published == 'true' }}
+ env:
+ DOCS_BASE_URL: ${{ vars.DOCS_BASE_URL }}
+ S3_ROOT: ${{ steps.paths.outputs.s3_root }}
+ S3_PATH: ${{ steps.paths.outputs.s3_path }}
+ VERSION: ${{ steps.vars.outputs.version }}
+ shell: bash
+ run: |
+ set -euo pipefail
+
+ MANIFEST_URL="${S3_ROOT}/${S3_PATH}/versions1.json"
+ LOCAL_MANIFEST="/tmp/versions1.json"
+
+ # Download existing manifest from S3
+ aws s3 cp "${MANIFEST_URL}" "${LOCAL_MANIFEST}"
+
+ # Check if version already exists in manifest
+ if jq -e ".[] | select(.version == \"${VERSION}\")" "${LOCAL_MANIFEST}" > /dev/null 2>&1; then
+ echo "Version ${VERSION} already exists in manifest, skipping update"
+ else
+ echo "Adding version ${VERSION} to manifest"
+
+ # Create new version entry and insert after "dev" and "latest" (index 2)
+ jq --arg version "${VERSION}" \
+ --arg url "${DOCS_BASE_URL}/archive/${VERSION}/" \
+ '.[0:2] + [{version: $version, url: $url}] + .[2:]' \
+ "${LOCAL_MANIFEST}" > "${LOCAL_MANIFEST}.tmp"
+ mv "${LOCAL_MANIFEST}.tmp" "${LOCAL_MANIFEST}"
+
+ # Upload updated manifest to S3
+ aws s3 cp "${LOCAL_MANIFEST}" "${MANIFEST_URL}"
+ echo "โ
Added ${VERSION} to versions1.json"
+ fi
+
+ - name: Publish latest
+ if: ${{ steps.publish_version.outputs.published == 'true' && steps.vars.outputs.publish_to_latest == 'true' }}
+ working-directory: ${{ env.DOCS_DIR }}
+ id: publish_latest
+ env:
+ S3_ROOT: ${{ steps.paths.outputs.s3_root }}
+ S3_PATH: ${{ steps.paths.outputs.s3_path }}
+ shell: bash
+ run: |
+ set -euo pipefail
+ echo "Publishing latest to ${S3_ROOT}/${S3_PATH}/latest"
+ aws s3 sync . "${S3_ROOT}/${S3_PATH}/latest" --exclude .buildinfo --exclude .doctrees --delete
+ echo "published_latest=true" >> "$GITHUB_OUTPUT"
+
+ - name: Publish dev (main branch)
+ # Publish main branch to 'dev' directory for development docs
+ # Skip if commit message contains '/skip-dev' anywhere
+ if: ${{ github.ref == 'refs/heads/main' && !contains(github.event.head_commit.message || '', '/skip-dev') }}
+ working-directory: ${{ env.DOCS_DIR }}
+ id: publish_dev
+ env:
+ S3_ROOT: ${{ steps.paths.outputs.s3_root }}
+ S3_PATH: ${{ steps.paths.outputs.s3_path }}
+ shell: bash
+ run: |
+ set -euo pipefail
+ echo "Publishing development docs to ${S3_ROOT}/${S3_PATH}/dev"
+ aws s3 sync . "${S3_ROOT}/${S3_PATH}/dev" --exclude .buildinfo --exclude .doctrees --delete
+ echo "published=true" >> "$GITHUB_OUTPUT"
+
+ - name: Update versions manifest in all archive directories
+ # Update versions*.json in ALL archive directories so old docs show current version list
+ # Only run when publishing a version (not for dev builds)
+ if: ${{ steps.vars.outputs.version != '' }}
+ working-directory: ${{ env.DOCS_DIR }}
+ env:
+ S3_ROOT: ${{ steps.paths.outputs.s3_root }}
+ S3_PATH: ${{ steps.paths.outputs.s3_path }}
+ shell: bash
+ run: |
+ set -euo pipefail
+
+ # Get list of all archive directories
+ echo "Updating version manifests in all archive directories..."
+ ARCHIVE_DIRS=$(aws s3 ls "${S3_ROOT}/${S3_PATH}/archive/" | grep "PRE" | awk '{print $2}' | tr -d '/')
+
+ for file in versions.json versions1.json; do
+ if [[ -f "${file}" ]]; then
+ for dir in ${ARCHIVE_DIRS}; do
+ echo "Updating ${file} in archive/${dir}/"
+ aws s3 cp "${file}" "${S3_ROOT}/${S3_PATH}/archive/${dir}/${file}" || {
+ echo "::warning::Failed to update ${file} in archive/${dir}"
+ }
+ done
+ fi
+ done
+
+ echo "โ
Version manifests updated in all archive directories"
+
+ - name: Collect publish outputs
+ id: publish
+ env:
+ S3_PATH: ${{ steps.paths.outputs.s3_path }}
+ VERSION: ${{ steps.vars.outputs.version }}
+ PUBLISHED_VERSION: ${{ steps.publish_version.outputs.published || 'false' }}
+ PUBLISHED_LATEST: ${{ steps.publish_latest.outputs.published_latest || 'false' }}
+ PUBLISHED_DEV: ${{ steps.publish_dev.outputs.published || 'false' }}
+ shell: bash
+ run: |
+ set -euo pipefail
+ echo "s3_target_path=${S3_PATH}" >> "$GITHUB_OUTPUT"
+ echo "request_name=Publish docs from ${GITHUB_REPOSITORY}@${GITHUB_SHA:0:8}" >> "$GITHUB_OUTPUT"
+ echo "published_latest=${PUBLISHED_LATEST}" >> "$GITHUB_OUTPUT"
+
+ # Determine what to flush based on what was published
+ # - Version publish: flush entire path (versions.json updated in all archive dirs)
+ # - Dev publish only: flush just the dev directory
+ if [[ "${PUBLISHED_VERSION}" == "true" ]]; then
+ echo "perform_flush=true" >> "$GITHUB_OUTPUT"
+ echo "flush_path=${S3_PATH}" >> "$GITHUB_OUTPUT"
+ echo "::notice::Will flush entire ${S3_PATH} (version publish updates all archives)"
+ elif [[ "${PUBLISHED_DEV}" == "true" ]]; then
+ echo "perform_flush=true" >> "$GITHUB_OUTPUT"
+ echo "flush_path=${S3_PATH}/dev" >> "$GITHUB_OUTPUT"
+ echo "::notice::Will flush ${S3_PATH}/dev only (dev publish)"
+ else
+ echo "perform_flush=false" >> "$GITHUB_OUTPUT"
+ echo "flush_path=" >> "$GITHUB_OUTPUT"
+ fi
+
+ - name: Flush Akamai cache
+ # Only run if cache flush is needed AND Akamai is enabled
+ if: ${{ steps.publish.outputs.perform_flush == 'true' && vars.DOCS_AKAMAI_ENABLED == 'true' }}
+ env:
+ FLUSH_PATH: ${{ steps.publish.outputs.flush_path }}
+ REQUEST_NAME: ${{ steps.publish.outputs.request_name }}
+ # Use repository variable or secret for notification emails
+ # Format: JSON array of email addresses, e.g., '["email1@example.com", "email2@example.com"]'
+ EMAILS_JSON: ${{ secrets.DOCS_AKAMAI_NOTIFICATION_EMAILS }}
+ AKAMAI_CLIENT_SECRET: ${{ secrets.DOCS_AKAMAI_CLIENT_SECRET }}
+ AKAMAI_HOST: ${{ secrets.DOCS_AKAMAI_HOST }}
+ AKAMAI_ACCESS_TOKEN: ${{ secrets.DOCS_AKAMAI_ACCESS_TOKEN }}
+ AKAMAI_CLIENT_TOKEN: ${{ secrets.DOCS_AKAMAI_CLIENT_TOKEN }}
+ shell: bash
+ run: |
+ set -euo pipefail
+
+ # Install required tools for Akamai
+ sudo apt-get update -qq
+ sudo apt-get install -y -qq jq xsltproc
+ pip install -q httpie httpie-edgegrid
+
+ echo "Flushing Akamai cache for path: ${FLUSH_PATH}"
+
+ # Generate Akamai ECCU request XML using the XSLT template
+ XSLT_TEMPLATE="${GITHUB_WORKSPACE}/.github/workflows/templates/akamai-eccu-flush.xslt"
+
+ if [[ ! -f "${XSLT_TEMPLATE}" ]]; then
+ echo "::error::XSLT template file not found at ${XSLT_TEMPLATE}"
+ exit 1
+ fi
+
+ # Process XSLT to generate ECCU request XML
+ xsltproc --stringparam target-path "${FLUSH_PATH}" "${XSLT_TEMPLATE}" "${XSLT_TEMPLATE}" | \
+ sed 's/xmlns:match="x" //' > /tmp/flush.xml
+
+ # Prepare Akamai EdgeGrid credentials
+ echo "[default]" > ~/.edgerc
+ echo "client_secret = ${AKAMAI_CLIENT_SECRET}" >> ~/.edgerc
+ echo "host = ${AKAMAI_HOST}" >> ~/.edgerc
+ echo "access_token = ${AKAMAI_ACCESS_TOKEN}" >> ~/.edgerc
+ echo "client_token = ${AKAMAI_CLIENT_TOKEN}" >> ~/.edgerc
+
+ # Validate and prepare email list JSON
+ if [[ -n "${EMAILS_JSON}" ]]; then
+ echo "${EMAILS_JSON}" | jq -c . > /tmp/email-addresses.json || {
+ echo "::error::Invalid JSON format for AKAMAI_NOTIFICATION_EMAILS"
+ exit 1
+ }
+ else
+ echo '[]' > /tmp/email-addresses.json
+ fi
+
+ # Submit ECCU request to Akamai
+ http --ignore-stdin --auth-type edgegrid -a default: POST :/eccu-api/v1/requests \
+ metadata=@"/tmp/flush.xml" \
+ propertyName=docs.nvidia.com \
+ propertyNameExactMatch=true \
+ propertyType=HOST_HEADER \
+ requestName="${REQUEST_NAME}" \
+ statusUpdateEmails:=@/tmp/email-addresses.json || {
+ echo "::warning::Failed to flush Akamai cache, but continuing workflow"
+ # Don't fail the workflow if cache flush fails
+ }
+
+ - name: Summary
+ if: always()
+ env:
+ VERSION: ${{ steps.vars.outputs.version }}
+ S3_PATH: ${{ steps.paths.outputs.s3_path }}
+ PUBLISHED_VERSION: ${{ steps.publish_version.outputs.published || 'false' }}
+ PUBLISHED_LATEST: ${{ steps.publish.outputs.published_latest || 'false' }}
+ PUBLISHED_DEV: ${{ steps.publish_dev.outputs.published || 'false' }}
+ CACHE_FLUSHED: ${{ steps.publish.outputs.perform_flush }}
+ FLUSH_PATH: ${{ steps.publish.outputs.flush_path }}
+ run: |
+ echo "## ๐ Documentation Publishing Summary" >> $GITHUB_STEP_SUMMARY
+ echo "" >> $GITHUB_STEP_SUMMARY
+ echo "### Source" >> $GITHUB_STEP_SUMMARY
+ echo "- **Workflow Run:** [#${{ github.run_id }}](${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }})" >> $GITHUB_STEP_SUMMARY
+ echo "" >> $GITHUB_STEP_SUMMARY
+ echo "### Published To" >> $GITHUB_STEP_SUMMARY
+ if [[ "${PUBLISHED_VERSION}" == "true" ]]; then
+ echo "- โ
**Version:** \`${VERSION}\` โ \`s3://.../${S3_PATH}/archive/${VERSION}\`" >> $GITHUB_STEP_SUMMARY
+ if [[ "${PUBLISHED_LATEST}" == "true" ]]; then
+ echo "- โ
**Latest:** \`${VERSION}\` โ \`s3://.../${S3_PATH}/latest\` (updated to match release)" >> $GITHUB_STEP_SUMMARY
+ else
+ echo "- โญ๏ธ **Latest:** not updated (manual dispatch or /not-latest flag)" >> $GITHUB_STEP_SUMMARY
+ fi
+ fi
+ if [[ "${PUBLISHED_DEV}" == "true" ]]; then
+ echo "- โ
**Dev:** \`s3://.../${S3_PATH}/dev\` (main branch)" >> $GITHUB_STEP_SUMMARY
+ fi
+ if [[ "${PUBLISHED_VERSION}" != "true" ]] && [[ "${PUBLISHED_DEV}" != "true" ]]; then
+ echo "- โ ๏ธ No documentation was published" >> $GITHUB_STEP_SUMMARY
+ fi
+ echo "" >> $GITHUB_STEP_SUMMARY
+ echo "### Cache" >> $GITHUB_STEP_SUMMARY
+ if [[ "${CACHE_FLUSHED}" == "true" ]]; then
+ echo "- โ
Akamai cache flush requested for \`${FLUSH_PATH}\`" >> $GITHUB_STEP_SUMMARY
+ else
+ echo "- โญ๏ธ Cache flush skipped (nothing published or Akamai disabled)" >> $GITHUB_STEP_SUMMARY
+ fi
diff --git a/.github/workflows/nightly-ci.yml b/.github/workflows/nightly-ci.yml
index 84eba7b624..bee2426d1d 100644
--- a/.github/workflows/nightly-ci.yml
+++ b/.github/workflows/nightly-ci.yml
@@ -1,34 +1,96 @@
-name: Nightly CI
+# SPDX-FileCopyrightText: Copyright (c) 2024-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-License-Identifier: Apache-2.0
+
+name: Nightly CI pipeline
on:
schedule:
- - cron: '0 8 * * *' # Every day at 12:00 AM PST (08:00 UTC)
- workflow_dispatch:
+ - cron: '0 8 * * *' # Every day at 12:00 AM PST (08:00 UTC)
+
+permissions:
+ contents: read
+
+defaults:
+ run:
+ shell: bash --noprofile --norc -eo pipefail {0}
+
+env:
+ REGISTRY_IMAGE: ai-dynamo/dynamo
+ NIGHTLY_IMAGE_PREFIX: nightly
+
+############################## BUILD JOBS ##############################
jobs:
- vllm:
+ build-amd64:
+ name: Build ${{ matrix.framework }} (amd64)
+ runs-on: cpu-amd-m5-4xlarge
+ timeout-minutes: 120
strategy:
fail-fast: false
matrix:
- platform:
- - { arch: amd64, runner: gpu-l40-amd64 }
- - { arch: arm64, runner: cpu-arm-r8g-4xlarge }
- name: vllm (${{ matrix.platform.arch }})
- runs-on: ${{ matrix.platform.runner }}
+ framework: [vllm, trtllm, sglang]
+ env:
+ ECR_HOSTNAME: ${{ secrets.AWS_ACCOUNT_ID }}.dkr.ecr.${{ secrets.AWS_DEFAULT_REGION }}.amazonaws.com
steps:
- - name: Checkout code
- uses: actions/checkout@34e114876b0b11c390a56381ad16ebd13914f8d5 #v4.3.1
- - name: Build vLLM Docker Image
- id: build-vllm
+ - uses: actions/checkout@v4
+ - name: Login to Container Registries
+ uses: ./.github/actions/docker-login
+ with:
+ aws_default_region: ${{ secrets.AWS_DEFAULT_REGION }}
+ aws_account_id: ${{ secrets.AWS_ACCOUNT_ID }}
+ ngc_ci_access_token: ${{ secrets.NGC_CI_ACCESS_TOKEN }}
+ azure_acr_hostname: ${{ secrets.AZURE_ACR_HOSTNAME }}
+ azure_acr_user: ${{ secrets.AZURE_ACR_USER }}
+ azure_acr_password: ${{ secrets.AZURE_ACR_PASSWORD }}
+ - name: Pull existing images for cache
+ shell: bash
+ continue-on-error: true
+ run: |
+ echo "Attempting to pull existing images for layer caching..."
+ docker pull "${ECR_HOSTNAME}/${{ env.REGISTRY_IMAGE }}:main-${{ matrix.framework }}-framework-amd64" || echo "Framework image not found in cache"
+ docker pull "${ECR_HOSTNAME}/${{ env.REGISTRY_IMAGE }}:${{ env.NIGHTLY_IMAGE_PREFIX }}-${{ matrix.framework }}-amd64" || echo "Runtime image not found in cache"
+ echo "Cache pull completed"
+ - name: Build Framework Image
+ id: build_framework
uses: ./.github/actions/docker-build
with:
- framework: vllm
+ framework: ${{ matrix.framework }}
+ target: framework
+ platform: linux/amd64
+ base_image_tag: ''
+ runtime_image_tag: ''
+ cuda_version: ''
+ torch_backend: ''
+ ngc_ci_access_token: ${{ secrets.NGC_CI_ACCESS_TOKEN }}
+ ci_token: ${{ secrets.CI_TOKEN }}
+ aws_default_region: ${{ secrets.AWS_DEFAULT_REGION }}
+ sccache_s3_bucket: ${{ secrets.SCCACHE_S3_BUCKET }}
+ aws_account_id: ${{ secrets.AWS_ACCOUNT_ID }}
+ aws_access_key_id: ${{ secrets.AWS_ACCESS_KEY_ID }}
+ aws_secret_access_key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
+ image_tag: framework-${{ matrix.framework }}-amd64:${{ github.run_id }}
+ - name: Tag and Push Framework Images
+ uses: ./.github/actions/docker-tag-push
+ with:
+ local_image: framework-${{ matrix.framework }}-amd64:${{ github.run_id }}
+ push_tags: |
+ ${{ env.REGISTRY_IMAGE }}:main-${{ matrix.framework }}-framework-amd64
+ ${{ env.REGISTRY_IMAGE }}:main-${{ matrix.framework }}-framework-amd64-run-${{ github.run_id }}
+ aws_push: 'true'
+ azure_push: 'false'
+ aws_account_id: ${{ secrets.AWS_ACCOUNT_ID }}
+ aws_default_region: ${{ secrets.AWS_DEFAULT_REGION }}
+ - name: Build Runtime Image
+ id: build_runtime
+ uses: ./.github/actions/docker-build
+ with:
+ framework: ${{ matrix.framework }}
target: runtime
- platform: linux/${{ matrix.platform.arch }}
- base_image_tag: ${{ matrix.platform.arch == 'arm64' && '25.06-cuda12.9-devel-ubuntu24.04' || '' }}
- runtime_image_tag: ${{ matrix.platform.arch == 'arm64' && '12.9.0-runtime-ubuntu24.04' || '' }}
- cuda_version: ${{ matrix.platform.arch == 'arm64' && '129' || '' }}
- torch_backend: ${{ matrix.platform.arch == 'arm64' && 'cu129' || '' }}
+ platform: linux/amd64
+ base_image_tag: ''
+ runtime_image_tag: ''
+ cuda_version: ''
+ torch_backend: ''
ngc_ci_access_token: ${{ secrets.NGC_CI_ACCESS_TOKEN }}
ci_token: ${{ secrets.CI_TOKEN }}
aws_default_region: ${{ secrets.AWS_DEFAULT_REGION }}
@@ -36,70 +98,77 @@ jobs:
aws_account_id: ${{ secrets.AWS_ACCOUNT_ID }}
aws_access_key_id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws_secret_access_key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
- image_tag: nightly-vllm-${{ matrix.platform.arch }}
- - name: Tag and Push vLLM Nightly Image
+ image_tag: runtime-${{ matrix.framework }}-amd64:${{ github.run_id }}
+ - name: Tag and Push Runtime Images
uses: ./.github/actions/docker-tag-push
with:
- local_image: ${{ steps.build-vllm.outputs.image_tag }}
- # Tag the image nightly
- push_tag: ai-dynamo/dynamo:nightly-vllm-${{ matrix.platform.arch }}
- aws_push: 'false'
+ local_image: runtime-${{ matrix.framework }}-amd64:${{ github.run_id }}
+ push_tags: |
+ ${{ env.REGISTRY_IMAGE }}:${{ env.NIGHTLY_IMAGE_PREFIX }}-${{ matrix.framework }}-amd64
+ ${{ env.REGISTRY_IMAGE }}:${{ env.NIGHTLY_IMAGE_PREFIX }}-${{ matrix.framework }}-amd64-run-${{ github.run_id }}
+ aws_push: 'true'
azure_push: 'true'
aws_account_id: ${{ secrets.AWS_ACCOUNT_ID }}
aws_default_region: ${{ secrets.AWS_DEFAULT_REGION }}
azure_acr_hostname: ${{ secrets.AZURE_ACR_HOSTNAME }}
azure_acr_user: ${{ secrets.AZURE_ACR_USER }}
azure_acr_password: ${{ secrets.AZURE_ACR_PASSWORD }}
- - name: Run unit tests
- if: ${{ matrix.platform.arch != 'arm64' }}
- uses: ./.github/actions/pytest
- with:
- image_tag: nightly-vllm-${{ matrix.platform.arch }}
- pytest_marks: "vllm and unit"
- framework: "vllm"
- test_type: "unit"
- platform_arch: ${{ matrix.platform.arch }}
- - name: Run e2e tests
- if: ${{ matrix.platform.arch != 'arm64' }}
- uses: ./.github/actions/pytest
- with:
- image_tag: nightly-vllm-${{ matrix.platform.arch }}
- pytest_marks: "nightly and vllm and gpu_1"
- framework: "vllm"
- test_type: "e2e"
- platform_arch: ${{ matrix.platform.arch }}
- ####################
- # Framework Builds #
- ####################
- vllm-framework:
+ build-arm64:
+ name: Build ${{ matrix.framework }} (arm64)
+ runs-on: cpu-arm-r8g-4xlarge
+ timeout-minutes: 120
strategy:
fail-fast: false
matrix:
- platform:
- - { arch: amd64, runner: cpu-amd-m5-4xlarge }
- - { arch: arm64, runner: cpu-arm-r8g-4xlarge }
- name: vllm-framework (${{ matrix.platform.arch }})
- runs-on: ${{ matrix.platform.runner }}
+ include:
+ - framework: vllm
+ base_image_tag: '25.06-cuda12.9-devel-ubuntu24.04'
+ runtime_image_tag: '12.9.0-runtime-ubuntu24.04'
+ cuda_version: '129'
+ torch_backend: 'cu129'
+ - framework: trtllm
+ base_image_tag: '25.06-py3'
+ runtime_image_tag: ''
+ cuda_version: '129'
+ torch_backend: 'cu129'
+ - framework: sglang
+ base_image_tag: ''
+ runtime_image_tag: ''
+ cuda_version: ''
+ torch_backend: ''
env:
- FRAMEWORK: vllm
- steps: &framework-build-steps
- - name: Checkout code
- uses: actions/checkout@34e114876b0b11c390a56381ad16ebd13914f8d5 #v4.3.1
+ ECR_HOSTNAME: ${{ secrets.AWS_ACCOUNT_ID }}.dkr.ecr.${{ secrets.AWS_DEFAULT_REGION }}.amazonaws.com
+ steps:
+ - uses: actions/checkout@v4
+ - name: Login to Container Registries
+ uses: ./.github/actions/docker-login
with:
- ref: main
- - name: Build Image
- id: build-image
+ aws_default_region: ${{ secrets.AWS_DEFAULT_REGION }}
+ aws_account_id: ${{ secrets.AWS_ACCOUNT_ID }}
+ ngc_ci_access_token: ${{ secrets.NGC_CI_ACCESS_TOKEN }}
+ azure_acr_hostname: ${{ secrets.AZURE_ACR_HOSTNAME }}
+ azure_acr_user: ${{ secrets.AZURE_ACR_USER }}
+ azure_acr_password: ${{ secrets.AZURE_ACR_PASSWORD }}
+ - name: Pull existing images for cache
+ shell: bash
+ continue-on-error: true
+ run: |
+ echo "Attempting to pull existing images for layer caching..."
+ docker pull "${ECR_HOSTNAME}/${{ env.REGISTRY_IMAGE }}:main-${{ matrix.framework }}-framework-arm64" || echo "Framework image not found in cache"
+ docker pull "${ECR_HOSTNAME}/${{ env.REGISTRY_IMAGE }}:${{ env.NIGHTLY_IMAGE_PREFIX }}-${{ matrix.framework }}-arm64" || echo "Runtime image not found in cache"
+ echo "Cache pull completed"
+ - name: Build Framework Image
+ id: build_framework
uses: ./.github/actions/docker-build
with:
- framework: ${{ env.FRAMEWORK }}
+ framework: ${{ matrix.framework }}
target: framework
- platform: linux/${{ matrix.platform.arch }}
- # Ternary operations that are specific to vllm/arm64, empty str for all other combinations
- base_image_tag: ${{ (matrix.platform.arch == 'arm64' && env.FRAMEWORK == 'vllm') && '25.06-cuda12.9-devel-ubuntu24.04' || '' }}
- runtime_image_tag: ${{ (matrix.platform.arch == 'arm64' && env.FRAMEWORK == 'vllm') && '12.9.0-runtime-ubuntu24.04' || '' }}
- cuda_version: ${{ (matrix.platform.arch == 'arm64' && env.FRAMEWORK == 'vllm') && '129' || '' }}
- torch_backend: ${{ (matrix.platform.arch == 'arm64' && env.FRAMEWORK == 'vllm') && 'cu129' || '' }}
+ platform: linux/arm64
+ base_image_tag: ${{ matrix.base_image_tag }}
+ runtime_image_tag: ${{ matrix.runtime_image_tag }}
+ cuda_version: ${{ matrix.cuda_version }}
+ torch_backend: ${{ matrix.torch_backend }}
ngc_ci_access_token: ${{ secrets.NGC_CI_ACCESS_TOKEN }}
ci_token: ${{ secrets.CI_TOKEN }}
aws_default_region: ${{ secrets.AWS_DEFAULT_REGION }}
@@ -107,39 +176,630 @@ jobs:
aws_account_id: ${{ secrets.AWS_ACCOUNT_ID }}
aws_access_key_id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws_secret_access_key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
- - name: Docker Tag and Push
+ image_tag: framework-${{ matrix.framework }}-arm64:${{ github.run_id }}
+ - name: Tag and Push Framework Images
uses: ./.github/actions/docker-tag-push
with:
- local_image: ${{ steps.build-image.outputs.image_tag }}
- push_tag: ai-dynamo/dynamo:main-${{ env.FRAMEWORK }}-framework-${{ matrix.platform.arch }}
+ local_image: framework-${{ matrix.framework }}-arm64:${{ github.run_id }}
+ push_tags: |
+ ${{ env.REGISTRY_IMAGE }}:main-${{ matrix.framework }}-framework-arm64
+ ${{ env.REGISTRY_IMAGE }}:main-${{ matrix.framework }}-framework-arm64-run-${{ github.run_id }}
aws_push: 'true'
azure_push: 'false'
aws_account_id: ${{ secrets.AWS_ACCOUNT_ID }}
aws_default_region: ${{ secrets.AWS_DEFAULT_REGION }}
+ - name: Build Runtime Image
+ id: build_runtime
+ uses: ./.github/actions/docker-build
+ with:
+ framework: ${{ matrix.framework }}
+ target: runtime
+ platform: linux/arm64
+ base_image_tag: ${{ matrix.base_image_tag }}
+ runtime_image_tag: ${{ matrix.runtime_image_tag }}
+ cuda_version: ${{ matrix.cuda_version }}
+ torch_backend: ${{ matrix.torch_backend }}
+ ngc_ci_access_token: ${{ secrets.NGC_CI_ACCESS_TOKEN }}
+ ci_token: ${{ secrets.CI_TOKEN }}
+ aws_default_region: ${{ secrets.AWS_DEFAULT_REGION }}
+ sccache_s3_bucket: ${{ secrets.SCCACHE_S3_BUCKET }}
+ aws_account_id: ${{ secrets.AWS_ACCOUNT_ID }}
+ aws_access_key_id: ${{ secrets.AWS_ACCESS_KEY_ID }}
+ aws_secret_access_key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
+ image_tag: runtime-${{ matrix.framework }}-arm64:${{ github.run_id }}
+ - name: Tag and Push Runtime Images
+ uses: ./.github/actions/docker-tag-push
+ with:
+ local_image: runtime-${{ matrix.framework }}-arm64:${{ github.run_id }}
+ push_tags: |
+ ${{ env.REGISTRY_IMAGE }}:${{ env.NIGHTLY_IMAGE_PREFIX }}-${{ matrix.framework }}-arm64
+ ${{ env.REGISTRY_IMAGE }}:${{ env.NIGHTLY_IMAGE_PREFIX }}-${{ matrix.framework }}-arm64-run-${{ github.run_id }}
+ aws_push: 'true'
+ azure_push: 'true'
+ aws_account_id: ${{ secrets.AWS_ACCOUNT_ID }}
+ aws_default_region: ${{ secrets.AWS_DEFAULT_REGION }}
azure_acr_hostname: ${{ secrets.AZURE_ACR_HOSTNAME }}
azure_acr_user: ${{ secrets.AZURE_ACR_USER }}
azure_acr_password: ${{ secrets.AZURE_ACR_PASSWORD }}
- sglang-framework:
+
+############################## TEST JOBS ##############################
+
+ unit-tests:
+ name: ${{ matrix.framework }}-${{ matrix.arch.arch }}-unit
+ needs: [build-amd64, build-arm64]
+ if: always()
+ runs-on: ${{ matrix.arch.runner }}
+ timeout-minutes: 45
strategy:
fail-fast: false
matrix:
- platform:
- - { arch: amd64, runner: cpu-amd-m5-4xlarge }
- - { arch: arm64, runner: cpu-arm-r8g-4xlarge }
- name: sglang-framework (${{ matrix.platform.arch }})
- runs-on: ${{ matrix.platform.runner }}
- env:
- FRAMEWORK: sglang
- steps: *framework-build-steps
- trtllm-framework:
+ framework: [vllm, trtllm, sglang]
+ arch:
+ - arch: amd64
+ runner: gpu-l40-amd64
+ - arch: arm64
+ runner: cpu-arm-r8g-4xlarge
+ steps:
+ - uses: actions/checkout@v4
+ - name: Check if build succeeded
+ id: check_build
+ env:
+ GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
+ run: |
+ set +x
+ echo "Checking build status for ${{ matrix.framework }} (${{ matrix.arch.arch }})"
+ # Determine which build job to check
+ if [ "${{ matrix.arch.arch }}" = "amd64" ]; then
+ BUILD_JOB_NAME="Build ${{ matrix.framework }} (amd64)"
+ else
+ BUILD_JOB_NAME="Build ${{ matrix.framework }} (arm64)"
+ fi
+ # Query GitHub API for job status using curl (token from env to avoid log exposure)
+ JOBS=$(curl -s -S -L --fail-with-body \
+ -H "Authorization: Bearer ${GITHUB_TOKEN}" \
+ -H "Accept: application/vnd.github.v3+json" \
+ "https://api.github.com/repos/${{ github.repository }}/actions/runs/${{ github.run_id }}/jobs?per_page=100" 2>&1)
+ if [ $? -ne 0 ]; then
+ echo "Error: Failed to query GitHub API"
+ exit 1
+ fi
+ # Find the specific build job and check its conclusion
+ BUILD_STATUS=$(echo "$JOBS" | jq -r --arg job_name "$BUILD_JOB_NAME" '.jobs[] | select(.name == $job_name) | .conclusion')
+ echo "Build status for '$BUILD_JOB_NAME': $BUILD_STATUS"
+ if [ "$BUILD_STATUS" != "success" ]; then
+ echo "Build failed or did not complete successfully. Failing tests."
+ exit 1
+ fi
+ echo "Build succeeded. Proceeding with tests."
+ - name: Login to Container Registries
+ uses: ./.github/actions/docker-login
+ with:
+ aws_default_region: ${{ secrets.AWS_DEFAULT_REGION }}
+ aws_account_id: ${{ secrets.AWS_ACCOUNT_ID }}
+ - name: Pull nightly image
+ shell: bash
+ env:
+ ECR_HOSTNAME: ${{ secrets.AWS_ACCOUNT_ID }}.dkr.ecr.${{ secrets.AWS_DEFAULT_REGION }}.amazonaws.com
+ IMAGE_TAG: ${{ env.NIGHTLY_IMAGE_PREFIX }}-${{ matrix.framework }}-${{ matrix.arch.arch }}
+ run: |
+ docker pull ${ECR_HOSTNAME}/${{ env.REGISTRY_IMAGE }}:${IMAGE_TAG}
+ docker tag ${ECR_HOSTNAME}/${{ env.REGISTRY_IMAGE }}:${IMAGE_TAG} ${IMAGE_TAG}
+ - name: Run Unit Tests
+ uses: ./.github/actions/pytest
+ with:
+ image_tag: ${{ env.NIGHTLY_IMAGE_PREFIX }}-${{ matrix.framework }}-${{ matrix.arch.arch }}
+ pytest_marks: "unit and (nightly or post_merge or pre_merge)"
+ framework: ${{ matrix.framework }}
+ test_type: unit
+ platform_arch: ${{ matrix.arch.arch }}
+ cpu_limit: '8'
+ dry_run: ${{ matrix.arch.arch == 'arm64' && 'true' || 'false' }}
+
+ integration-tests:
+ name: ${{ matrix.framework }}-${{ matrix.arch.arch }}-integ
+ needs: [build-amd64, build-arm64]
+ if: always()
+ runs-on: ${{ matrix.arch.runner }}
+ timeout-minutes: ${{ matrix.arch.timeout }}
strategy:
fail-fast: false
matrix:
- platform:
- - { arch: amd64, runner: cpu-amd-m5-4xlarge }
- - { arch: arm64, runner: cpu-arm-r8g-4xlarge }
- name: trtllm-framework (${{ matrix.platform.arch }})
- runs-on: ${{ matrix.platform.runner }}
+ framework: [vllm, trtllm, sglang]
+ arch:
+ - arch: amd64
+ runner: gpu-l40-amd64
+ timeout: 90
+ - arch: arm64
+ runner: cpu-arm-r8g-4xlarge
+ timeout: 90
+ steps:
+ - uses: actions/checkout@v4
+ - name: Check if build succeeded
+ id: check_build
+ env:
+ GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
+ run: |
+ set +x
+ echo "Checking build status for ${{ matrix.framework }} (${{ matrix.arch.arch }})"
+ BUILD_JOB_NAME="Build ${{ matrix.framework }} (${{ matrix.arch.arch }})"
+ JOBS=$(curl -s -S -L --fail-with-body \
+ -H "Authorization: Bearer ${GITHUB_TOKEN}" \
+ -H "Accept: application/vnd.github.v3+json" \
+ "https://api.github.com/repos/${{ github.repository }}/actions/runs/${{ github.run_id }}/jobs?per_page=100" 2>&1)
+ if [ $? -ne 0 ]; then
+ echo "Error: Failed to query GitHub API"
+ exit 1
+ fi
+ BUILD_STATUS=$(echo "$JOBS" | jq -r --arg job_name "$BUILD_JOB_NAME" '.jobs[] | select(.name == $job_name) | .conclusion')
+ echo "Build status for '$BUILD_JOB_NAME': $BUILD_STATUS"
+ if [ "$BUILD_STATUS" != "success" ]; then
+ echo "Build failed or did not complete successfully. Marking tests as failed."
+ exit 1
+ fi
+ echo "Build succeeded. Proceeding with tests."
+ - name: Login to Container Registries
+ uses: ./.github/actions/docker-login
+ with:
+ aws_default_region: ${{ secrets.AWS_DEFAULT_REGION }}
+ aws_account_id: ${{ secrets.AWS_ACCOUNT_ID }}
+ - name: Pull nightly image
+ shell: bash
+ env:
+ ECR_HOSTNAME: ${{ secrets.AWS_ACCOUNT_ID }}.dkr.ecr.${{ secrets.AWS_DEFAULT_REGION }}.amazonaws.com
+ IMAGE_TAG: ${{ env.NIGHTLY_IMAGE_PREFIX }}-${{ matrix.framework }}-${{ matrix.arch.arch }}
+ run: |
+ docker pull ${ECR_HOSTNAME}/${{ env.REGISTRY_IMAGE }}:${IMAGE_TAG}
+ docker tag ${ECR_HOSTNAME}/${{ env.REGISTRY_IMAGE }}:${IMAGE_TAG} ${IMAGE_TAG}
+ - name: Run Integration Tests
+ uses: ./.github/actions/pytest
+ with:
+ image_tag: ${{ env.NIGHTLY_IMAGE_PREFIX }}-${{ matrix.framework }}-${{ matrix.arch.arch }}
+ pytest_marks: "integration and (nightly or post_merge or pre_merge)"
+ framework: ${{ matrix.framework }}
+ test_type: integration
+ platform_arch: ${{ matrix.arch.arch }}
+ dry_run: ${{ matrix.arch.arch == 'arm64' && 'true' || 'false' }}
+
+ e2e-single-gpu-tests:
+ name: ${{ matrix.framework }}-${{ matrix.arch.arch }}-1gpu-e2e
+ needs: [build-amd64, build-arm64]
+ if: always()
+ runs-on: ${{ matrix.arch.runner }}
+ timeout-minutes: ${{ matrix.arch.timeout }}
+ strategy:
+ fail-fast: false
+ matrix:
+ framework: [vllm, trtllm, sglang]
+ arch:
+ - arch: amd64
+ runner: gpu-l40-amd64
+ timeout: 120
+ - arch: arm64
+ runner: cpu-arm-r8g-4xlarge
+ timeout: 120
+ steps:
+ - uses: actions/checkout@v4
+ - name: Check if build succeeded
+ id: check_build
+ env:
+ GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
+ run: |
+ set +x
+ echo "Checking build status for ${{ matrix.framework }} (${{ matrix.arch.arch }})"
+ BUILD_JOB_NAME="Build ${{ matrix.framework }} (${{ matrix.arch.arch }})"
+ JOBS=$(curl -s -S -L --fail-with-body \
+ -H "Authorization: Bearer ${GITHUB_TOKEN}" \
+ -H "Accept: application/vnd.github.v3+json" \
+ "https://api.github.com/repos/${{ github.repository }}/actions/runs/${{ github.run_id }}/jobs?per_page=100" 2>&1)
+ if [ $? -ne 0 ]; then
+ echo "Error: Failed to query GitHub API"
+ echo "skip=true" >> $GITHUB_OUTPUT
+ exit 0
+ fi
+ BUILD_STATUS=$(echo "$JOBS" | jq -r --arg job_name "$BUILD_JOB_NAME" '.jobs[] | select(.name == $job_name) | .conclusion')
+ echo "Build status for '$BUILD_JOB_NAME': $BUILD_STATUS"
+ if [ "$BUILD_STATUS" != "success" ]; then
+ echo "Build failed or did not complete successfully. Failing tests."
+ exit 1
+ fi
+ echo "Build succeeded. Proceeding with tests."
+ - name: Login to Container Registries
+ uses: ./.github/actions/docker-login
+ with:
+ aws_default_region: ${{ secrets.AWS_DEFAULT_REGION }}
+ aws_account_id: ${{ secrets.AWS_ACCOUNT_ID }}
+ - name: Pull nightly image
+ shell: bash
+ env:
+ ECR_HOSTNAME: ${{ secrets.AWS_ACCOUNT_ID }}.dkr.ecr.${{ secrets.AWS_DEFAULT_REGION }}.amazonaws.com
+ IMAGE_TAG: ${{ env.NIGHTLY_IMAGE_PREFIX }}-${{ matrix.framework }}-${{ matrix.arch.arch }}
+ run: |
+ docker pull ${ECR_HOSTNAME}/${{ env.REGISTRY_IMAGE }}:${IMAGE_TAG}
+ docker tag ${ECR_HOSTNAME}/${{ env.REGISTRY_IMAGE }}:${IMAGE_TAG} ${IMAGE_TAG}
+ - name: Run E2E Tests (gpu_1)
+ uses: ./.github/actions/pytest
+ with:
+ image_tag: ${{ env.NIGHTLY_IMAGE_PREFIX }}-${{ matrix.framework }}-${{ matrix.arch.arch }}
+ pytest_marks: "${{ matrix.framework }} and e2e and gpu_1"
+ framework: ${{ matrix.framework }}
+ test_type: e2e-single-gpu
+ platform_arch: ${{ matrix.arch.arch }}
+ dry_run: ${{ matrix.arch.arch == 'arm64' && 'true' || 'false' }}
+
+ e2e-multi-gpu-tests:
+ name: ${{ matrix.framework }}-${{ matrix.arch.arch }}-2gpu-e2e
+ needs: [build-amd64, build-arm64]
+ if: always()
+ runs-on: ${{ matrix.arch.runner }}
+ timeout-minutes: ${{ matrix.arch.timeout }}
+ strategy:
+ fail-fast: false
+ matrix:
+ framework: [vllm, trtllm, sglang]
+ arch:
+ - arch: amd64
+ runner: gpu-l40-amd64
+ timeout: 150
+ - arch: arm64
+ runner: cpu-arm-r8g-4xlarge
+ timeout: 150
+ steps:
+ - uses: actions/checkout@v4
+ - name: Check if build succeeded
+ id: check_build
+ env:
+ GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
+ run: |
+ set +x
+ echo "Checking build status for ${{ matrix.framework }} (${{ matrix.arch.arch }})"
+ BUILD_JOB_NAME="Build ${{ matrix.framework }} (${{ matrix.arch.arch }})"
+ JOBS=$(curl -s -S -L --fail-with-body \
+ -H "Authorization: Bearer ${GITHUB_TOKEN}" \
+ -H "Accept: application/vnd.github.v3+json" \
+ "https://api.github.com/repos/${{ github.repository }}/actions/runs/${{ github.run_id }}/jobs?per_page=100" 2>&1)
+ if [ $? -ne 0 ]; then
+ echo "Error: Failed to query GitHub API"
+ echo "skip=true" >> $GITHUB_OUTPUT
+ exit 0
+ fi
+ BUILD_STATUS=$(echo "$JOBS" | jq -r --arg job_name "$BUILD_JOB_NAME" '.jobs[] | select(.name == $job_name) | .conclusion')
+ echo "Build status for '$BUILD_JOB_NAME': $BUILD_STATUS"
+ if [ "$BUILD_STATUS" != "success" ]; then
+ echo "Build failed or did not complete successfully. Marking tests as failed."
+ exit 1
+ fi
+ echo "Build succeeded. Proceeding with tests."
+ - name: Login to Container Registries
+ uses: ./.github/actions/docker-login
+ with:
+ aws_default_region: ${{ secrets.AWS_DEFAULT_REGION }}
+ aws_account_id: ${{ secrets.AWS_ACCOUNT_ID }}
+ - name: Pull nightly image
+ shell: bash
+ env:
+ ECR_HOSTNAME: ${{ secrets.AWS_ACCOUNT_ID }}.dkr.ecr.${{ secrets.AWS_DEFAULT_REGION }}.amazonaws.com
+ IMAGE_TAG: ${{ env.NIGHTLY_IMAGE_PREFIX }}-${{ matrix.framework }}-${{ matrix.arch.arch }}
+ run: |
+ docker pull ${ECR_HOSTNAME}/${{ env.REGISTRY_IMAGE }}:${IMAGE_TAG}
+ docker tag ${ECR_HOSTNAME}/${{ env.REGISTRY_IMAGE }}:${IMAGE_TAG} ${IMAGE_TAG}
+ - name: Run E2E Tests (gpu_2)
+ uses: ./.github/actions/pytest
+ with:
+ image_tag: ${{ env.NIGHTLY_IMAGE_PREFIX }}-${{ matrix.framework }}-${{ matrix.arch.arch }}
+ pytest_marks: "(nightly or post_merge or pre_merge) and e2e and gpu_2"
+ framework: ${{ matrix.framework }}
+ test_type: e2e-multi-gpu
+ platform_arch: ${{ matrix.arch.arch }}
+ dry_run: 'true'
+
+ # component-tests:
+ # name: ${{ matrix.framework }}-${{ matrix.arch.arch }}-${{ matrix.component }}
+ # needs: [build-amd64, build-arm64]
+ # if: always()
+ # runs-on: ${{ matrix.arch.runner }}
+ # timeout-minutes: ${{ matrix.arch.timeout }}
+ # strategy:
+ # fail-fast: false
+ # matrix:
+ # framework: [vllm, trtllm, sglang]
+ # arch:
+ # - arch: amd64
+ # runner: gpu-l40-amd64
+ # timeout: 90
+ # component: router
+ # marks: "nightly and router"
+ # - arch: amd64
+ # runner: gpu-l40-amd64
+ # timeout: 90
+ # component: planner
+ # marks: "nightly and planner"
+ # - arch: amd64
+ # runner: gpu-l40-amd64
+ # timeout: 150
+ # component: kvbm
+ # marks: "nightly and (kvbm or kvbm_v2)"
+ # - arch: arm64
+ # runner: cpu-arm-r8g-4xlarge
+ # timeout: 60
+ # component: router
+ # marks: "nightly and router"
+ # - arch: arm64
+ # runner: cpu-arm-r8g-4xlarge
+ # timeout: 60
+ # component: planner
+ # marks: "nightly and planner"
+ # - arch: arm64
+ # runner: cpu-arm-r8g-4xlarge
+ # timeout: 150
+ # component: kvbm
+ # marks: "nightly and (kvbm or kvbm_v2)"
+ # - arch: amd64
+ # runner: gpu-l40-amd64
+ # timeout: 90
+ # component: router
+ # marks: "nightly and router"
+ # - arch: amd64
+ # runner: gpu-l40-amd64
+ # timeout: 90
+ # component: planner
+ # marks: "nightly and planner"
+ # - arch: amd64
+ # runner: gpu-l40-amd64
+ # timeout: 150
+ # component: kvbm
+ # marks: "nightly and (kvbm or kvbm_v2)"
+ # - arch: arm64
+ # runner: cpu-arm-r8g-4xlarge
+ # timeout: 60
+ # component: router
+ # marks: "nightly and router"
+ # - arch: arm64
+ # runner: cpu-arm-r8g-4xlarge
+ # timeout: 60
+ # component: planner
+ # marks: "nightly and planner"
+ # - arch: arm64
+ # runner: cpu-arm-r8g-4xlarge
+ # timeout: 150
+ # component: kvbm
+ # marks: "nightly and (kvbm or kvbm_v2)"
+ # - arch: amd64
+ # runner: gpu-l40-amd64
+ # timeout: 90
+ # component: router
+ # marks: "nightly and router"
+ # - arch: amd64
+ # runner: gpu-l40-amd64
+ # timeout: 90
+ # component: planner
+ # marks: "nightly and planner"
+ # - arch: amd64
+ # runner: gpu-l40-amd64
+ # timeout: 150
+ # component: kvbm
+ # marks: "nightly and (kvbm or kvbm_v2)"
+ # - arch: arm64
+ # runner: cpu-arm-r8g-4xlarge
+ # timeout: 60
+ # component: router
+ # marks: "nightly and router"
+ # - arch: arm64
+ # runner: cpu-arm-r8g-4xlarge
+ # timeout: 60
+ # component: planner
+ # marks: "nightly and planner"
+ # - arch: arm64
+ # runner: cpu-arm-r8g-4xlarge
+ # timeout: 150
+ # component: kvbm
+ # marks: "nightly and (kvbm or kvbm_v2)"
+
+ # steps:
+ # - uses: actions/checkout@v4
+ # - name: Check if build succeeded
+ # id: check_build
+ # env:
+ # GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
+ # run: |
+ # set +x
+ # echo "Checking build status for ${{ matrix.framework }} (${{ matrix.arch.arch }})"
+
+ # if [ "${{ matrix.arch.arch }}" = "amd64" ]; then
+ # BUILD_JOB_NAME="Build ${{ matrix.framework }} (amd64)"
+ # else
+ # BUILD_JOB_NAME="Build ${{ matrix.framework }} (arm64)"
+ # fi
+
+ # JOBS=$(curl -s -S -L --fail-with-body \
+ # -H "Authorization: Bearer ${GITHUB_TOKEN}" \
+ # -H "Accept: application/vnd.github.v3+json" \
+ # "https://api.github.com/repos/${{ github.repository }}/actions/runs/${{ github.run_id }}/jobs?per_page=100" 2>&1)
+
+ # if [ $? -ne 0 ]; then
+ # echo "Error: Failed to query GitHub API"
+ # echo "skip=true" >> $GITHUB_OUTPUT
+ # exit 0
+ # fi
+
+ # BUILD_STATUS=$(echo "$JOBS" | jq -r --arg job_name "$BUILD_JOB_NAME" '.jobs[] | select(.name == $job_name) | .conclusion')
+
+ # echo "Build status for '$BUILD_JOB_NAME': $BUILD_STATUS"
+
+ # if [ "$BUILD_STATUS" != "success" ]; then
+ # echo "Build failed or did not complete successfully. Marking tests as failed."
+ # exit 1
+ # fi
+
+ # echo "Build succeeded. Proceeding with tests."
+ # - name: Login to Container Registries
+ # uses: ./.github/actions/docker-login
+ # with:
+ # aws_default_region: ${{ secrets.AWS_DEFAULT_REGION }}
+ # aws_account_id: ${{ secrets.AWS_ACCOUNT_ID }}
+ # - name: Pull nightly image
+ # shell: bash
+ # env:
+ # ECR_HOSTNAME: ${{ secrets.AWS_ACCOUNT_ID }}.dkr.ecr.${{ secrets.AWS_DEFAULT_REGION }}.amazonaws.com
+ # IMAGE_TAG: ${{ env.NIGHTLY_IMAGE_PREFIX }}-${{ matrix.framework }}-${{ matrix.arch.arch }}
+ # run: |
+ # docker pull ${ECR_HOSTNAME}/${{ env.REGISTRY_IMAGE }}:${IMAGE_TAG}
+ # docker tag ${ECR_HOSTNAME}/${{ env.REGISTRY_IMAGE }}:${IMAGE_TAG} ${IMAGE_TAG}
+ # - name: Run Component Tests (${{ matrix.component }})
+ # uses: ./.github/actions/pytest
+ # with:
+ # image_tag: ${{ env.NIGHTLY_IMAGE_PREFIX }}-${{ matrix.framework }}-${{ matrix.arch.arch }}
+ # pytest_marks: "${{ matrix.marks }}"
+ # framework: ${{ matrix.framework }}
+ # test_type: component-${{ matrix.component }}
+ # platform_arch: ${{ matrix.arch.arch }}
+
+ ############################## RESULTS SUMMARY ##############################
+ results-summary:
+ name: Results Summary
+ runs-on: ubuntu-latest
+ if: always()
+ needs: [build-amd64, build-arm64, unit-tests, integration-tests, e2e-single-gpu-tests, e2e-multi-gpu-tests] # component-tests
+ steps:
+ - name: Checkout code
+ uses: actions/checkout@v4
+ - name: Gather job metadata
+ id: gather
+ env:
+ GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
+ run: |
+ set +x -e
+ echo "# Nightly CI Results Summary" > results.md
+ echo "" >> results.md
+ echo "| Stage | Status | Runner | Duration (min) | Artifacts |" >> results.md
+ echo "|-------|--------|--------|----------------|-----------|" >> results.md
+
+ curl -s -S -L --fail-with-body \
+ -H "Authorization: Bearer ${GITHUB_TOKEN}" \
+ -H "Accept: application/vnd.github.v3+json" \
+ "https://api.github.com/repos/${{ github.repository }}/actions/runs/${{ github.run_id }}/jobs?per_page=100" \
+ 2>/dev/null | jq -c '.jobs[] | {id, name, runner_name, conclusion, started_at, completed_at}' > jobs.jsonl
+
+ while read job_entry; do
+ job_id=$(echo "$job_entry" | jq -r '.id')
+ name=$(echo "$job_entry" | jq -r '.name')
+ runner=$(echo "$job_entry" | jq -r '.runner_name')
+ status=$(echo "$job_entry" | jq -r '.conclusion')
+ started=$(echo "$job_entry" | jq -r '.started_at')
+ completed=$(echo "$job_entry" | jq -r '.completed_at')
+ minutes="N/A"
+ if [[ "$started" != "null" && "$completed" != "null" ]]; then
+ start_epoch=$(date -d "$started" +%s)
+ end_epoch=$(date -d "$completed" +%s)
+ minutes=$(( (end_epoch - start_epoch)/60 ))
+ fi
+ artifact_link="https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}#job-$job_id"
+ printf "| %s | %s | %s | %s | [Log & Artifacts](%s) |\n" "$name" "$status" "$runner" "$minutes" "$artifact_link" >> results.md
+ done < jobs.jsonl
+
+ echo "" >> results.md
+ echo "---" >> results.md
+ - name: Display workflow summary
+ run: cat results.md
+ - name: Upload results summary as job summary
+ run: cat results.md >> $GITHUB_STEP_SUMMARY
+ - name: Upload results as artifact for Slack
+ uses: actions/upload-artifact@v4
+ if: always()
+ with:
+ name: nightly-results-summary
+ path: results.md
+ retention-days: 7
+
+ ############################## SLACK NOTIFICATION ##############################
+ notify-slack:
+ name: Notify Slack
+ runs-on: cpu-amd-m5-4xlarge
+ if: always() && github.event_name == 'schedule' && !github.event.repository.fork
+ needs: results-summary
+ permissions:
+ contents: read
env:
- FRAMEWORK: trtllm
- steps: *framework-build-steps
+ HAS_SLACK_WEBHOOK: ${{ secrets.SLACK_NOTIFY_NIGHTLY_WEBHOOK_URL != '' }}
+ steps:
+ - name: Send Slack notification
+ if: env.HAS_SLACK_WEBHOOK == 'true'
+ continue-on-error: true
+ env:
+ GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
+ SLACK_WEBHOOK_URL: ${{ secrets.SLACK_NOTIFY_NIGHTLY_WEBHOOK_URL }}
+ RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
+ run: |
+ set -euo pipefail
+
+ JOBS_JSON=$(mktemp)
+ trap 'rm -f "$JOBS_JSON"' EXIT
+
+ if ! curl -sSL \
+ -H "Authorization: Bearer ${GITHUB_TOKEN}" \
+ -H "Accept: application/vnd.github+json" \
+ "https://api.github.com/repos/${{ github.repository }}/actions/runs/${{ github.run_id }}/jobs?per_page=100" \
+ > "$JOBS_JSON"; then
+ echo "Error: Failed to fetch job data from GitHub API"
+ exit 1
+ fi
+
+ if [ ! -s "$JOBS_JSON" ]; then
+ echo "Error: No job data received"
+ exit 1
+ fi
+
+ TOTAL_JOBS=$(jq '[.jobs[]] | length' "$JOBS_JSON")
+ SUCCESS_COUNT=$(jq '[.jobs[] | select(.conclusion == "success")] | length' "$JOBS_JSON")
+ FAILED_COUNT=$(jq '[.jobs[] | select(.conclusion == "failure")] | length' "$JOBS_JSON")
+
+ if [ "$FAILED_COUNT" -eq 0 ]; then
+ STATUS="Success โ
"
+ STATUS_EMOJI=":white_check_mark:"
+ else
+ STATUS="Failed โ"
+ STATUS_EMOJI=":x:"
+ fi
+
+ # Main message with summary
+ SUMMARY_TEXT="*Nightly CI Pipeline - ${STATUS}*"$'\n'"Summary: ${SUCCESS_COUNT}/${TOTAL_JOBS} jobs passed"$'\n'"<${RUN_URL}|View Workflow Summary>"
+
+ if [ "$FAILED_COUNT" -eq 0 ]; then
+ # Success - simple message
+ PAYLOAD=$(jq -n \
+ --arg text "$SUMMARY_TEXT" \
+ '{text: $text}')
+ else
+ # Failed - message with blocks
+ FAILED_JOBS=$(jq -r '.jobs[] | select(.conclusion == "failure") | "โข " + .name' "$JOBS_JSON")
+ FAILED_JOBS_TEXT="*Failed Jobs (${FAILED_COUNT}):*"$'\n'"${FAILED_JOBS}"
+
+ PAYLOAD=$(jq -n \
+ --arg summary "$SUMMARY_TEXT" \
+ --arg failed "$FAILED_JOBS_TEXT" \
+ '{
+ text: $summary,
+ blocks: [
+ {
+ type: "section",
+ text: {
+ type: "mrkdwn",
+ text: $summary
+ }
+ },
+ {
+ type: "section",
+ text: {
+ type: "mrkdwn",
+ text: $failed
+ }
+ }
+ ]
+ }')
+ fi
+
+ if curl -sSf -X POST -H "Content-Type: application/json" -d "$PAYLOAD" "$SLACK_WEBHOOK_URL"; then
+ echo "Slack notification sent successfully"
+ else
+ echo "Warning: Failed to send Slack notification"
+ exit 1
+ fi
diff --git a/.github/workflows/templates/README.md b/.github/workflows/templates/README.md
new file mode 100644
index 0000000000..add5d96a08
--- /dev/null
+++ b/.github/workflows/templates/README.md
@@ -0,0 +1,21 @@
+# Workflow Templates
+
+This directory contains reusable templates and utilities for GitHub Actions workflows.
+
+## Files
+
+### akamai-eccu-flush.xslt
+
+XSLT template for generating Akamai ECCU (Edge Content Control Utility) XML requests.
+
+**Purpose**: Generates XML for cache invalidation requests to Akamai CDN.
+
+**Usage**:
+```bash
+xsltproc --stringparam target-path "path/to/flush" \
+ akamai-eccu-flush.xslt akamai-eccu-flush.xslt > eccu-request.xml
+```
+
+**Used by**: `.github/workflows/publish-s3.yml` for flushing CDN cache after documentation deployment.
+
+The template creates a hierarchical XML structure with nested `match:recursive-dirs` elements representing the directory path to invalidate in the Akamai cache.
diff --git a/.github/workflows/templates/akamai-eccu-flush.xslt b/.github/workflows/templates/akamai-eccu-flush.xslt
new file mode 100644
index 0000000000..80a05c7523
--- /dev/null
+++ b/.github/workflows/templates/akamai-eccu-flush.xslt
@@ -0,0 +1,78 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ now
+
+
+
+
+
+
diff --git a/CODEOWNERS b/CODEOWNERS
index cbae9d0262..f0f982e24b 100644
--- a/CODEOWNERS
+++ b/CODEOWNERS
@@ -18,7 +18,7 @@ Cargo.toml @ai-dynamo/dynamo-rust-codeowners
# Dynamo deploy
/deploy/ @ai-dynamo/dynamo-deploy-codeowners
/examples/*/deploy/ @ai-dynamo/dynamo-deploy-codeowners
-
+/examples/backends/*/deploy/ @ai-dynamo/dynamo-deploy-codeowners
# CI/CD
/.github/ @ai-dynamo/Devops
/.github/workflows/*.ps1 @ai-dynamo/Devops
diff --git a/Cargo.lock b/Cargo.lock
index 417a3d1d5b..cba8d9f485 100644
--- a/Cargo.lock
+++ b/Cargo.lock
@@ -1602,6 +1602,19 @@ dependencies = [
"windows-sys 0.59.0",
]
+[[package]]
+name = "console"
+version = "0.16.1"
+source = "registry+https://github.com/rust-lang/crates.io-index"
+checksum = "b430743a6eb14e9764d4260d4c0d8123087d504eeb9c48f2b2a5e810dd369df4"
+dependencies = [
+ "encode_unicode",
+ "libc",
+ "once_cell",
+ "unicode-width 0.2.2",
+ "windows-sys 0.61.2",
+]
+
[[package]]
name = "console-api"
version = "0.8.1"
@@ -2370,7 +2383,7 @@ version = "0.11.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "658bce805d770f407bc62102fca7c2c64ceef2fbcb2b8bd19d2765ce093980de"
dependencies = [
- "console",
+ "console 0.15.11",
"shell-words",
"tempfile",
"thiserror 1.0.69",
@@ -2650,6 +2663,7 @@ dependencies = [
"bytes",
"candle-core 0.9.1 (registry+https://github.com/rust-lang/crates.io-index)",
"chrono",
+ "clap 4.5.53",
"criterion 0.3.6",
"cudarc",
"dashmap 5.5.3",
@@ -2671,6 +2685,7 @@ dependencies = [
"hyper 1.8.1",
"hyper-util",
"image",
+ "indicatif 0.18.3",
"insta",
"itertools 0.14.0",
"json-five",
@@ -4051,7 +4066,7 @@ dependencies = [
"dirs",
"futures",
"http 1.4.0",
- "indicatif",
+ "indicatif 0.17.11",
"libc",
"log",
"num_cpus",
@@ -4672,7 +4687,7 @@ version = "0.17.11"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "183b3088984b400f4cfac3620d5e076c84da5364016b4f49473de574b2586235"
dependencies = [
- "console",
+ "console 0.15.11",
"number_prefix",
"portable-atomic",
"rayon",
@@ -4680,6 +4695,19 @@ dependencies = [
"web-time",
]
+[[package]]
+name = "indicatif"
+version = "0.18.3"
+source = "registry+https://github.com/rust-lang/crates.io-index"
+checksum = "9375e112e4b463ec1b1c6c011953545c65a30164fbab5b581df32b3abf0dcb88"
+dependencies = [
+ "console 0.16.1",
+ "portable-atomic",
+ "unicode-width 0.2.2",
+ "unit-prefix",
+ "web-time",
+]
+
[[package]]
name = "inlinable_string"
version = "0.1.15"
@@ -4734,7 +4762,7 @@ version = "1.44.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b5c943d4415edd8153251b6f197de5eb1640e56d84e8d9159bea190421c73698"
dependencies = [
- "console",
+ "console 0.15.11",
"globset",
"once_cell",
"pest",
@@ -6135,7 +6163,7 @@ dependencies = [
"http 1.4.0",
"image",
"indexmap 2.12.1",
- "indicatif",
+ "indicatif 0.17.11",
"interprocess",
"itertools 0.14.0",
"libc",
@@ -11546,6 +11574,12 @@ dependencies = [
"rand 0.8.5",
]
+[[package]]
+name = "unit-prefix"
+version = "0.5.2"
+source = "registry+https://github.com/rust-lang/crates.io-index"
+checksum = "81e544489bf3d8ef66c953931f56617f423cd4b5494be343d9b9d3dda037b9a3"
+
[[package]]
name = "universal-hash"
version = "0.5.1"
diff --git a/benchmarks/profiler/profile_sla.py b/benchmarks/profiler/profile_sla.py
index 560c1000fe..cad24242f5 100644
--- a/benchmarks/profiler/profile_sla.py
+++ b/benchmarks/profiler/profile_sla.py
@@ -50,6 +50,7 @@
profile_prefill_aiconfigurator,
)
from benchmarks.profiler.utils.profiler_argparse import create_profiler_parser
+from benchmarks.profiler.webui.select_config import pick_config_with_webui
from deploy.utils.dynamo_deployment import (
DynamoDeploymentClient,
cleanup_remaining_deployments,
@@ -476,45 +477,57 @@ async def run_profile(args):
# Safety guards: no results โ exit early with a clear message
if not prefill_data.num_gpus:
logger.error("No prefill results produced; skipping recommendations.")
+ return
- # select best parallel mapping for prefill
- if min(prefill_data.ttft) > args.ttft:
- logger.warning(
- "No engine configuration satisfies the TTFT requirement, please try a smaller model or more powerful hardware"
+ if args.pick_with_webui:
+ # select best P/D config in webUI
+ selected_prefill_idx, selected_decode_idx = pick_config_with_webui(
+ prefill_data, decode_data, args
)
- selected_prefill_idx = int(np.argmin(np.array(prefill_data.ttft)))
else:
- valid_indices = [
- i for i, ttft in enumerate(prefill_data.ttft) if ttft <= args.ttft
- ]
- # Among valid TP sizes, select the one with highest throughput per GPU
- valid_thpts = [prefill_data.thpt_per_gpu[i] for i in valid_indices]
- max_thpt_idx = valid_indices[int(np.argmax(valid_thpts))]
- selected_prefill_idx = max_thpt_idx
- logger.info(
- f"Suggested prefill parallel mapping: {prefill_data.parallel_mapping_labels[selected_prefill_idx]} on {prefill_data.num_gpus[selected_prefill_idx]} GPU(s) (TTFT {prefill_data.ttft[selected_prefill_idx]:.2f} ms, throughput {prefill_data.thpt_per_gpu[selected_prefill_idx]:.2f} tokens/s/GPU)"
- )
+ # automatically select P/D config within SLA with the highest throughput/GPU
+ # select best parallel mapping for prefill
+ if min(prefill_data.ttft) > args.ttft:
+ logger.warning(
+ "No engine configuration satisfies the TTFT requirement, please try a smaller model or more powerful hardware"
+ )
+ selected_prefill_idx = int(np.argmin(np.array(prefill_data.ttft)))
+ else:
+ valid_indices = [
+ i
+ for i, ttft in enumerate(prefill_data.ttft)
+ if ttft <= args.ttft
+ ]
+ # Among valid TP sizes, select the one with highest throughput per GPU
+ valid_thpts = [prefill_data.thpt_per_gpu[i] for i in valid_indices]
+ max_thpt_idx = valid_indices[int(np.argmax(valid_thpts))]
+ selected_prefill_idx = max_thpt_idx
+ logger.info(
+ f"Suggested prefill parallel mapping: {prefill_data.parallel_mapping_labels[selected_prefill_idx]} on {prefill_data.num_gpus[selected_prefill_idx]} GPU(s) (TTFT {prefill_data.ttft[selected_prefill_idx]:.2f} ms, throughput {prefill_data.thpt_per_gpu[selected_prefill_idx]:.2f} tokens/s/GPU)"
+ )
- # select best parallel mapping for decode
- if not decode_data.num_gpus:
- logger.error("No decode results produced; skipping recommendations.")
- return
- if min(decode_data.itl) > args.itl:
- logger.warning(
- "No engine configuration satisfies the ITL requirement, please try a smaller model or more powerful hardware"
+ # select best parallel mapping for decode
+ if not decode_data.num_gpus:
+ logger.error(
+ "No decode results produced; skipping recommendations."
+ )
+ return
+ if min(decode_data.itl) > args.itl:
+ logger.warning(
+ "No engine configuration satisfies the ITL requirement, please try a smaller model or more powerful hardware"
+ )
+ selected_decode_idx = int(np.argmin(np.array(decode_data.itl)))
+ else:
+ valid_indices = [
+ i for i, itl in enumerate(decode_data.itl) if itl <= args.itl
+ ]
+ # Among valid TP sizes, select the one with highest throughput per GPU
+ valid_thpts = [decode_data.thpt_per_gpu[i] for i in valid_indices]
+ max_thpt_idx = valid_indices[int(np.argmax(valid_thpts))]
+ selected_decode_idx = max_thpt_idx
+ logger.info(
+ f"Suggested decode parallel mapping: {decode_data.parallel_mapping_labels[selected_decode_idx]} on {decode_data.num_gpus[selected_decode_idx]} GPU(s) (ITL {decode_data.itl[selected_decode_idx]:.2f} ms, throughput {decode_data.thpt_per_gpu[selected_decode_idx]:.2f} tokens/s/GPU)"
)
- selected_decode_idx = int(np.argmin(np.array(decode_data.itl)))
- else:
- valid_indices = [
- i for i, itl in enumerate(decode_data.itl) if itl <= args.itl
- ]
- # Among valid TP sizes, select the one with highest throughput per GPU
- valid_thpts = [decode_data.thpt_per_gpu[i] for i in valid_indices]
- max_thpt_idx = valid_indices[int(np.argmax(valid_thpts))]
- selected_decode_idx = max_thpt_idx
- logger.info(
- f"Suggested decode parallel mapping: {decode_data.parallel_mapping_labels[selected_decode_idx]} on {decode_data.num_gpus[selected_decode_idx]} GPU(s) (ITL {decode_data.itl[selected_decode_idx]:.2f} ms, throughput {decode_data.thpt_per_gpu[selected_decode_idx]:.2f} tokens/s/GPU)"
- )
if args.dry_run:
# use min value for prefill and decode GPU counts
diff --git a/benchmarks/profiler/utils/defaults.py b/benchmarks/profiler/utils/defaults.py
index c15b510d7c..f0f97c635b 100644
--- a/benchmarks/profiler/utils/defaults.py
+++ b/benchmarks/profiler/utils/defaults.py
@@ -30,6 +30,10 @@
AIPERF_PREFILL_BENCHMARK_OSL = 5
AIPERF_PREFILL_ATTN_DP_NUM_REQ_RATIO = 4
+# Cost calculation defaults
+# TODO: allow user to configure this in GUI
+GPU_COST_PER_HOUR = 3.0 # Cost per GPU per hour in dollars
+
class EngineType(str, Enum):
PREFILL = "prefill"
diff --git a/benchmarks/profiler/utils/pareto.py b/benchmarks/profiler/utils/pareto.py
index 0ab1104673..9e8d52de54 100644
--- a/benchmarks/profiler/utils/pareto.py
+++ b/benchmarks/profiler/utils/pareto.py
@@ -4,33 +4,39 @@
def compute_pareto(x, y):
"""
- compute the pareto front (top-left is better) for the given x and y values
- return sorted lists of the x and y values for the pareto front
+ Compute the pareto front (top-left is better) for the given x and y values.
+
+ Returns:
+ tuple: (xs, ys, indices) where:
+ - xs: list of x values on the pareto front
+ - ys: list of y values on the pareto front
+ - indices: list of original indices corresponding to the pareto points
"""
# Validate inputs
if x is None or y is None:
- return [], []
+ return [], [], []
if len(x) != len(y):
raise ValueError("x and y must have the same length")
if len(x) == 0:
- return [], []
+ return [], [], []
- # Build point list and sort by x asc, then y desc so we prefer smaller x and larger y.
- points = list(zip(x, y))
+ # Build point list with original indices and sort by x asc, then y desc
+ points = [(x[i], y[i], i) for i in range(len(x))]
points.sort(key=lambda p: (p[0], -p[1]))
- # Single pass to keep only non-dominated points (minimize x, maximize y).
+ # Single pass to keep only non-dominated points (minimize x, maximize y)
pareto = []
max_y = float("-inf")
- for px, py in points:
+ for px, py, idx in points:
if py > max_y:
- pareto.append((px, py))
+ pareto.append((px, py, idx))
max_y = py
# Return sorted by x ascending for convenience
pareto.sort(key=lambda p: (p[0], p[1]))
- xs = [px for px, _ in pareto]
- ys = [py for _, py in pareto]
- return xs, ys
+ xs = [px for px, _, _ in pareto]
+ ys = [py for _, py, _ in pareto]
+ indices = [idx for _, _, idx in pareto]
+ return xs, ys, indices
diff --git a/benchmarks/profiler/utils/plot.py b/benchmarks/profiler/utils/plot.py
index 10c7077022..68e14b1b4f 100644
--- a/benchmarks/profiler/utils/plot.py
+++ b/benchmarks/profiler/utils/plot.py
@@ -21,6 +21,7 @@
from matplotlib import cm
from scipy.interpolate import griddata
+from benchmarks.profiler.utils.defaults import GPU_COST_PER_HOUR
from benchmarks.profiler.utils.pareto import compute_pareto
logger = logging.getLogger(__name__)
@@ -297,13 +298,11 @@ def plot_pd_joint_results(isl, osl, prefill_data, decode_data, output_dir):
decode_data: DecodeProfileData instance containing profiling results
output_dir: directory to save the plot
"""
- GPU_COST_PER_HOUR = 3.0 # $3/hour
-
# compute pareto front for prefill
- p_ttft, p_thpt = compute_pareto(prefill_data.ttft, prefill_data.thpt_per_gpu)
+ p_ttft, p_thpt, _ = compute_pareto(prefill_data.ttft, prefill_data.thpt_per_gpu)
# compute pareto front for decode
- d_itl, d_thpt = compute_pareto(decode_data.itl, decode_data.thpt_per_gpu)
+ d_itl, d_thpt, _ = compute_pareto(decode_data.itl, decode_data.thpt_per_gpu)
# convert to cost per thousand requests
p_ttft = np.array(p_ttft)
diff --git a/benchmarks/profiler/utils/profiler_argparse.py b/benchmarks/profiler/utils/profiler_argparse.py
index 4a35ef8387..ee84075f53 100644
--- a/benchmarks/profiler/utils/profiler_argparse.py
+++ b/benchmarks/profiler/utils/profiler_argparse.py
@@ -3,6 +3,7 @@
import argparse
import ast
+import os
from typing import Any, Dict
import yaml
@@ -84,6 +85,8 @@ def create_profiler_parser() -> argparse.Namespace:
aic_backend: String (aiconfigurator backend of the target model, if not provided, will use args.backend, default: "")
aic_backend_version: String (specify backend version when using aiconfigurator to estimate perf, default: None)
dry_run: Boolean (dry run the profile job, default: False)
+ pick_with_webui: Boolean (pick the best parallelization mapping using webUI, default: False)
+ webui_port: Int (webUI port, default: $PROFILER_WEBUI_PORT or 8000)
sla:
isl: Int (target input sequence length, default: 3000)
osl: Int (target output sequence length, default: 500)
@@ -113,6 +116,8 @@ def create_profiler_parser() -> argparse.Namespace:
help="Configuration as Python dict literal, YAML, or JSON string. CLI args override config values. "
"Example: \"{'engine': {'backend': 'vllm', 'config': '/path'}, 'sla': {'isl': 3000}}\"",
)
+
+ # CLI arguments with config-aware defaults (using nested .get() for cleaner code)
parser.add_argument(
"--model",
type=str,
@@ -126,7 +131,6 @@ def create_profiler_parser() -> argparse.Namespace:
help="Container image to use for DGD components (frontend, planner, workers). Overrides images in config file.",
)
- # CLI arguments with config-aware defaults (using nested .get() for cleaner code)
parser.add_argument(
"--namespace",
type=str,
@@ -233,6 +237,23 @@ def create_profiler_parser() -> argparse.Namespace:
default=config.get("hardware", {}).get("enable_gpu_discovery", False),
help="Enable automatic GPU discovery from Kubernetes cluster nodes. When enabled, overrides any manually specified hardware configuration. Requires cluster-wide node access permissions.",
)
+ parser.add_argument(
+ "--pick-with-webui",
+ action="store_true",
+ default=config.get("sweep", {}).get("pick_with_webui", False),
+ help="Pick the best parallelization mapping using webUI",
+ )
+
+ default_webui_port = 8000
+ webui_port_env = os.environ.get("PROFILER_WEBUI_PORT")
+ if webui_port_env:
+ default_webui_port = int(webui_port_env)
+ parser.add_argument(
+ "--webui-port",
+ type=int,
+ default=config.get("sweep", {}).get("webui_port", default_webui_port),
+ help="WebUI port",
+ )
# Dynamically add all planner arguments from planner_argparse.py
add_planner_arguments_to_parser(parser, prefix="planner-")
diff --git a/benchmarks/profiler/webui/data_template.json b/benchmarks/profiler/webui/data_template.json
new file mode 100644
index 0000000000..f18d67eda2
--- /dev/null
+++ b/benchmarks/profiler/webui/data_template.json
@@ -0,0 +1,98 @@
+{
+ "settings": {
+ "allow_confirm_datapoint": true,
+ "hide_show_config": true
+ },
+ "prefill": {
+ "chart": {
+ "labels": [],
+ "datasets": [
+ {
+ "label": "Prefill Performance",
+ "data": [],
+ "backgroundColor": "#1f77b4",
+ "borderColor": "#1f77b4"
+ }
+ ],
+ "target_line": {
+ "value": 0.0,
+ "label": "Target TTFT: ? ms"
+ },
+ "axes": {
+ "x": {
+ "title": "Time to First Token (ms)",
+ "min": 0
+ },
+ "y": {
+ "title": "Prefill Throughput per GPU (tokens/s/GPU)",
+ "min": 0
+ }
+ }
+ },
+ "table": {
+ "columns": [
+ "GPUs",
+ "TTFT (ms)",
+ "Throughput (tokens/s/GPU)",
+ "Action"
+ ],
+ "data": []
+ }
+ },
+ "decode": {
+ "chart": {
+ "datasets": [],
+ "target_line": {
+ "value": 0.0,
+ "label": "Target ITL: ? ms"
+ },
+ "axes": {
+ "x": {
+ "title": "Inter Token Latency (ms)",
+ "min": 0
+ },
+ "y": {
+ "title": "Decode Throughput per GPU (tokens/s/GPU)",
+ "min": 0
+ }
+ }
+ },
+ "table": {
+ "columns": [
+ "GPUs",
+ "ITL (ms)",
+ "Throughput (tokens/s/GPU)",
+ "Action"
+ ],
+ "data": []
+ }
+ },
+ "cost": {
+ "chart": {
+ "datasets": [],
+ "axes": {
+ "x": {
+ "title": "Tokens per User",
+ "min": 0
+ },
+ "y": {
+ "title": "Cost ($)",
+ "min": 0
+ }
+ },
+ "title": "Cost Per 1000 ? requests"
+ },
+ "table": {
+ "columns": [
+ "TTFT (ms)",
+ "Prefill Thpt (tokens/s/GPU)",
+ "ITL (ms)",
+ "Decode Thpt (tokens/s/GPU)",
+ "Tokens/User",
+ "Cost ($)",
+ "Action"
+ ],
+ "data": []
+ }
+ }
+}
diff --git a/benchmarks/profiler/webui/select_config.py b/benchmarks/profiler/webui/select_config.py
new file mode 100644
index 0000000000..c8cd894882
--- /dev/null
+++ b/benchmarks/profiler/webui/select_config.py
@@ -0,0 +1,115 @@
+# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-License-Identifier: Apache-2.0
+
+import json
+import logging
+import os
+import queue
+from pathlib import Path
+
+from benchmarks.profiler.webui.utils import (
+ PlotType,
+ create_gradio_interface,
+ create_selection_handler,
+ populate_cost_data,
+ populate_decode_data,
+ populate_prefill_data,
+ wait_for_selection,
+)
+
+logger = logging.getLogger(__name__)
+logger.setLevel(logging.INFO)
+console_handler = logging.StreamHandler()
+console_handler.setLevel(logging.INFO)
+formatter = logging.Formatter(
+ "%(asctime)s - %(name)s - %(levelname)s - %(message)s", "%Y-%m-%d %H:%M:%S"
+)
+console_handler.setFormatter(formatter)
+logger.addHandler(console_handler)
+
+
+def generate_config_data(prefill_data, decode_data, args):
+ """
+ Generate JSON data file for WebUI from profiling results.
+
+ Args:
+ prefill_data: PrefillProfileData instance
+ decode_data: DecodeProfileData instance
+ args: Arguments containing SLA targets (ttft, itl, isl, osl) and output_dir
+
+ Returns a JSON data file for WebUI consumption,
+ see https://github.com/ai-dynamo/aiconfigurator/blob/main/src/aiconfigurator/webapp/components/profiling/standalone/sample_profiling_data.json for more details
+ """
+ # Load template
+ template_path = Path(__file__).parent / "data_template.json"
+ with open(template_path, "r") as f:
+ data = json.load(f)
+
+ # Construct output path
+ output_path = os.path.join(args.output_dir, "webui_data.json")
+
+ # Set SLA targets
+ data[PlotType.PREFILL]["chart"]["target_line"]["value"] = args.ttft
+ data[PlotType.PREFILL]["chart"]["target_line"][
+ "label"
+ ] = f"Target TTFT: {args.ttft} ms"
+
+ data[PlotType.DECODE]["chart"]["target_line"]["value"] = args.itl
+ data[PlotType.DECODE]["chart"]["target_line"][
+ "label"
+ ] = f"Target ITL: {args.itl} ms"
+
+ data[PlotType.COST]["chart"][
+ "title"
+ ] = f"Cost Per 1000 i{args.isl}o{args.osl} requests"
+
+ # Populate data sections
+ populate_prefill_data(data, prefill_data)
+ populate_decode_data(data, decode_data)
+ populate_cost_data(data, prefill_data, decode_data, args)
+
+ # Save JSON file
+ os.makedirs(os.path.dirname(output_path), exist_ok=True)
+ with open(output_path, "w") as f:
+ json.dump(data, f, indent=4)
+
+ logger.info(f"Generated WebUI config data at {output_path}")
+ return data
+
+
+def pick_config_with_webui(prefill_data, decode_data, args):
+ """
+ Launch WebUI for user to pick configurations.
+
+ Args:
+ prefill_data: PrefillProfileData instance
+ decode_data: DecodeProfileData instance
+ args: Arguments containing SLA targets and output_dir
+
+ Returns:
+ tuple[int, int]: (selected_prefill_idx, selected_decode_idx)
+ """
+ # Generate JSON data file and load it
+ generate_config_data(prefill_data, decode_data, args)
+
+ output_path = os.path.join(args.output_dir, "webui_data.json")
+ with open(output_path, "r") as f:
+ json_data_str = f.read()
+ data_dict = json.loads(json_data_str)
+
+ logger.info(f"Launching WebUI on port {args.webui_port}...")
+
+ # Queue to communicate selection from UI to main thread
+ selection_queue: queue.Queue[tuple[int | None, int | None]] = queue.Queue()
+
+ # Track individual selections
+ prefill_selection = {"idx": None}
+ decode_selection = {"idx": None}
+
+ # Create selection handler and Gradio interface
+ handle_selection = create_selection_handler(
+ data_dict, selection_queue, prefill_selection, decode_selection
+ )
+ demo = create_gradio_interface(json_data_str, handle_selection)
+
+ return wait_for_selection(demo, selection_queue, args.webui_port)
diff --git a/benchmarks/profiler/webui/utils.py b/benchmarks/profiler/webui/utils.py
new file mode 100644
index 0000000000..749d0880a5
--- /dev/null
+++ b/benchmarks/profiler/webui/utils.py
@@ -0,0 +1,414 @@
+# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-License-Identifier: Apache-2.0
+
+import json
+import logging
+import queue
+import threading
+from enum import Enum
+
+import gradio as gr
+import numpy as np
+from aiconfigurator.webapp.components.profiling import (
+ create_performance_results_section,
+ create_profiling_ui_components,
+ inject_profiling_assets,
+ load_profiling_javascript,
+)
+
+from benchmarks.profiler.utils.defaults import GPU_COST_PER_HOUR
+from benchmarks.profiler.utils.pareto import compute_pareto
+
+logger = logging.getLogger(__name__)
+
+
+class PlotType(str, Enum):
+ """Enum for the three plot/config types in the WebUI."""
+
+ PREFILL = "prefill"
+ DECODE = "decode"
+ COST = "cost"
+
+
+# Color palette for chart datasets
+# TODO: handle case with more than 8 lines
+CHART_COLORS = [
+ "#1f77b4", # blue
+ "#ff7f0e", # orange
+ "#2ca02c", # green
+ "#d62728", # red
+ "#9467bd", # purple
+ "#8c564b", # brown
+ "#e377c2", # pink
+ "#7f7f7f", # gray
+]
+
+# TODO: is this too long?
+WEB_UI_SELECTION_TIMEOUT = 3600
+
+
+def populate_prefill_data(data, prefill_data):
+ """Populate prefill chart and table data."""
+ if not prefill_data.num_gpus:
+ return
+
+ # Get unique GPU counts for labels
+ unique_gpus = sorted(set(prefill_data.num_gpus))
+ data[PlotType.PREFILL]["chart"]["labels"] = [f"{gpu} GPUs" for gpu in unique_gpus]
+
+ # Populate chart data points
+ chart_data = []
+ for i, (gpu, ttft, thpt, label) in enumerate(
+ zip(
+ prefill_data.num_gpus,
+ prefill_data.ttft,
+ prefill_data.thpt_per_gpu,
+ prefill_data.parallel_mapping_labels,
+ )
+ ):
+ chart_data.append(
+ {
+ "x": round(ttft, 2),
+ "y": round(thpt, 2),
+ "gpu": gpu,
+ "tableIdx": i,
+ "gpuLabel": f"{gpu} GPUs [{label}]",
+ }
+ )
+ data[PlotType.PREFILL]["chart"]["datasets"][0]["data"] = chart_data
+
+ # Populate table data
+ table_data = []
+ for i, (gpu, ttft, thpt, label) in enumerate(
+ zip(
+ prefill_data.num_gpus,
+ prefill_data.ttft,
+ prefill_data.thpt_per_gpu,
+ prefill_data.parallel_mapping_labels,
+ )
+ ):
+ # TODO: Add actual config YAML data
+ config_yaml = f"prefill_config_{i}.yaml"
+ table_data.append([gpu, round(ttft, 2), round(thpt, 2), config_yaml])
+ data[PlotType.PREFILL]["table"]["data"] = table_data
+
+
+def populate_decode_data(data, decode_data):
+ """Populate decode chart and table data."""
+ if not decode_data.num_gpus:
+ return
+
+ # Group by GPU count for multiple datasets
+ gpu_groups: dict[int, list[dict[str, float | int]]] = {}
+ for i, (gpu, itl, thpt, label) in enumerate(
+ zip(
+ decode_data.num_gpus,
+ decode_data.itl,
+ decode_data.thpt_per_gpu,
+ decode_data.parallel_mapping_labels,
+ )
+ ):
+ if gpu not in gpu_groups:
+ gpu_groups[gpu] = []
+ gpu_groups[gpu].append({"x": round(itl, 2), "y": round(thpt, 2), "tableIdx": i})
+
+ # Create datasets for each GPU count with different colors
+ datasets = []
+ for idx, (gpu, points) in enumerate(sorted(gpu_groups.items())):
+ color = CHART_COLORS[idx % len(CHART_COLORS)]
+ datasets.append(
+ {
+ "label": f"{gpu} GPUs",
+ "data": points,
+ "backgroundColor": color,
+ "borderColor": color,
+ }
+ )
+ data[PlotType.DECODE]["chart"]["datasets"] = datasets
+
+ # Populate table data
+ table_data = []
+ for i, (gpu, itl, thpt, label) in enumerate(
+ zip(
+ decode_data.num_gpus,
+ decode_data.itl,
+ decode_data.thpt_per_gpu,
+ decode_data.parallel_mapping_labels,
+ )
+ ):
+ config_yaml = f"decode_config_{i}.yaml"
+ table_data.append([gpu, round(itl, 2), round(thpt, 2), config_yaml])
+ data[PlotType.DECODE]["table"]["data"] = table_data
+
+
+def populate_cost_data(data, prefill_data, decode_data, args):
+ """Populate cost chart and table data with pareto-optimal configurations."""
+ if not prefill_data.num_gpus or not decode_data.num_gpus:
+ return
+
+ # Compute pareto front for prefill (minimize TTFT, maximize throughput)
+ p_ttft, p_thpt, prefill_pareto_indices = compute_pareto(
+ prefill_data.ttft, prefill_data.thpt_per_gpu
+ )
+
+ # Compute pareto front for decode (minimize ITL, maximize throughput)
+ d_itl, d_thpt, decode_pareto_indices = compute_pareto(
+ decode_data.itl, decode_data.thpt_per_gpu
+ )
+
+ # Convert to numpy arrays
+ p_ttft = np.array(p_ttft)
+ p_thpt = np.array(p_thpt)
+ d_itl = np.array(d_itl)
+ d_thpt = np.array(d_thpt)
+
+ # Generate cost datasets - one line per prefill config
+ cost_datasets = []
+ table_data = []
+ cost_index_mapping = {} # Map cost table row idx -> (prefill_idx, decode_idx)
+ table_idx = 0
+
+ for p_idx, (_p_ttft, _p_thpt) in enumerate(zip(p_ttft, p_thpt)):
+ # Calculate prefill cost (fixed for this line)
+ prefill_cost = args.isl * 1000 / _p_thpt * GPU_COST_PER_HOUR / 3600
+
+ # For each decode config, calculate total cost
+ line_data = []
+ for d_idx, (_d_itl, _d_thpt) in enumerate(zip(d_itl, d_thpt)):
+ # Calculate decode cost
+ decode_cost = args.osl * 1000 / _d_thpt * GPU_COST_PER_HOUR / 3600
+ total_cost = prefill_cost + decode_cost
+
+ # X-axis: tokens per user (based on ITL)
+ tokens_per_user = 1000 / _d_itl
+
+ line_data.append(
+ {
+ "x": round(tokens_per_user, 2),
+ "y": round(total_cost, 2),
+ "tableIdx": table_idx,
+ }
+ )
+
+ # Store mapping from cost table row to original indices
+ orig_prefill_idx = prefill_pareto_indices[p_idx]
+ orig_decode_idx = decode_pareto_indices[d_idx]
+ cost_index_mapping[table_idx] = (orig_prefill_idx, orig_decode_idx)
+
+ # Add to table data
+ table_data.append(
+ [
+ round(_p_ttft, 2),
+ round(_p_thpt, 2),
+ round(_d_itl, 2),
+ round(_d_thpt, 2),
+ round(tokens_per_user, 2),
+ round(total_cost, 2),
+ f"cost_config_{table_idx}.yaml", # TODO: Add actual config
+ ]
+ )
+ table_idx += 1
+
+ # Create dataset for this prefill config
+ color = CHART_COLORS[p_idx % len(CHART_COLORS)]
+ cost_datasets.append(
+ {
+ "label": f"TTFT: {_p_ttft:.2f}ms",
+ "data": line_data,
+ "backgroundColor": color,
+ "borderColor": color,
+ }
+ )
+
+ data[PlotType.COST]["chart"]["datasets"] = cost_datasets
+ data[PlotType.COST]["table"]["data"] = table_data
+
+ # Store the index mapping in the JSON for reference
+ data[PlotType.COST]["index_mapping"] = {
+ str(k): list(v) for k, v in cost_index_mapping.items()
+ }
+
+
+def create_selection_handler(
+ data_dict, selection_queue, prefill_selection, decode_selection
+):
+ """Create a selection handler closure for the WebUI.
+
+ Args:
+ data_dict: Parsed JSON data containing cost index mapping
+ selection_queue: Queue to communicate selections to main thread
+ prefill_selection: Dict tracking prefill selection state
+ decode_selection: Dict tracking decode selection state
+
+ Returns:
+ Callable: Selection handler function for Gradio
+ """
+
+ def handle_selection(selection_json):
+ """Handle datapoint selection from table."""
+ if not selection_json or selection_json.strip() == "":
+ return
+
+ try:
+ selection = json.loads(selection_json)
+ plot_type = selection.get("plotType")
+ row_idx = selection.get("rowIndex")
+
+ logger.info(f"Selection received: {plot_type}, row {row_idx}")
+
+ # Store selection for later confirmation
+ if plot_type == PlotType.COST:
+ # Cost selection - use index mapping to get original indices
+ cost_index_mapping = data_dict[PlotType.COST].get("index_mapping", {})
+ mapping_entry = cost_index_mapping.get(str(row_idx))
+
+ if mapping_entry:
+ prefill_idx, decode_idx = mapping_entry
+ if prefill_idx is not None and decode_idx is not None:
+ logger.info(
+ f"Cost selection determines: Prefill={prefill_idx}, Decode={decode_idx}"
+ )
+ # Auto-submit for cost selection
+ selection_queue.put((prefill_idx, decode_idx))
+ elif plot_type == PlotType.PREFILL:
+ prefill_selection["idx"] = row_idx
+ logger.info(f"Prefill selected: {row_idx}")
+ # Check if we have both selections
+ if decode_selection["idx"] is not None:
+ logger.info(
+ f"Both selections complete: Prefill={row_idx}, Decode={decode_selection['idx']}"
+ )
+ selection_queue.put((row_idx, decode_selection["idx"]))
+ else:
+ logger.info("Waiting for decode selection...")
+ elif plot_type == PlotType.DECODE:
+ decode_selection["idx"] = row_idx
+ logger.info(f"Decode selected: {row_idx}")
+ # Check if we have both selections
+ if prefill_selection["idx"] is not None:
+ logger.info(
+ f"Both selections complete: Prefill={prefill_selection['idx']}, Decode={row_idx}"
+ )
+ selection_queue.put((prefill_selection["idx"], row_idx))
+ else:
+ logger.info("Waiting for prefill selection...")
+
+ except Exception as e:
+ logger.error(f"Error handling selection: {e}")
+
+ return handle_selection
+
+
+def create_gradio_interface(json_data_str, handle_selection):
+ """Create the Gradio interface for configuration selection.
+
+ Args:
+ json_data_str: JSON string containing profiling data
+ handle_selection: Selection handler function
+
+ Returns:
+ gr.Blocks: Configured Gradio demo
+ """
+ with gr.Blocks(title="Configuration Selection") as demo:
+ # Create hidden UI components (reused from AIC profiling module)
+ ui_components = create_profiling_ui_components()
+ selection_input = ui_components["selection_input"]
+ selection_button = ui_components["selection_button"]
+ json_data = ui_components["json_data"]
+
+ # Inject CSS and modal (reused from AIC profiling module)
+ inject_profiling_assets()
+
+ gr.Markdown("# ๐ Profiling Results - Select Configuration")
+ gr.Markdown(
+ """
+ **Two ways to select prefill and decode configs:**
+ 1. **Cost Analysis** (recommended): Click any row in the Cost Analysis table - automatically determines both prefill and decode
+ 2. **Individual**: Click one row in the Prefill table AND one row in the Decode table
+ The selection will be processed automatically once complete.
+
+ > ๐ **Note:** The dotted red line in the prefill and decode charts are default TTFT and ITL SLAs if not specified.
+
+ > โ ๏ธ **Warning:** The TTFT values here represent the ideal case when requests arrive uniformly, minimizing queueing. Real-world TTFT may be higher than profiling results. To mitigate the issue, planner uses ][correction factors](https://github.com/ai-dynamo/dynamo/blob/main/docs/planner/sla_planner.md#2-correction-factor-calculation) to adjust dynamically at runtime.
+ """
+ )
+
+ # Performance Results Section (reused from AIC profiling module)
+ create_performance_results_section()
+
+ # Handle selection button
+ selection_button.click(
+ fn=handle_selection,
+ inputs=[selection_input],
+ outputs=[],
+ )
+
+ # Trigger visualization when JSON data changes
+ json_data.change(
+ fn=None,
+ inputs=[json_data],
+ outputs=[],
+ js=(
+ "(data) => { if (data && data.trim() && window.initializeVisualizations) "
+ "window.initializeVisualizations(data); }"
+ ),
+ )
+
+ # Load JavaScript and data automatically on page load
+ def load_data():
+ """Load profiling data."""
+ return json_data_str
+
+ demo.load(
+ fn=load_data, inputs=[], outputs=[json_data], js=load_profiling_javascript()
+ )
+
+ return demo
+
+
+def wait_for_selection(demo, selection_queue, port):
+ """Launch the demo and wait for user selection.
+
+ Args:
+ demo: Gradio demo instance
+ selection_queue: Queue to receive selection from UI
+ port: Port number for the WebUI
+
+ Returns:
+ tuple[int, int]: (selected_prefill_idx, selected_decode_idx)
+ """
+
+ # Launch the interface in a separate thread
+ def launch_thread():
+ demo.launch(
+ server_name="0.0.0.0",
+ server_port=port,
+ share=False,
+ prevent_thread_lock=True,
+ )
+
+ thread = threading.Thread(target=launch_thread, daemon=True)
+ thread.start()
+
+ logger.info(f"WebUI launched. Waiting for user selection on http://0.0.0.0:{port}")
+ logger.info("Please select a row from the Cost Analysis table")
+
+ # Block and wait for selection
+ try:
+ selected_prefill_idx, selected_decode_idx = selection_queue.get(
+ timeout=WEB_UI_SELECTION_TIMEOUT
+ )
+ logger.info(
+ f"User selected: Prefill={selected_prefill_idx}, Decode={selected_decode_idx}"
+ )
+
+ # Close the demo
+ demo.close()
+
+ return selected_prefill_idx, selected_decode_idx
+
+ except queue.Empty:
+ logger.error("Selection timeout - no selection made within 1 hour")
+ demo.close()
+ # Return default
+ return 0, 0
diff --git a/benchmarks/pyproject.toml b/benchmarks/pyproject.toml
index 608ca9a19c..f8d98d5b17 100644
--- a/benchmarks/pyproject.toml
+++ b/benchmarks/pyproject.toml
@@ -40,13 +40,13 @@ classifiers = [
]
dependencies = [
- "aiconfigurator @ git+https://github.com/ai-dynamo/aiconfigurator.git@release/0.4.0",
+ "aiconfigurator[webapp] @ git+https://github.com/ai-dynamo/aiconfigurator.git@bdc142609b97c23a298115f09a9f88ae143f48d8",
"networkx",
"pandas",
"pydantic>=2",
"tabulate",
"types-tabulate",
- # Satisfies vLLM 0.11.0 (>=4.55.2), vLLM 0.11.2 (>=4.56.0,<5), TRT-LLM 1.2.0rc2/rc3 (==4.56.0), SGLang 0.5.4.post3 (==4.57.1)
+ # Satisfies vLLM 0.11.0 (>=4.55.2), vLLM 0.11.2 (>=4.56.0,<5), TRT-LLM 1.2.0rc5 (==4.56.0), SGLang 0.5.6 (==4.57.1)
"transformers>=4.56.0,<=4.57.1",
"pytest-mypy",
]
diff --git a/components/src/dynamo/common/utils/input_params.py b/components/src/dynamo/common/utils/input_params.py
new file mode 100644
index 0000000000..7201101306
--- /dev/null
+++ b/components/src/dynamo/common/utils/input_params.py
@@ -0,0 +1,30 @@
+# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-License-Identifier: Apache-2.0
+
+
+class InputParamManager:
+ def __init__(self, tokenizer):
+ self.tokenizer = tokenizer
+
+ def get_input_param(self, request: dict, use_tokenizer: bool):
+ """
+ Get the input parameter for the request.
+ """
+
+ if use_tokenizer:
+ print(f"Request: {request}")
+ if self.tokenizer is None:
+ raise ValueError("Tokenizer is not available")
+
+ if "messages" in request:
+ return self.tokenizer.apply_chat_template(
+ request["messages"], tokenize=False, add_generation_prompt=True
+ )
+ elif "prompt" in request:
+ return request["prompt"]
+ elif "text" in request:
+ return request["text"]
+ else:
+ raise ValueError("No input parameter found in request")
+
+ return request.get("token_ids")
diff --git a/components/src/dynamo/mocker/args.py b/components/src/dynamo/mocker/args.py
index 3bdde43daf..6180a1c9b6 100644
--- a/components/src/dynamo/mocker/args.py
+++ b/components/src/dynamo/mocker/args.py
@@ -113,6 +113,7 @@ def create_temp_engine_args_file(args) -> Path:
else None,
"is_prefill": getattr(args, "is_prefill_worker", None),
"is_decode": getattr(args, "is_decode_worker", None),
+ "enable_local_indexer": getattr(args, "enable_local_indexer", None),
}
# Remove None values to only include explicitly set arguments
@@ -284,6 +285,12 @@ def parse_args():
default=False,
help="Mark this as a decode worker which does not publish KV events and skips prefill cost estimation (default: False)",
)
+ parser.add_argument(
+ "--enable-local-indexer",
+ action="store_true",
+ default=False,
+ help="Enable worker-local KV indexer for tracking this worker's own KV cache state (default: False)",
+ )
parser.add_argument(
"--store-kv",
type=str,
diff --git a/components/src/dynamo/planner/kube.py b/components/src/dynamo/planner/kube.py
index 6759946737..aa0d7e45fd 100644
--- a/components/src/dynamo/planner/kube.py
+++ b/components/src/dynamo/planner/kube.py
@@ -78,11 +78,48 @@ def get_graph_deployment(self, graph_deployment_name: str) -> dict:
)
raise
- def update_graph_replicas(
- self, graph_deployment_name: str, component_name: str, replicas: int
+ def update_service_replicas(
+ self, graph_deployment_name: str, service_name: str, replicas: int
+ ) -> None:
+ """
+ Update replicas for a service using Scale subresource when DGDSA exists.
+ Falls back to DGD patch for backward compatibility with older operators.
+
+ Args:
+ graph_deployment_name: Name of the DynamoGraphDeployment
+ service_name: Name of the service in DGD.spec.services
+ replicas: Desired number of replicas
+ """
+ # DGDSA naming convention: -
+ adapter_name = f"{graph_deployment_name}-{service_name.lower()}"
+
+ try:
+ # Try to scale via DGDSA Scale subresource
+ self.custom_api.patch_namespaced_custom_object_scale(
+ group="nvidia.com",
+ version="v1alpha1",
+ namespace=self.current_namespace,
+ plural="dynamographdeploymentscalingadapters",
+ name=adapter_name,
+ body={"spec": {"replicas": replicas}},
+ )
+ logger.info(f"Scaled DGDSA {adapter_name} to {replicas} replicas")
+
+ except client.ApiException as e:
+ if e.status == 404:
+ # DGDSA doesn't exist - fall back to DGD patch (old operator)
+ logger.info(
+ f"DGDSA {adapter_name} not found, falling back to DGD update"
+ )
+ self._update_dgd_replicas(graph_deployment_name, service_name, replicas)
+ else:
+ raise
+
+ def _update_dgd_replicas(
+ self, graph_deployment_name: str, service_name: str, replicas: int
) -> None:
- """Update the replicas count for a component in a DynamoGraphDeployment"""
- patch = {"spec": {"services": {component_name: {"replicas": replicas}}}}
+ """Update replicas directly in DGD (fallback for old operators)"""
+ patch = {"spec": {"services": {service_name: {"replicas": replicas}}}}
self.custom_api.patch_namespaced_custom_object(
group="nvidia.com",
version="v1alpha1",
@@ -91,6 +128,20 @@ def update_graph_replicas(
name=graph_deployment_name,
body=patch,
)
+ logger.info(
+ f"Updated DGD {graph_deployment_name} service {service_name} to {replicas} replicas"
+ )
+
+ def update_graph_replicas(
+ self, graph_deployment_name: str, component_name: str, replicas: int
+ ) -> None:
+ """
+ Update replicas for a service. Now uses DGDSA when available.
+
+ Deprecated: Use update_service_replicas() instead for clarity.
+ This method is kept for backward compatibility.
+ """
+ self.update_service_replicas(graph_deployment_name, component_name, replicas)
def is_deployment_ready(self, deployment: dict) -> bool:
"""Check if a graph deployment is ready"""
diff --git a/components/src/dynamo/planner/utils/planner_core.py b/components/src/dynamo/planner/utils/planner_core.py
index ff6a4156f7..ac40d52ebf 100644
--- a/components/src/dynamo/planner/utils/planner_core.py
+++ b/components/src/dynamo/planner/utils/planner_core.py
@@ -24,7 +24,7 @@
PrefillInterpolator,
)
from dynamo.planner.utils.pre_swept_results_utils import PreSweptResultsHelper
-from dynamo.planner.utils.prometheus import PrometheusAPIClient
+from dynamo.planner.utils.prometheus import MetricSource, PrometheusAPIClient
from dynamo.planner.utils.trace_data_extractor import extract_metrics_from_mooncake
from dynamo.runtime import DistributedRuntime
from dynamo.runtime.logging import configure_dynamo_logging
@@ -58,6 +58,67 @@ def is_valid(self) -> bool:
)
+class PlannerPrometheusMetrics:
+ """Container for all Planner Prometheus metrics."""
+
+ def __init__(self, prefix: str = "planner"):
+ # Worker counts
+ self.num_p_workers = Gauge(
+ f"{prefix}:num_p_workers", "Number of prefill workers"
+ )
+ self.num_d_workers = Gauge(
+ f"{prefix}:num_d_workers", "Number of decode workers"
+ )
+
+ # Observed metrics
+ self.observed_ttft = Gauge(
+ f"{prefix}:observed_ttft", "Observed time to first token (ms)"
+ )
+ self.observed_itl = Gauge(
+ f"{prefix}:observed_itl", "Observed inter-token latency (ms)"
+ )
+ self.observed_request_rate = Gauge(
+ f"{prefix}:observed_request_rate", "Observed request rate (req/s)"
+ )
+ self.observed_request_duration = Gauge(
+ f"{prefix}:observed_request_duration", "Observed request duration (s)"
+ )
+ self.observed_isl = Gauge(
+ f"{prefix}:observed_isl", "Observed input sequence length"
+ )
+ self.observed_osl = Gauge(
+ f"{prefix}:observed_osl", "Observed output sequence length"
+ )
+
+ # Correction factors
+ self.p_correction_factor = Gauge(
+ f"{prefix}:p_correction_factor", "Prefill correction factor"
+ )
+ self.d_correction_factor = Gauge(
+ f"{prefix}:d_correction_factor", "Decode correction factor"
+ )
+
+ # Predicted metrics
+ self.predicted_request_rate = Gauge(
+ f"{prefix}:predicted_request_rate", "Predicted request rate (req/s)"
+ )
+ self.predicted_isl = Gauge(
+ f"{prefix}:predicted_isl", "Predicted input sequence length"
+ )
+ self.predicted_osl = Gauge(
+ f"{prefix}:predicted_osl", "Predicted output sequence length"
+ )
+ self.predicted_num_p = Gauge(
+ f"{prefix}:predicted_num_p", "Predicted number of prefill replicas"
+ )
+ self.predicted_num_d = Gauge(
+ f"{prefix}:predicted_num_d", "Predicted number of decode replicas"
+ )
+
+ # Cumulative GPU usage
+ self.gpu_hours = Gauge(f"{prefix}:gpu_hours", "Cumulative GPU hours used")
+
+
class Planner:
def __init__(
self,
@@ -89,9 +150,20 @@ def __init__(
else:
raise ValueError(f"Invalid environment: {args.environment}")
+ # Use backend metrics for vLLM (queries vllm:* metrics directly from workers)
+ # Use frontend metrics for other backends (queries dynamo_frontend_* metrics)
+ metric_source = (
+ MetricSource.VLLM
+ if args.backend.lower() == "vllm"
+ else MetricSource.FRONTEND
+ )
+ logger.info(
+ f"Initializing Prometheus client with metric_source='{metric_source}' for backend '{args.backend}'"
+ )
self.prometheus_api_client = PrometheusAPIClient(
args.metric_pulling_prometheus_endpoint,
args.namespace,
+ metric_source=metric_source,
)
self.num_req_predictor = LOAD_PREDICTORS[args.load_predictor](
@@ -153,13 +225,10 @@ def __init__(
self.prometheus_port = args.metric_reporting_prometheus_port
# Initialize Prometheus metrics
- # TODO: use proper naming
- self.num_p_workers_gauge = Gauge(
- "num_p_workers", "Number of prefill workers"
- )
- self.num_d_workers_gauge = Gauge(
- "num_d_workers", "Number of decode workers"
- )
+ self.prometheus_metrics = PlannerPrometheusMetrics()
+
+ # Track cumulative GPU hours
+ self.cumulative_gpu_hours = 0.0
# Start Prometheus HTTP server if port is specified
if self.prometheus_port != 0:
@@ -246,8 +315,21 @@ async def observe_metrics(self):
# Update Prometheus metrics if server is running
if self.prometheus_port != 0:
- self.num_p_workers_gauge.set(len(self.p_endpoints))
- self.num_d_workers_gauge.set(len(self.d_endpoints))
+ self.prometheus_metrics.num_p_workers.set(len(self.p_endpoints))
+ self.prometheus_metrics.num_d_workers.set(len(self.d_endpoints))
+
+ # Calculate and accumulate GPU hours for this interval
+ # TODO: track startup and shutdown times to get more accurate GPU hours
+ interval_gpu_hours = (
+ (
+ len(self.p_endpoints) * self.args.prefill_engine_num_gpu
+ + len(self.d_endpoints) * self.args.decode_engine_num_gpu
+ )
+ * self.args.adjustment_interval
+ / 3600
+ )
+ self.cumulative_gpu_hours += interval_gpu_hours
+ self.prometheus_metrics.gpu_hours.set(self.cumulative_gpu_hours)
# Prometheus returns seconds, convert to milliseconds
self.last_metrics.ttft = (
@@ -294,6 +376,19 @@ async def observe_metrics(self):
f"Observed ttft: {self.last_metrics.ttft:.2f}ms itl: {self.last_metrics.itl:.2f}ms"
)
+ # Update observed metrics in Prometheus
+ if self.prometheus_port != 0:
+ self.prometheus_metrics.observed_ttft.set(self.last_metrics.ttft)
+ self.prometheus_metrics.observed_itl.set(self.last_metrics.itl)
+ self.prometheus_metrics.observed_request_rate.set(
+ self.last_metrics.num_req / self.args.adjustment_interval
+ )
+ self.prometheus_metrics.observed_request_duration.set(
+ self.last_metrics.request_duration
+ )
+ self.prometheus_metrics.observed_isl.set(self.last_metrics.isl)
+ self.prometheus_metrics.observed_osl.set(self.last_metrics.osl)
+
self.num_req_predictor.add_data_point(self.last_metrics.num_req)
self.isl_predictor.add_data_point(self.last_metrics.isl)
self.osl_predictor.add_data_point(self.last_metrics.osl)
@@ -446,6 +541,15 @@ async def make_adjustments(self):
logger.info(
f"Correction factors: TTFT: {self.p_correction_factor:.3f}, ITL: {self.d_correction_factor:.3f}"
)
+
+ # Update correction factor metrics in Prometheus
+ if self.prometheus_port != 0:
+ self.prometheus_metrics.p_correction_factor.set(
+ self.p_correction_factor
+ )
+ self.prometheus_metrics.d_correction_factor.set(
+ self.d_correction_factor
+ )
except Exception as e:
logger.error(f"Failed to correct prediction factors: {e}")
return
@@ -453,10 +557,23 @@ async def make_adjustments(self):
next_num_req, next_isl, next_osl = self.predict_load()
if next_num_req is not None and next_isl is not None and next_osl is not None:
+ # Update predicted load metrics in Prometheus
+ if self.prometheus_port != 0:
+ self.prometheus_metrics.predicted_request_rate.set(
+ next_num_req / self.args.adjustment_interval
+ )
+ self.prometheus_metrics.predicted_isl.set(next_isl)
+ self.prometheus_metrics.predicted_osl.set(next_osl)
+
try:
next_num_p, next_num_d = self._compute_replica_requirements(
next_num_req, next_isl, next_osl
)
+
+ # Update predicted replica metrics in Prometheus
+ if self.prometheus_port != 0:
+ self.prometheus_metrics.predicted_num_p.set(next_num_p)
+ self.prometheus_metrics.predicted_num_d.set(next_num_d)
except Exception as e:
logger.error(f"Failed to compute number of replicas: {e}")
return
diff --git a/components/src/dynamo/planner/utils/prometheus.py b/components/src/dynamo/planner/utils/prometheus.py
index 99a314832d..c657e93cb2 100644
--- a/components/src/dynamo/planner/utils/prometheus.py
+++ b/components/src/dynamo/planner/utils/prometheus.py
@@ -15,11 +15,15 @@
import logging
import typing
+from enum import Enum
from prometheus_api_client import PrometheusConnect
from pydantic import BaseModel, ValidationError
from dynamo import prometheus_names
+from dynamo.prometheus_names import (
+ frontend_service as metric_names, # Note that we are mapping from frontend metric names to VLLM
+)
from dynamo.runtime.logging import configure_dynamo_logging
configure_dynamo_logging()
@@ -32,9 +36,11 @@ class FrontendMetric(BaseModel):
endpoint: typing.Optional[str] = None
instance: typing.Optional[str] = None
job: typing.Optional[str] = None
- model: typing.Optional[str] = None
- namespace: typing.Optional[str] = None
- pod: typing.Optional[str] = None
+ model: typing.Optional[str] = None # Frontend uses this label
+ model_name: typing.Optional[str] = None # Backend (vLLM) uses this label
+ namespace: typing.Optional[str] = None # Kubernetes namespace
+ pod: typing.Optional[str] = None # Pod name (used for backend filtering)
+ engine: typing.Optional[str] = None # vLLM engine index
class FrontendMetricContainer(BaseModel):
@@ -42,10 +48,78 @@ class FrontendMetricContainer(BaseModel):
value: typing.Tuple[float, float] # [timestamp, value]
+class MetricSource(Enum):
+ FRONTEND = "frontend"
+ VLLM = "vllm"
+ SGLANG = "sglang" # not supported yet
+ TRTLLM = "trtllm" # not supported yet
+
+
+METRIC_SOURCE_MAP = { # sourced from prometheus_names.py
+ MetricSource.VLLM: {
+ metric_names.TIME_TO_FIRST_TOKEN_SECONDS: "vllm:time_to_first_token_seconds", # histogram
+ metric_names.INTER_TOKEN_LATENCY_SECONDS: "vllm:inter_token_latency_seconds", # histogram
+ metric_names.REQUEST_DURATION_SECONDS: "vllm:e2e_request_latency_seconds", # histogram - vLLM's e2e latency
+ metric_names.INPUT_SEQUENCE_TOKENS: "vllm:prompt_tokens_total", # counter - total prompt tokens
+ metric_names.OUTPUT_SEQUENCE_TOKENS: "vllm:generation_tokens_total", # counter - total generation tokens
+ metric_names.REQUESTS_TOTAL: "vllm:request_success_total", # counter
+ },
+ MetricSource.FRONTEND: {
+ metric_names.TIME_TO_FIRST_TOKEN_SECONDS: f"{prometheus_names.name_prefix.FRONTEND}_{metric_names.TIME_TO_FIRST_TOKEN_SECONDS}",
+ metric_names.INTER_TOKEN_LATENCY_SECONDS: f"{prometheus_names.name_prefix.FRONTEND}_{metric_names.INTER_TOKEN_LATENCY_SECONDS}",
+ metric_names.REQUEST_DURATION_SECONDS: f"{prometheus_names.name_prefix.FRONTEND}_{metric_names.REQUEST_DURATION_SECONDS}",
+ metric_names.INPUT_SEQUENCE_TOKENS: f"{prometheus_names.name_prefix.FRONTEND}_{metric_names.INPUT_SEQUENCE_TOKENS}",
+ metric_names.OUTPUT_SEQUENCE_TOKENS: f"{prometheus_names.name_prefix.FRONTEND}_{metric_names.OUTPUT_SEQUENCE_TOKENS}",
+ metric_names.REQUESTS_TOTAL: f"{prometheus_names.name_prefix.FRONTEND}_{metric_names.REQUESTS_TOTAL}",
+ },
+}
+
+METRIC_SOURCE_MODEL_ATTR = {
+ MetricSource.VLLM: "model_name",
+ MetricSource.FRONTEND: "model",
+}
+
+
class PrometheusAPIClient:
- def __init__(self, url: str, dynamo_namespace: str):
+ """
+ Client for querying Dynamo metrics from Prometheus.
+
+ Supports querying both frontend and backend metrics:
+ - Frontend metrics: {prometheus_names.name_prefix.FRONTEND}_* (from Dynamo HTTP frontend)
+ - Backend metrics: vllm:* (from vLLM engine workers)
+
+ Usage:
+ # Query frontend metrics (default)
+ frontend_client = PrometheusAPIClient(url="http://prometheus:9090",
+ dynamo_namespace="my-deployment")
+ ttft = frontend_client.get_avg_time_to_first_token("60s", "llama-3-8b")
+
+ # Query backend worker metrics
+ backend_client = PrometheusAPIClient(url="http://prometheus:9090",
+ dynamo_namespace="my-deployment",
+ metric_source=MetricSource.VLLM)
+ ttft = backend_client.get_avg_time_to_first_token("60s", "llama-3-8b")
+ """
+
+ def __init__(
+ self,
+ url: str,
+ dynamo_namespace: str,
+ metric_source: MetricSource = MetricSource.FRONTEND,
+ ):
+ """
+ Initialize Prometheus API client.
+
+ Args:
+ url: Prometheus server URL
+ dynamo_namespace: Dynamo namespace to filter metrics
+ metric_source: Either MetricSource.FRONTEND or MetricSource.VLLM.
+ """
+
self.prom = PrometheusConnect(url=url, disable_ssl=True)
self.dynamo_namespace = dynamo_namespace
+ self.metric_source = metric_source
+ self.model_attr = METRIC_SOURCE_MODEL_ATTR[self.metric_source]
def _get_average_metric(
self, full_metric_name: str, interval: str, operation_name: str, model_name: str
@@ -55,45 +129,127 @@ def _get_average_metric(
increase(metric_sum[interval])/increase(metric_count[interval])
Args:
- full_metric_name: Full metric name (e.g., 'dynamo_frontend_inter_token_latency_seconds')
+ full_metric_name: Full metric name (e.g., metric_names.INTER_TOKEN_LATENCY_SECONDS or metric_names.TIME_TO_FIRST_TOKEN_SECONDS)
interval: Time interval for the query (e.g., '60s')
operation_name: Human-readable name for error logging
+ model_name: Model name to filter by
Returns:
Average metric value or 0 if no data/error
"""
try:
- # Prepend the frontend metric prefix if not already present
- if not full_metric_name.startswith(prometheus_names.name_prefix.FRONTEND):
- full_metric_name = (
- f"{prometheus_names.name_prefix.FRONTEND}_{full_metric_name}"
- )
- query = f"increase({full_metric_name}_sum[{interval}])/increase({full_metric_name}_count[{interval}])"
- result = self.prom.custom_query(query=query)
- if not result:
+ full_metric_name = METRIC_SOURCE_MAP[self.metric_source][full_metric_name]
+
+ # Query sum and count separately
+ sum_query = f"increase({full_metric_name}_sum[{interval}])"
+ count_query = f"increase({full_metric_name}_count[{interval}])"
+
+ sum_result = self.prom.custom_query(query=sum_query)
+ count_result = self.prom.custom_query(query=count_query)
+
+ if not sum_result or not count_result:
# No data available yet (no requests made) - return 0 silently
logger.warning(
f"No prometheus metric data available for {full_metric_name}, use 0 instead"
)
return 0
- metrics_containers = parse_frontend_metric_containers(result)
- values = []
- for container in metrics_containers:
- # Frontend lowercases model names for Prometheus labels so we need to do case-insensitive comparison
- if (
- container.metric.model
- and container.metric.model.lower() == model_name.lower()
- and container.metric.dynamo_namespace == self.dynamo_namespace
- ):
- values.append(container.value[1])
-
- if not values:
+ sum_containers = parse_frontend_metric_containers(sum_result)
+ count_containers = parse_frontend_metric_containers(count_result)
+
+ # Sum up values for matching containers
+ total_sum = 0.0
+ total_count = 0.0
+
+ for container in sum_containers:
+ model_value = getattr(container.metric, self.model_attr, None)
+ model_match = model_value and model_value.lower() == model_name.lower()
+ namespace_match = (
+ container.metric.dynamo_namespace == self.dynamo_namespace
+ )
+
+ # Filter by model and namespace
+ if model_match and namespace_match:
+ total_sum += container.value[1]
+
+ for container in count_containers:
+ model_value = getattr(container.metric, self.model_attr, None)
+ model_match = model_value and model_value.lower() == model_name.lower()
+ namespace_match = (
+ container.metric.dynamo_namespace == self.dynamo_namespace
+ )
+
+ # Filter by model and namespace
+ if model_match and namespace_match:
+ total_count += container.value[1]
+
+ if total_count == 0:
logger.warning(
f"No prometheus metric data available for {full_metric_name} with model {model_name} and dynamo namespace {self.dynamo_namespace}, use 0 instead"
)
return 0
- return sum(values) / len(values)
+
+ return total_sum / total_count
+
+ except Exception as e:
+ logger.error(f"Error getting {operation_name}: {e}")
+ return 0
+
+ def _get_counter_average(
+ self, counter_metric: str, interval: str, model_name: str, operation_name: str
+ ) -> float:
+ """
+ Get average value from a counter metric by dividing total increase by request count increase.
+ Used for vLLM token counters (prompt_tokens_total, generation_tokens_total).
+
+ Formula: increase(counter_total[interval]) / increase(request_success_total[interval])
+ """
+ try:
+ full_metric_name = METRIC_SOURCE_MAP[self.metric_source][counter_metric]
+ requests_metric = METRIC_SOURCE_MAP[self.metric_source][
+ metric_names.REQUESTS_TOTAL
+ ]
+
+ # Query both the counter and request count
+ counter_query = f"increase({full_metric_name}[{interval}])"
+ requests_query = f"increase({requests_metric}[{interval}])"
+
+ counter_result = self.prom.custom_query(query=counter_query)
+ requests_result = self.prom.custom_query(query=requests_query)
+
+ if not counter_result or not requests_result:
+ logger.warning(
+ f"No prometheus metric data available for {full_metric_name}, use 0 instead"
+ )
+ return 0
+
+ counter_containers = parse_frontend_metric_containers(counter_result)
+ requests_containers = parse_frontend_metric_containers(requests_result)
+
+ # Sum up values for matching pods
+ total_counter = 0.0
+ total_requests = 0.0
+
+ for container in counter_containers:
+ model_value = getattr(container.metric, self.model_attr, None)
+ if model_value and model_value.lower() == model_name.lower():
+ if container.metric.dynamo_namespace == self.dynamo_namespace:
+ total_counter += container.value[1]
+
+ for container in requests_containers:
+ model_value = getattr(container.metric, self.model_attr, None)
+ if model_value and model_value.lower() == model_name.lower():
+ if container.metric.dynamo_namespace == self.dynamo_namespace:
+ total_requests += container.value[1]
+
+ if total_requests == 0:
+ logger.warning(
+ f"No requests for {operation_name} calculation, use 0 instead"
+ )
+ return 0
+
+ average = total_counter / total_requests
+ return average
except Exception as e:
logger.error(f"Error getting {operation_name}: {e}")
@@ -101,7 +257,7 @@ def _get_average_metric(
def get_avg_inter_token_latency(self, interval: str, model_name: str):
return self._get_average_metric(
- prometheus_names.frontend_service.INTER_TOKEN_LATENCY_SECONDS,
+ metric_names.INTER_TOKEN_LATENCY_SECONDS,
interval,
"avg inter token latency",
model_name,
@@ -109,7 +265,7 @@ def get_avg_inter_token_latency(self, interval: str, model_name: str):
def get_avg_time_to_first_token(self, interval: str, model_name: str):
return self._get_average_metric(
- prometheus_names.frontend_service.TIME_TO_FIRST_TOKEN_SECONDS,
+ metric_names.TIME_TO_FIRST_TOKEN_SECONDS,
interval,
"avg time to first token",
model_name,
@@ -117,35 +273,38 @@ def get_avg_time_to_first_token(self, interval: str, model_name: str):
def get_avg_request_duration(self, interval: str, model_name: str):
return self._get_average_metric(
- prometheus_names.frontend_service.REQUEST_DURATION_SECONDS,
+ metric_names.REQUEST_DURATION_SECONDS,
interval,
"avg request duration",
model_name,
)
def get_avg_request_count(self, interval: str, model_name: str):
- # This function follows a different query pattern than the other metrics
+ """
+ Get request count over the specified interval.
+
+ For frontend: queries dynamo_frontend_requests_total
+ For backend: queries vllm:request_success_total
+ """
try:
- requests_total_metric = prometheus_names.frontend_service.REQUESTS_TOTAL
- # Prepend the frontend metric prefix if not already present
- if not requests_total_metric.startswith(
- prometheus_names.name_prefix.FRONTEND
- ):
- requests_total_metric = (
- f"{prometheus_names.name_prefix.FRONTEND}_{requests_total_metric}"
- )
+ requests_total_metric = METRIC_SOURCE_MAP[self.metric_source][
+ metric_names.REQUESTS_TOTAL
+ ]
+
raw_res = self.prom.custom_query(
query=f"increase({requests_total_metric}[{interval}])"
)
metrics_containers = parse_frontend_metric_containers(raw_res)
total_count = 0.0
for container in metrics_containers:
- # Frontend lowercases model names for Prometheus labels so we need to do case-insensitive comparison
- if (
- container.metric.model
- and container.metric.model.lower() == model_name.lower()
- and container.metric.dynamo_namespace == self.dynamo_namespace
- ):
+ model_value = getattr(container.metric, self.model_attr, None)
+ model_match = model_value and model_value.lower() == model_name.lower()
+ namespace_match = (
+ container.metric.dynamo_namespace == self.dynamo_namespace
+ )
+
+ # Filter by model and namespace
+ if model_match and namespace_match:
total_count += container.value[1]
return total_count
except Exception as e:
@@ -153,16 +312,32 @@ def get_avg_request_count(self, interval: str, model_name: str):
return 0
def get_avg_input_sequence_tokens(self, interval: str, model_name: str):
+ if self.metric_source == MetricSource.VLLM:
+ # Backend uses prompt_tokens counter (not histogram)
+ return self._get_counter_average(
+ metric_names.INPUT_SEQUENCE_TOKENS,
+ interval,
+ model_name,
+ "input_sequence_tokens",
+ )
return self._get_average_metric(
- prometheus_names.frontend_service.INPUT_SEQUENCE_TOKENS,
+ metric_names.INPUT_SEQUENCE_TOKENS,
interval,
"avg input sequence tokens",
model_name,
)
def get_avg_output_sequence_tokens(self, interval: str, model_name: str):
+ if self.metric_source == MetricSource.VLLM:
+ # Backend uses generation_tokens counter (not histogram)
+ return self._get_counter_average(
+ metric_names.OUTPUT_SEQUENCE_TOKENS,
+ interval,
+ model_name,
+ "output_sequence_tokens",
+ )
return self._get_average_metric(
- prometheus_names.frontend_service.OUTPUT_SEQUENCE_TOKENS,
+ metric_names.OUTPUT_SEQUENCE_TOKENS,
interval,
"avg output sequence tokens",
model_name,
diff --git a/components/src/dynamo/sglang/args.py b/components/src/dynamo/sglang/args.py
index 6cbb3bde30..50964db13c 100644
--- a/components/src/dynamo/sglang/args.py
+++ b/components/src/dynamo/sglang/args.py
@@ -70,7 +70,7 @@
"flags": ["--use-sglang-tokenizer"],
"action": "store_true",
"default": False,
- "help": "Use SGLang's tokenizer. This will skip tokenization of the input and output and only v1/chat/completions will be available when using the dynamo frontend. Cannot be used with --custom-jinja-template.",
+ "help": "Use SGLang's tokenizer for pre and post processing. This bypasses Dynamo's preprocessor and only v1/chat/completions will be available through the Dynamo frontend. Cannot be used with --custom-jinja-template.",
},
"multimodal-processor": {
"flags": ["--multimodal-processor"],
diff --git a/components/src/dynamo/sglang/health_check.py b/components/src/dynamo/sglang/health_check.py
index 5d6c2b2be3..baebb2bae1 100644
--- a/components/src/dynamo/sglang/health_check.py
+++ b/components/src/dynamo/sglang/health_check.py
@@ -53,7 +53,9 @@ class SglangHealthCheckPayload(HealthCheckPayload):
Provides SGLang defaults and inherits environment override support from base class.
"""
- def __init__(self, engine: Optional[sgl.Engine] = None) -> None:
+ def __init__(
+ self, engine: Optional[sgl.Engine] = None, use_text_input: bool = False
+ ) -> None:
"""Initialize SGLang health check payload with model-specific BOS token.
Args:
@@ -62,7 +64,6 @@ def __init__(self, engine: Optional[sgl.Engine] = None) -> None:
bos_token_id = _get_bos_token_id_from_engine(engine)
self.default_payload = {
- "token_ids": [bos_token_id],
"stop_conditions": {
"max_tokens": 1, # Generate only 1 token
"ignore_eos": False,
@@ -75,6 +76,12 @@ def __init__(self, engine: Optional[sgl.Engine] = None) -> None:
"eos_token_ids": [],
"annotations": [],
}
+
+ if use_text_input:
+ self.default_payload["prompt"] = "Test"
+ else:
+ self.default_payload["token_ids"] = [bos_token_id]
+
super().__init__()
@@ -84,7 +91,9 @@ class SglangPrefillHealthCheckPayload(HealthCheckPayload):
The prefill handler expects a wrapped structure with 'request' and 'sampling_params'.
"""
- def __init__(self, engine: Optional[sgl.Engine] = None) -> None:
+ def __init__(
+ self, engine: Optional[sgl.Engine] = None, use_text_input: bool = False
+ ) -> None:
"""Initialize SGLang prefill health check payload with proper wrapped structure.
Args:
@@ -93,9 +102,7 @@ def __init__(self, engine: Optional[sgl.Engine] = None) -> None:
bos_token_id = _get_bos_token_id_from_engine(engine)
self.default_payload = {
- "request": {
- "token_ids": [bos_token_id],
- },
+ "request": {},
"sampling_params": {
"max_new_tokens": 1, # Generate only 1 token
"temperature": 0.0,
@@ -104,4 +111,10 @@ def __init__(self, engine: Optional[sgl.Engine] = None) -> None:
"ignore_eos": False,
},
}
+
+ if use_text_input:
+ self.default_payload["request"]["prompt"] = "Test" # type: ignore
+ else:
+ self.default_payload["request"]["token_ids"] = [bos_token_id] # type: ignore
+
super().__init__()
diff --git a/components/src/dynamo/sglang/main.py b/components/src/dynamo/sglang/main.py
index 65fd7efc4f..afc6eaecbb 100644
--- a/components/src/dynamo/sglang/main.py
+++ b/components/src/dynamo/sglang/main.py
@@ -103,11 +103,8 @@ async def init(runtime: DistributedRuntime, config: Config):
server_args, dynamo_args = config.server_args, config.dynamo_args
# Prevent SGLang from blocking on non-leader nodes
- # We can switch this to 0 and leverage our own metrics
- # after https://github.com/sgl-project/sglang/pull/13686
- # is merged in
if server_args.node_rank >= 1:
- os.environ["SGLANG_BLOCK_NONZERO_RANK_CHILDREN"] = "1"
+ os.environ["SGLANG_BLOCK_NONZERO_RANK_CHILDREN"] = "0"
engine = sgl.Engine(server_args=server_args)
@@ -123,6 +120,23 @@ async def init(runtime: DistributedRuntime, config: Config):
await _handle_non_leader_node(engine, generate_endpoint)
return
+ # Register engine routes for profiling
+ async def start_profile_handler(body: dict) -> dict:
+ """Handle /engine/start_profile requests"""
+ await engine.tokenizer_manager.start_profile(**body)
+ return {"status": "ok", "message": "Profiling started"}
+
+ async def stop_profile_handler(body: dict) -> dict:
+ """Handle /engine/stop_profile requests"""
+ await engine.tokenizer_manager.stop_profile()
+ return {"status": "ok", "message": "Profiling stopped"}
+
+ runtime.register_engine_route("start_profile", start_profile_handler)
+ runtime.register_engine_route("stop_profile", stop_profile_handler)
+ logging.info(
+ "Registered engine routes: /engine/start_profile, /engine/stop_profile"
+ )
+
prefill_client = None
prefill_router_client = None
if config.serving_mode == DisaggregationMode.DECODE:
@@ -154,8 +168,10 @@ async def init(runtime: DistributedRuntime, config: Config):
handler = DecodeWorkerHandler(
component, engine, config, publisher, prefill_client, prefill_router_client
)
-
- health_check_payload = SglangHealthCheckPayload(engine).to_dict()
+ print(f"Config: {config}")
+ health_check_payload = SglangHealthCheckPayload(
+ engine, use_text_input=dynamo_args.use_sglang_tokenizer
+ ).to_dict()
logging.info(
f"Registering model with endpoint types: {dynamo_args.dyn_endpoint_types}"
@@ -205,11 +221,8 @@ async def init_prefill(runtime: DistributedRuntime, config: Config):
server_args, dynamo_args = config.server_args, config.dynamo_args
# Prevent SGLang from blocking on non-leader nodes
- # We can switch this to 0 and leverage our own metrics
- # after https://github.com/sgl-project/sglang/pull/13686
- # is merged in
if server_args.node_rank >= 1:
- os.environ["SGLANG_BLOCK_NONZERO_RANK_CHILDREN"] = "1"
+ os.environ["SGLANG_BLOCK_NONZERO_RANK_CHILDREN"] = "0"
engine = sgl.Engine(server_args=server_args)
@@ -225,6 +238,23 @@ async def init_prefill(runtime: DistributedRuntime, config: Config):
await _handle_non_leader_node(engine, generate_endpoint)
return
+ # Register engine routes for profiling
+ async def start_profile_handler(body: dict) -> dict:
+ """Handle /engine/start_profile requests"""
+ await engine.tokenizer_manager.start_profile(**body)
+ return {"status": "ok", "message": "Profiling started"}
+
+ async def stop_profile_handler(body: dict) -> dict:
+ """Handle /engine/stop_profile requests"""
+ await engine.tokenizer_manager.stop_profile()
+ return {"status": "ok", "message": "Profiling stopped"}
+
+ runtime.register_engine_route("start_profile", start_profile_handler)
+ runtime.register_engine_route("stop_profile", stop_profile_handler)
+ logging.info(
+ "Registered engine routes: /engine/start_profile, /engine/stop_profile"
+ )
+
# Perform dummy warmup for prefill worker to avoid initial TTFT hit
# Only needed on leader node that handles requests
await _warmup_prefill_engine(engine, server_args)
@@ -291,7 +321,9 @@ async def init_embedding(runtime: DistributedRuntime, config: Config):
ready_event = asyncio.Event()
handler = EmbeddingWorkerHandler(component, engine, config, publisher)
- health_check_payload = SglangHealthCheckPayload(engine).to_dict()
+ health_check_payload = SglangHealthCheckPayload(
+ engine, use_text_input=dynamo_args.use_sglang_tokenizer
+ ).to_dict()
try:
# Start endpoint immediately and register model concurrently
@@ -396,16 +428,24 @@ async def init_multimodal_encode_worker(runtime: DistributedRuntime, config: Con
await pd_worker_client.wait_for_instances()
- tasks = [
- generate_endpoint.serve_endpoint(
- handler.generate,
- graceful_shutdown=True,
- metrics_labels=[("model", server_args.served_model_name)],
- )
- ]
+ ready_event = asyncio.Event()
try:
- await asyncio.gather(*tasks)
+ await asyncio.gather(
+ generate_endpoint.serve_endpoint(
+ handler.generate,
+ graceful_shutdown=True,
+ metrics_labels=[("model", server_args.served_model_name)],
+ ),
+ register_llm_with_readiness_gate(
+ None, # encode worker doesn't have engine
+ generate_endpoint,
+ server_args,
+ dynamo_args,
+ input_type=ModelInput.Text,
+ readiness_gate=ready_event,
+ ),
+ )
except Exception as e:
logging.error(f"Failed to serve endpoints: {e}")
raise
@@ -439,11 +479,24 @@ async def init_multimodal_worker(runtime: DistributedRuntime, config: Config):
await handler.async_init()
+ health_check_payload = SglangHealthCheckPayload(engine).to_dict()
+ ready_event = asyncio.Event()
+
try:
- await generate_endpoint.serve_endpoint(
- handler.generate,
- metrics_labels=[("model", server_args.served_model_name)],
- graceful_shutdown=True,
+ await asyncio.gather(
+ generate_endpoint.serve_endpoint(
+ handler.generate,
+ metrics_labels=[("model", server_args.served_model_name)],
+ graceful_shutdown=True,
+ health_check_payload=health_check_payload,
+ ),
+ register_llm_with_readiness_gate(
+ engine,
+ generate_endpoint,
+ server_args,
+ dynamo_args,
+ readiness_gate=ready_event,
+ ),
)
except Exception as e:
logging.error(f"Failed to serve endpoints: {e}")
@@ -468,6 +521,7 @@ async def init_multimodal_prefill_worker(runtime: DistributedRuntime, config: Co
await handler.async_init()
health_check_payload = SglangPrefillHealthCheckPayload(engine).to_dict()
+ ready_event = asyncio.Event()
try:
await asyncio.gather(
@@ -476,7 +530,14 @@ async def init_multimodal_prefill_worker(runtime: DistributedRuntime, config: Co
graceful_shutdown=True,
metrics_labels=[("model", server_args.served_model_name)],
health_check_payload=health_check_payload,
- )
+ ),
+ register_llm_with_readiness_gate(
+ engine,
+ generate_endpoint,
+ server_args,
+ dynamo_args,
+ readiness_gate=ready_event,
+ ),
)
except Exception as e:
logging.error(f"Failed to serve endpoints: {e}")
diff --git a/components/src/dynamo/sglang/publisher.py b/components/src/dynamo/sglang/publisher.py
index 358d116643..2658b5a1af 100644
--- a/components/src/dynamo/sglang/publisher.py
+++ b/components/src/dynamo/sglang/publisher.py
@@ -10,7 +10,7 @@
import zmq
import zmq.asyncio
from prometheus_client import CollectorRegistry, multiprocess
-from sglang.srt.utils import get_local_ip_auto, get_zmq_socket
+from sglang.srt.utils import get_local_ip_auto, get_zmq_socket, maybe_wrap_ipv6_address
from dynamo.common.utils.prometheus import register_engine_metrics_callback
from dynamo.llm import (
@@ -26,6 +26,30 @@
from dynamo.sglang.args import Config
+def format_zmq_endpoint(endpoint_template: str, ip_address: str) -> str:
+ """Format ZMQ endpoint by replacing wildcard with IP address.
+
+ Properly handles IPv6 addresses by wrapping them in square brackets.
+ Uses SGLang's maybe_wrap_ipv6_address for consistent formatting.
+
+ Args:
+ endpoint_template: ZMQ endpoint template with wildcard (e.g., "tcp://*:5557")
+ ip_address: IP address to use (can be IPv4 or IPv6)
+
+ Returns:
+ Formatted ZMQ endpoint string
+
+ Example:
+ >>> format_zmq_endpoint("tcp://*:5557", "192.168.1.1")
+ 'tcp://192.168.1.1:5557'
+ >>> format_zmq_endpoint("tcp://*:5557", "2a02:6b8:c46:2b4:0:74c1:75b0:0")
+ 'tcp://[2a02:6b8:c46:2b4:0:74c1:75b0:0]:5557'
+ """
+ # Use SGLang's utility to wrap IPv6 addresses in brackets
+ formatted_ip = maybe_wrap_ipv6_address(ip_address)
+ return endpoint_template.replace("*", formatted_ip)
+
+
class DynamoSglangPublisher:
"""
Handles SGLang kv events and metrics reception and publishing.
@@ -121,7 +145,7 @@ def init_kv_event_publish(self) -> Optional[ZmqKvEventPublisher]:
if self.server_args.kv_events_config:
kv_events = json.loads(self.server_args.kv_events_config)
ep = kv_events.get("endpoint")
- zmq_ep = ep.replace("*", get_local_ip_auto()) if ep else None
+ zmq_ep = format_zmq_endpoint(ep, get_local_ip_auto()) if ep else None
zmq_config = ZmqKvEventPublisherConfig(
worker_id=self.generate_endpoint.connection_id(),
diff --git a/components/src/dynamo/sglang/request_handlers/handler_base.py b/components/src/dynamo/sglang/request_handlers/handler_base.py
index 4d4472e19a..ededd819d4 100644
--- a/components/src/dynamo/sglang/request_handlers/handler_base.py
+++ b/components/src/dynamo/sglang/request_handlers/handler_base.py
@@ -2,6 +2,8 @@
# SPDX-License-Identifier: Apache-2.0
import asyncio
+import base64
+import json
import logging
import random
import socket
@@ -10,9 +12,11 @@
from typing import Any, AsyncGenerator, Dict, Optional, Tuple
import sglang as sgl
+from sglang.srt.tracing import trace as sglang_trace
from sglang.srt.utils import get_local_ip_auto
from dynamo._core import Client, Component, Context
+from dynamo.common.utils.input_params import InputParamManager
from dynamo.sglang.args import Config
from dynamo.sglang.publisher import DynamoSglangPublisher
@@ -49,6 +53,13 @@ def __init__(
self.prefill_client = prefill_client
self.serving_mode = config.serving_mode
self.skip_tokenizer_init = config.server_args.skip_tokenizer_init
+ self.enable_trace = config.server_args.enable_trace
+
+ self.input_param_manager = InputParamManager(
+ self.engine.tokenizer_manager.tokenizer
+ if not self.skip_tokenizer_init
+ else None
+ )
@abstractmethod
async def generate(self, request: Dict[str, Any], context: Context):
@@ -68,23 +79,13 @@ def cleanup(self) -> None:
pass
def _get_input_param(self, request: Dict[str, Any]) -> Dict[str, Any]:
- """Get the appropriate input parameter for SGLang engine.
-
- Args:
- request: Request dict with token_ids or messages.
+ request_input = self.input_param_manager.get_input_param(
+ request, use_tokenizer=not self.skip_tokenizer_init
+ )
- Returns:
- Dict with either input_ids or prompt for engine.
- """
- if self.skip_tokenizer_init:
- return {"input_ids": request["token_ids"]}
- else:
- # use sglang's chat templating itself but leave tokenization to the
- # interal engine's TokenizerManager
- prompt = self.engine.tokenizer_manager.tokenizer.apply_chat_template(
- request["messages"], tokenize=False, add_generation_prompt=True
- )
- return {"prompt": prompt}
+ return {
+ "prompt" if isinstance(request_input, str) else "input_ids": request_input
+ }
@staticmethod
def _generate_bootstrap_room() -> int:
@@ -117,6 +118,39 @@ def _get_bootstrap_info(engine: sgl.Engine) -> Tuple[str, int]:
return bootstrap_host, bootstrap_port
+ def _propagate_trace_context_to_sglang(
+ self, context: Context, bootstrap_room: int = 0
+ ):
+ """Propagate Dynamo's trace context to SGLang for distributed tracing. SGLang expects a certain
+ format derived by loooking at https://github.com/sgl-project/sglang/blob/main/python/sglang/srt/tracing/trace.py
+ in the to_dict() method.
+
+ Args:
+ context: Dynamo Context object containing trace information.
+ bootstrap_room: Bootstrap room ID (0 for aggregated, actual room for disaggregated).
+ """
+ trace_id = context.trace_id
+ span_id = context.span_id
+ if not trace_id or not span_id:
+ return
+
+ # Build trace context for SGLang
+ trace_context = {
+ str(bootstrap_room): {
+ "root_span": {"traceparent": f"00-{trace_id}-{span_id}-01"},
+ "prev_span": {
+ "span_id": int(span_id, 16),
+ "trace_id": int(trace_id, 16),
+ },
+ }
+ }
+
+ # Encode and propagate
+ base64_context = base64.b64encode(
+ json.dumps(trace_context, ensure_ascii=False).encode("utf-8")
+ ).decode("utf-8")
+ sglang_trace.trace_set_remote_propagate_context(base64_context)
+
async def _handle_cancellation(
self, request_id_future: asyncio.Future, context: Context
):
diff --git a/components/src/dynamo/sglang/request_handlers/llm/decode_handler.py b/components/src/dynamo/sglang/request_handlers/llm/decode_handler.py
index e7fd9f17ae..47572e2f54 100644
--- a/components/src/dynamo/sglang/request_handlers/llm/decode_handler.py
+++ b/components/src/dynamo/sglang/request_handlers/llm/decode_handler.py
@@ -112,6 +112,7 @@ async def generate(
RuntimeError: If no bootstrap info received from prefill worker.
"""
logging.debug(f"New Request ID: {context.id()}")
+ trace_id = context.trace_id
sampling_params = self._build_sampling_params(request)
input_param = self._get_input_param(request)
@@ -154,6 +155,11 @@ async def generate(
if not bootstrap_info:
raise RuntimeError("No bootstrap info received from prefill worker")
+ if self.enable_trace:
+ self._propagate_trace_context_to_sglang(
+ context, bootstrap_info["bootstrap_room"]
+ )
+
decode = await self.engine.async_generate(
**input_param,
sampling_params=sampling_params,
@@ -161,6 +167,7 @@ async def generate(
bootstrap_host=bootstrap_info["bootstrap_host"],
bootstrap_port=bootstrap_info["bootstrap_port"],
bootstrap_room=bootstrap_info["bootstrap_room"],
+ rid=trace_id,
)
if self.skip_tokenizer_init:
@@ -170,10 +177,14 @@ async def generate(
async for out in self._process_text_stream(decode, context):
yield out
else:
+ if self.enable_trace:
+ self._propagate_trace_context_to_sglang(context)
+
agg = await self.engine.async_generate(
**input_param,
sampling_params=sampling_params,
stream=True,
+ rid=trace_id,
)
if self.skip_tokenizer_init:
async for out in self._process_token_stream(agg, context):
diff --git a/components/src/dynamo/sglang/request_handlers/llm/prefill_handler.py b/components/src/dynamo/sglang/request_handlers/llm/prefill_handler.py
index dc55ab9762..e019ea5c9e 100644
--- a/components/src/dynamo/sglang/request_handlers/llm/prefill_handler.py
+++ b/components/src/dynamo/sglang/request_handlers/llm/prefill_handler.py
@@ -64,6 +64,7 @@ async def generate(
Bootstrap info dict with host, port, and room for decode worker connection.
"""
logging.debug(f"New Request ID: {context.id()}")
+ trace_id = context.trace_id
bootstrap_room = self._generate_bootstrap_room()
bootstrap_info = {
@@ -76,6 +77,10 @@ async def generate(
input_param = self._get_input_param(request["request"])
+ # Propagate trace context to SGLang
+ if self.enable_trace:
+ self._propagate_trace_context_to_sglang(context, bootstrap_room)
+
results = await self.engine.async_generate(
**input_param,
sampling_params=request["sampling_params"],
@@ -83,6 +88,7 @@ async def generate(
bootstrap_host=self.bootstrap_host,
bootstrap_port=self.bootstrap_port,
bootstrap_room=bootstrap_room,
+ rid=trace_id,
)
task = asyncio.create_task(self._consume_results(results, context))
diff --git a/components/src/dynamo/sglang/request_handlers/multimodal/encode_worker_handler.py b/components/src/dynamo/sglang/request_handlers/multimodal/encode_worker_handler.py
index cbb2f904a7..957c936b34 100644
--- a/components/src/dynamo/sglang/request_handlers/multimodal/encode_worker_handler.py
+++ b/components/src/dynamo/sglang/request_handlers/multimodal/encode_worker_handler.py
@@ -159,7 +159,7 @@ async def generate(
# Create descriptor for the multimodal data
descriptor = connect.Descriptor(precomputed_embeddings)
- with self._connector.create_readable(descriptor) as readable:
+ with await self._connector.create_readable(descriptor) as readable:
request.serialized_request = readable.metadata()
logger.debug(f"Request: {request.model_dump_json()}")
@@ -184,6 +184,5 @@ async def async_init(self, runtime: DistributedRuntime):
# Create and initialize a dynamo connector for this worker.
# We'll needs this to move data between this worker and remote workers efficiently.
self._connector = connect.Connector()
- await self._connector.initialize()
logger.info("Startup completed.")
diff --git a/components/src/dynamo/sglang/request_handlers/multimodal/worker_handler.py b/components/src/dynamo/sglang/request_handlers/multimodal/worker_handler.py
index 8f94afd3fd..e4a10fc71a 100644
--- a/components/src/dynamo/sglang/request_handlers/multimodal/worker_handler.py
+++ b/components/src/dynamo/sglang/request_handlers/multimodal/worker_handler.py
@@ -77,7 +77,6 @@ def __init__(self):
async def initialize(self):
"""Initialize the connector for embeddings processing"""
self._connector = connect.Connector()
- await self._connector.initialize()
async def process_embeddings(self, request: SglangMultimodalRequest):
"""Process embeddings from serialized request"""
@@ -103,7 +102,6 @@ async def process_embeddings(self, request: SglangMultimodalRequest):
"Connector is None - this should not happen after initialization"
)
self._connector = connect.Connector()
- await self._connector.initialize()
read_op = await self._connector.begin_read(
request.serialized_request, descriptor
diff --git a/components/src/dynamo/sglang/tests/test_sglang_unit.py b/components/src/dynamo/sglang/tests/test_sglang_unit.py
index 5835131dbe..9bd60d18fe 100644
--- a/components/src/dynamo/sglang/tests/test_sglang_unit.py
+++ b/components/src/dynamo/sglang/tests/test_sglang_unit.py
@@ -26,7 +26,6 @@
pytest.mark.gpu_1,
pytest.mark.pre_merge,
]
-
# Create SGLang-specific CLI args fixture
# This will use monkeypatch to write to argv
mock_sglang_cli = make_cli_args_fixture("dynamo.sglang")
diff --git a/components/src/dynamo/trtllm/encode_helper.py b/components/src/dynamo/trtllm/encode_helper.py
index a022489ce6..c8ac97a2b7 100644
--- a/components/src/dynamo/trtllm/encode_helper.py
+++ b/components/src/dynamo/trtllm/encode_helper.py
@@ -241,7 +241,7 @@ async def process_embedding_request(
# Create readable operation with main embeddings tensor (works for both formats)
descriptor = nixl_connect.Descriptor(encodings)
- with connector.create_readable(descriptor) as readable_op:
+ with await connector.create_readable(descriptor) as readable_op:
# Get the metadata for the readable operation
op_metadata = readable_op.metadata()
diff --git a/components/src/dynamo/trtllm/main.py b/components/src/dynamo/trtllm/main.py
index 59a35b39d3..80238cb4f0 100644
--- a/components/src/dynamo/trtllm/main.py
+++ b/components/src/dynamo/trtllm/main.py
@@ -22,7 +22,6 @@
import uvloop
from prometheus_client import REGISTRY
from tensorrt_llm.llmapi import (
- BuildConfig,
CapacitySchedulerPolicy,
DynamicBatchConfig,
KvCacheConfig,
@@ -162,13 +161,6 @@ async def init(runtime: DistributedRuntime, config: Config):
else:
gpus_per_node = config.gpus_per_node
- build_config = BuildConfig(
- max_batch_size=config.max_batch_size,
- max_num_tokens=config.max_num_tokens,
- max_beam_width=config.max_beam_width,
- max_seq_len=config.max_seq_len,
- )
-
kv_cache_config = KvCacheConfig(
free_gpu_memory_fraction=config.free_gpu_memory_fraction
)
@@ -190,7 +182,6 @@ async def init(runtime: DistributedRuntime, config: Config):
"pipeline_parallel_size": config.pipeline_parallel_size,
"moe_expert_parallel_size": config.expert_parallel_size,
"backend": Backend.PYTORCH,
- "build_config": build_config,
"kv_cache_config": kv_cache_config,
"gpus_per_node": gpus_per_node,
"max_num_tokens": config.max_num_tokens,
@@ -332,7 +323,6 @@ async def init(runtime: DistributedRuntime, config: Config):
connector = None
logging.info("Initializing NIXL Connect.")
connector = nixl_connect.Connector()
- await connector.initialize()
dump_config(
config.dump_config_to, {"engine_args": engine_args, "dynamo_args": config}
diff --git a/components/src/dynamo/trtllm/request_handlers/handler_base.py b/components/src/dynamo/trtllm/request_handlers/handler_base.py
index 58390bcedc..9500b25135 100644
--- a/components/src/dynamo/trtllm/request_handlers/handler_base.py
+++ b/components/src/dynamo/trtllm/request_handlers/handler_base.py
@@ -106,6 +106,76 @@ def check_error(self, result: dict):
result["finish_reason"] == "stop" or result["finish_reason"] == "error"
)
+ @staticmethod
+ def _extract_logprobs(
+ output, num_output_tokens_so_far: int
+ ) -> tuple[list[float] | None, list[list[dict]] | None]:
+ """
+ Extract logprobs from the TRTLLM output for new tokens.
+
+ Args:
+ output: TRTLLM CompletionOutput object
+ num_output_tokens_so_far: Number of tokens already processed
+ Returns:
+ Tuple of (log_probs, top_logprobs) in Dynamo's expected format:
+ - log_probs: List of log probabilities for each new token
+ - top_logprobs: List of top logprobs dicts for each new token
+ """
+ if output.logprobs is None:
+ return None, None
+
+ # Get logprobs for new tokens only
+ new_logprobs = output.logprobs[num_output_tokens_so_far:]
+ if not new_logprobs:
+ return None, None
+
+ # From TRTLLM CompletionOutput API, logprobs: (TokenLogprobs | List[float], optional)
+ # Expect TokenLogprobs output when logprobs is set, check edge case where list[float] is returned instead
+ if isinstance(new_logprobs[0], float):
+ return [float(lp) for lp in new_logprobs], None
+
+ log_probs = []
+ top_logprobs = []
+
+ for token_idx, token_logprobs_dict in enumerate(new_logprobs):
+ if token_logprobs_dict is None:
+ continue
+
+ # Get the actual token_id that was generated at this position
+ actual_token_id = output.token_ids[num_output_tokens_so_far + token_idx]
+
+ # Extract log probability for the selected token
+ if actual_token_id in token_logprobs_dict:
+ selected_logprob = token_logprobs_dict[actual_token_id]
+ log_probs.append(float(selected_logprob.logprob))
+ else:
+ # Fallback: use the first logprob if selected token not found
+ first_logprob = next(iter(token_logprobs_dict.values()), None)
+ if first_logprob:
+ log_probs.append(float(first_logprob.logprob))
+
+ # Build top_logprobs list for this token position
+ # NOTE: TRTLLM LogProb API doesn't have decoded_token, will default to None
+ token_top_logprobs = []
+ for tok_id, logprob_info in token_logprobs_dict.items():
+ token_top_logprobs.append(
+ {
+ "rank": logprob_info.rank
+ if hasattr(logprob_info, "rank")
+ else 0,
+ "token_id": tok_id,
+ "token": (
+ logprob_info.decoded_token
+ if hasattr(logprob_info, "decoded_token")
+ else None
+ ),
+ "logprob": float(logprob_info.logprob),
+ }
+ )
+ top_logprobs.append(token_top_logprobs)
+
+ return log_probs if log_probs else None, top_logprobs if top_logprobs else None
+
async def _handle_cancellation(
self, generation_result: GenerationResult, context: Context
):
@@ -236,6 +306,26 @@ async def generate_locally(
if hasattr(sampling_params, key):
setattr(sampling_params, key, value)
+ # Additional sampling params in output options
+ output_options = request.get("output_options", {})
+ if output_options:
+ logprobs_value = output_options.get("logprobs")
+
+ # Handle logprobs
+ if logprobs_value is not None:
+ if hasattr(sampling_params, "logprobs"):
+ setattr(
+ sampling_params, "logprobs", max(1, int(logprobs_value))
+ ) # If top_logprobs = 0, still want to see chosen token logprob
+
+ # Handle prompt_logprobs
+ prompt_logprobs_value = output_options.get("prompt_logprobs")
+ if prompt_logprobs_value:
+ if hasattr(sampling_params, "prompt_logprobs"):
+ setattr(
+ sampling_params, "prompt_logprobs", int(prompt_logprobs_value)
+ )
+
max_tokens = request["stop_conditions"]["max_tokens"]
if max_tokens:
sampling_params.max_tokens = max_tokens
@@ -302,6 +392,15 @@ async def generate_locally(
out = {"token_ids": output.token_ids[num_output_tokens_so_far:]}
+ # Extract logprobs from the output
+ log_probs, top_logprobs = self._extract_logprobs(
+ output, num_output_tokens_so_far
+ )
+ if log_probs:
+ out["log_probs"] = log_probs
+ if top_logprobs:
+ out["top_logprobs"] = top_logprobs
+
if output.finish_reason:
out["finish_reason"] = output.finish_reason
if output.stop_reason:
@@ -369,8 +468,12 @@ async def generate_locally(
# 2. Per-request errors - send to client, don't shutdown
except RequestError as e:
- logging.warning(f"Request {request_id} error: {e}")
- yield {"finish_reason": "error", "token_ids": []}
+ error_msg = str(e)
+ logging.warning(f"Request {request_id} error: {error_msg}")
+ yield {
+ "finish_reason": {"error": error_msg},
+ "token_ids": [],
+ }
# 3. ALL OTHER ERRORS - graceful shutdown
except Exception as e:
@@ -384,7 +487,7 @@ async def generate_locally(
# Try to send error to client before shutdown
try:
yield {
- "finish_reason": "error",
+ "finish_reason": {"error": error_msg},
"token_ids": [],
}
except Exception:
diff --git a/components/src/dynamo/vllm/args.py b/components/src/dynamo/vllm/args.py
index 56dec6f8e8..767a9d3b93 100644
--- a/components/src/dynamo/vllm/args.py
+++ b/components/src/dynamo/vllm/args.py
@@ -40,6 +40,7 @@ class Config:
custom_jinja_template: Optional[str] = None
store_kv: str
request_plane: str
+ enable_local_indexer: bool = False
# mirror vLLM
model: str
@@ -69,6 +70,9 @@ class Config:
# dump config to file
dump_config_to: Optional[str] = None
+ # Use vLLM's tokenizer for pre/post processing
+ use_vllm_tokenizer: bool = False
+
def has_connector(self, connector_name: str) -> bool:
"""
Check if a specific connector is enabled.
@@ -201,12 +205,41 @@ def parse_args() -> Config:
default=os.environ.get("DYN_REQUEST_PLANE", "nats"),
help="Determines how requests are distributed from routers to workers. 'tcp' is fastest [nats|http|tcp]",
)
+ parser.add_argument(
+ "--enable-local-indexer",
+ action="store_true",
+ help="Enable worker-local KV indexer for tracking this worker's own KV cache state.",
+ )
+ parser.add_argument(
+ "--use-vllm-tokenizer",
+ action="store_true",
+ default=False,
+ help="Use vLLM's tokenizer for pre and post processing. This bypasses Dynamo's preprocessor and only v1/chat/completions will be available through the Dynamo frontend.",
+ )
add_config_dump_args(parser)
parser = AsyncEngineArgs.add_cli_args(parser)
args = parser.parse_args()
engine_args = AsyncEngineArgs.from_cli_args(args)
+ # Workaround for vLLM GIL contention bug with NIXL connector when using UniProcExecutor.
+ # With TP=1, vLLM defaults to UniProcExecutor which runs scheduler and worker in the same
+ # process. This causes a hot loop in _process_engine_step that doesn't release the GIL,
+ # blocking NIXL's add_remote_agent from completing. Using "mp" backend forces separate
+ # processes, avoiding the GIL contention.
+ # Note: Only apply for NIXL - other connectors (kvbm, lmcache) work fine with UniProcExecutor
+ # and forcing mp can expose race conditions in vLLM's scheduler.
+ # See: https://github.com/vllm-project/vllm/issues/29369
+ connector_list = [c.lower() for c in args.connector] if args.connector else []
+ uses_nixl = "nixl" in connector_list
+ tp_size = getattr(engine_args, "tensor_parallel_size", None) or 1
+ if uses_nixl and tp_size == 1 and engine_args.distributed_executor_backend is None:
+ logger.info(
+ "Setting --distributed-executor-backend=mp for TP=1 to avoid "
+ "UniProcExecutor GIL contention with NIXL connector"
+ )
+ engine_args.distributed_executor_backend = "mp"
+
if engine_args.enable_prefix_caching is None:
logger.debug(
"--enable-prefix-caching or --no-enable-prefix-caching not specified. Defaulting to True (vLLM v1 default behavior)"
@@ -285,6 +318,8 @@ def parse_args() -> Config:
config.mm_prompt_template = args.mm_prompt_template
config.store_kv = args.store_kv
config.request_plane = args.request_plane
+ config.enable_local_indexer = args.enable_local_indexer
+ config.use_vllm_tokenizer = args.use_vllm_tokenizer
# Validate custom Jinja template file exists if provided
if config.custom_jinja_template is not None:
@@ -353,24 +388,6 @@ def create_kv_events_config(config: Config) -> Optional[KVEventsConfig]:
logger.info("No kv_events_config required: prefix caching is disabled")
return None
- # There is a bug with KV events publishing when LORA is enabled.
- # This is fixed in https://github.com/vllm-project/vllm/pull/27728 but not released yet.
- # remove below check once new vLLM version is released with the fix.
- if config.engine_args.enable_lora:
- if config.engine_args.kv_events_config is None:
- # No explicit kv events config provided by user, we'll disable kv cache because LoRA is enabled and its not supported yet.
- return None
- else:
- # User provided their own kv events config and it'll not work when LoRA is enabled.
- message = (
- "KV events doesn't work when LoRA is enabled due to upstream vLLM bug. "
- "Please see https://github.com/vllm-project/vllm/pull/27728."
- "For now, either disable lora or dont use explicit kv envents config."
- "Dont set both --kv-events-config and --enable-lora in vllm command line args."
- )
- logger.error(message)
- raise ValueError(message)
-
# If user provided their own config, use that
if c := getattr(config.engine_args, "kv_events_config"):
# Warn user that enable_kv_cache_events probably should be True (user may have omitted it from JSON)
diff --git a/components/src/dynamo/vllm/handlers.py b/components/src/dynamo/vllm/handlers.py
index 55ee6ffcf3..f8d17c7369 100644
--- a/components/src/dynamo/vllm/handlers.py
+++ b/components/src/dynamo/vllm/handlers.py
@@ -5,16 +5,18 @@
import logging
import os
import tempfile
+import time
from abc import ABC, abstractmethod
from contextlib import asynccontextmanager
from typing import Any, AsyncGenerator, Dict, Final
-from vllm.inputs import TokensPrompt
+from vllm.inputs import TextPrompt, TokensPrompt
from vllm.lora.request import LoRARequest
from vllm.outputs import RequestOutput
-from vllm.sampling_params import SamplingParams
+from vllm.sampling_params import SamplingParams, StructuredOutputsParams
from vllm.v1.engine.exceptions import EngineDeadError
+from dynamo.common.utils.input_params import InputParamManager
from dynamo.llm import (
ModelInput,
ModelType,
@@ -70,10 +72,11 @@ def build_sampling_params(
model_max_len: int | None = None,
) -> SamplingParams:
"""
- Build SamplingParams from a PreprocessedRequest.
+ Build SamplingParams from a PreprocessedRequest (internal protocol format).
Args:
- request: The PreprocessedRequest dict with 'sampling_options' and 'stop_conditions'
+ request: The PreprocessedRequest dict with 'sampling_options', 'stop_conditions',
+ and 'output_options'
default_sampling_params: Default sampling parameters to initialize with
Returns:
@@ -82,8 +85,22 @@ def build_sampling_params(
sampling_params = SamplingParams(**default_sampling_params)
sampling_params.detokenize = False
- # Apply sampling_options
+ # Handle guided_decoding - convert to StructuredOutputsParams
+ guided_decoding = request["sampling_options"].get("guided_decoding")
+ if guided_decoding is not None and isinstance(guided_decoding, dict):
+ sampling_params.structured_outputs = StructuredOutputsParams(
+ json=guided_decoding.get("json"),
+ regex=guided_decoding.get("regex"),
+ choice=guided_decoding.get("choice"),
+ grammar=guided_decoding.get("grammar"),
+ whitespace_pattern=guided_decoding.get("whitespace_pattern"),
+ )
+
+ # Apply remaining sampling_options
for key, value in request["sampling_options"].items():
+ # Skip guided_decoding - already handled above
+ if key == "guided_decoding":
+ continue
if value is not None and hasattr(sampling_params, key):
setattr(sampling_params, key, value)
@@ -102,6 +119,41 @@ def build_sampling_params(
existing = sampling_params.stop_token_ids or []
sampling_params.stop_token_ids = list(set(existing).union(value))
+ # Apply output_options (logprobs, prompt_logprobs, etc.)
+ output_options = request.get("output_options", {})
+ if output_options:
+ # Handle logprobs - vLLM expects this as an integer or None
+ logprobs_value = output_options.get("logprobs")
+ if logprobs_value is not None and logprobs_value != "":
+ try:
+ parsed_logprobs = int(logprobs_value)
+ if parsed_logprobs < 0:
+ logger.warning(
+ f"Invalid logprobs value: {logprobs_value} (must be non-negative), ignoring"
+ )
+ else:
+ sampling_params.logprobs = parsed_logprobs
+ except (ValueError, TypeError):
+ logger.warning(
+ f"Invalid logprobs value: {logprobs_value} (must be integer), ignoring"
+ )
+
+ # Handle prompt_logprobs - vLLM expects this as an integer or None
+ prompt_logprobs_value = output_options.get("prompt_logprobs")
+ if prompt_logprobs_value is not None and prompt_logprobs_value != "":
+ try:
+ parsed_prompt_logprobs = int(prompt_logprobs_value)
+ if parsed_prompt_logprobs < 0:
+ logger.warning(
+ f"Invalid prompt_logprobs value: {prompt_logprobs_value} (must be non-negative), ignoring"
+ )
+ else:
+ sampling_params.prompt_logprobs = parsed_prompt_logprobs
+ except (ValueError, TypeError):
+ logger.warning(
+ f"Invalid prompt_logprobs value: {prompt_logprobs_value} (must be integer), ignoring"
+ )
+
# If max_tokens wasn't provided (None or missing), compute a dynamic default
provided_max_tokens = request.get("stop_conditions", {}).get("max_tokens", None)
token_ids = request.get("token_ids", [])
@@ -114,6 +166,61 @@ def build_sampling_params(
return sampling_params
+def build_sampling_params_openai(
+ request: Dict[str, Any],
+ default_sampling_params: Dict[str, Any],
+) -> SamplingParams:
+ """
+ Build SamplingParams from an OpenAI-compatible request format.
+
+ Args:
+ request: The OpenAI-style request dict with parameters like temperature, max_tokens, etc.
+ default_sampling_params: Default sampling parameters to initialize with
+
+ Returns:
+ SamplingParams configured from the request
+ """
+ sampling_params = SamplingParams(**default_sampling_params)
+ sampling_params.detokenize = True
+
+ # Map common OpenAI parameters to SamplingParams
+ openai_mapping = {
+ "temperature": "temperature",
+ "top_p": "top_p",
+ "presence_penalty": "presence_penalty",
+ "frequency_penalty": "frequency_penalty",
+ "seed": "seed",
+ "top_k": "top_k",
+ "repetition_penalty": "repetition_penalty",
+ "min_p": "min_p",
+ "length_penalty": "length_penalty",
+ "use_beam_search": "use_beam_search",
+ }
+
+ for req_key, param_key in openai_mapping.items():
+ if req_key in request and request[req_key] is not None:
+ if hasattr(sampling_params, param_key):
+ setattr(sampling_params, param_key, request[req_key])
+
+ # Handle max_tokens
+ if "max_tokens" in request and request["max_tokens"] is not None:
+ sampling_params.max_tokens = request["max_tokens"]
+
+ # Handle stop sequences
+ if "stop" in request and request["stop"] is not None:
+ sampling_params.stop = request["stop"]
+
+ # Handle ignore_eos (custom extension)
+ if "ignore_eos" in request and request["ignore_eos"] is not None:
+ sampling_params.ignore_eos = request["ignore_eos"]
+
+ # Handle min_tokens (custom extension)
+ if "min_tokens" in request and request["min_tokens"] is not None:
+ sampling_params.min_tokens = request["min_tokens"]
+
+ return sampling_params
+
+
class BaseWorkerHandler(ABC):
"""
Request handler for the generate and clear_kv_blocks endpoints.
@@ -129,6 +236,7 @@ def __init__(
enable_multimodal: bool = False,
generate_endpoint=None,
config=None,
+ use_vllm_tokenizer: bool = False,
):
self.runtime = runtime
self.component = component
@@ -146,6 +254,14 @@ def __init__(
self.lora_id_for_name: dict[str, int] = {}
self.lora_name_to_path: dict[str, str] = {}
+ self.use_vllm_tokenizer = use_vllm_tokenizer
+
+ # Initialize InputParamManager for text-in-text-out mode
+ tokenizer = None
+ if use_vllm_tokenizer and hasattr(engine, "tokenizer"):
+ tokenizer = engine.tokenizer
+ self.input_param_manager = InputParamManager(tokenizer)
+
@abstractmethod
async def generate(self, request, context) -> AsyncGenerator[dict, None]:
raise NotImplementedError
@@ -563,6 +679,66 @@ def _build_completion_usage(request_output: RequestOutput) -> Dict[str, Any]:
),
}
+ @staticmethod
+ def _extract_logprobs(
+ output, num_output_tokens_so_far: int
+ ) -> tuple[list[float] | None, list[list[dict]] | None]:
+ """
+ Extract logprobs from vLLM CompletionOutput for new tokens.
+
+ Args:
+ output: vLLM CompletionOutput object
+ num_output_tokens_so_far: Number of tokens already processed
+
+ Returns:
+ Tuple of (log_probs, top_logprobs) in Dynamo's expected format:
+ - log_probs: List of log probabilities for each new token
+ - top_logprobs: List of top logprobs dicts for each new token
+ """
+ if output.logprobs is None:
+ return None, None
+
+ # Get logprobs for new tokens only
+ new_logprobs = output.logprobs[num_output_tokens_so_far:]
+ if not new_logprobs:
+ return None, None
+
+ log_probs = []
+ top_logprobs = []
+
+ for token_idx, token_logprobs_dict in enumerate(new_logprobs):
+ if token_logprobs_dict is None:
+ continue
+
+ # Get the actual token_id that was generated at this position
+ actual_token_id = output.token_ids[num_output_tokens_so_far + token_idx]
+
+ # Extract log probability for the selected token
+ # vLLM guarantees the selected token is always in the logprobs dict
+ selected_logprob = token_logprobs_dict[actual_token_id]
+ log_probs.append(float(selected_logprob.logprob))
+
+ # Build top_logprobs list for this token position
+ token_top_logprobs = []
+ for tok_id, logprob_info in token_logprobs_dict.items():
+ token_top_logprobs.append(
+ {
+ "rank": (
+ logprob_info.rank if hasattr(logprob_info, "rank") else 0
+ ),
+ "token_id": tok_id,
+ "token": (
+ logprob_info.decoded_token
+ if hasattr(logprob_info, "decoded_token")
+ else None
+ ),
+ "logprob": float(logprob_info.logprob),
+ }
+ )
+ top_logprobs.append(token_top_logprobs)
+
+ return log_probs if log_probs else None, top_logprobs if top_logprobs else None
+
async def generate_tokens(
self,
prompt,
@@ -608,6 +784,16 @@ async def generate_tokens(
output = res.outputs[0]
next_total_toks = len(output.token_ids)
out = {"token_ids": output.token_ids[num_output_tokens_so_far:]}
+
+ # Extract logprobs for new tokens if available
+ log_probs, top_logprobs = self._extract_logprobs(
+ output, num_output_tokens_so_far
+ )
+ if log_probs is not None:
+ out["log_probs"] = log_probs
+ if top_logprobs is not None:
+ out["top_logprobs"] = top_logprobs
+
if output.finish_reason:
out["finish_reason"] = output.finish_reason
out[
@@ -655,6 +841,7 @@ def __init__(
enable_multimodal: bool = False,
generate_endpoint=None,
config=None,
+ use_vllm_tokenizer: bool = False,
):
super().__init__(
runtime,
@@ -665,6 +852,7 @@ def __init__(
enable_multimodal,
generate_endpoint,
config,
+ use_vllm_tokenizer,
)
async def generate(self, request, context):
@@ -672,6 +860,17 @@ async def generate(self, request, context):
request_id = context.id()
logger.debug(f"Decode Request ID: {request_id}")
+ if self.use_vllm_tokenizer:
+ # Text-in-text-out mode: use InputParamManager and OpenAI-compatible format
+ async for chunk in self._generate_text_mode(request, context, request_id):
+ yield chunk
+ else:
+ # Token-in-token-out mode: internal protocol format
+ async for chunk in self._generate_token_mode(request, context, request_id):
+ yield chunk
+
+ async def _generate_token_mode(self, request, context, request_id):
+ """Generate tokens using internal protocol format (token-in-token-out)."""
# Extract and decode multimodal data if present
multi_modal_data = await self._extract_multimodal_data(request)
@@ -745,6 +944,81 @@ async def generate(self, request, context):
self.runtime.shutdown()
os._exit(1)
+ async def _generate_text_mode(self, request, context, request_id):
+ """Generate text using OpenAI-compatible format (text-in-text-out)."""
+ # Get text input using InputParamManager
+ input_text = self.input_param_manager.get_input_param(
+ request, use_tokenizer=True
+ )
+
+ # Build prompt for vLLM
+ prompt = TextPrompt(prompt=input_text)
+
+ # Build sampling params from OpenAI-style request
+ sampling_params = build_sampling_params_openai(
+ request, self.default_sampling_params
+ )
+
+ dp_rank = request.get("dp_rank", None)
+ openai_request_id = request.get("id") or request.get("request_id", request_id)
+ previous_text = ""
+
+ async with self._abort_monitor(context, request_id):
+ try:
+ gen = self.engine_client.generate(
+ prompt,
+ sampling_params,
+ request_id,
+ data_parallel_rank=dp_rank,
+ )
+
+ async for res in gen:
+ if not res.outputs:
+ yield {
+ "id": openai_request_id,
+ "created": int(time.time()),
+ "object": "chat.completion.chunk",
+ "model": "unknown",
+ "choices": [
+ {
+ "index": 0,
+ "delta": {"role": "assistant", "content": ""},
+ "finish_reason": "error",
+ }
+ ],
+ }
+ break
+
+ output = res.outputs[0]
+ # Calculate the delta text (new text since last chunk)
+ delta_text = output.text[len(previous_text) :]
+ previous_text = output.text
+
+ choice_data = {
+ "index": 0,
+ "delta": {
+ "role": "assistant",
+ "content": delta_text,
+ },
+ "finish_reason": output.finish_reason,
+ }
+
+ chunk = {
+ "id": openai_request_id,
+ "created": int(time.time()),
+ "object": "chat.completion.chunk",
+ "model": "unknown",
+ "choices": [choice_data],
+ }
+
+ yield chunk
+
+ except EngineDeadError as e:
+ logger.error(f"vLLM EngineDeadError: {e}")
+ logger.warning("Initiating Dynamo Runtime shutdown.")
+ self.runtime.shutdown()
+ os._exit(1)
+
class PrefillWorkerHandler(BaseWorkerHandler):
def __init__(
@@ -757,6 +1031,7 @@ def __init__(
enable_multimodal: bool = False,
generate_endpoint=None,
config=None,
+ use_vllm_tokenizer: bool = False,
):
super().__init__(
runtime,
@@ -767,6 +1042,7 @@ def __init__(
enable_multimodal,
generate_endpoint,
config,
+ use_vllm_tokenizer,
)
async def generate(self, request, context):
@@ -774,6 +1050,17 @@ async def generate(self, request, context):
request_id = context.id()
logger.debug(f"Prefill Request ID: {request_id}")
+ if self.use_vllm_tokenizer:
+ # Text-in-text-out mode: use InputParamManager
+ async for chunk in self._generate_text_mode(request, context, request_id):
+ yield chunk
+ else:
+ # Token-in-token-out mode: internal protocol format
+ async for chunk in self._generate_token_mode(request, context, request_id):
+ yield chunk
+
+ async def _generate_token_mode(self, request, context, request_id):
+ """Generate prefill using internal protocol format (token-in-token-out)."""
# Extract and decode multimodal data if present
multi_modal_data = await self._extract_multimodal_data(request)
@@ -877,3 +1164,77 @@ async def generate(self, request, context):
raise GeneratorExit(
"Prefill engine was shut down during token generation"
) from None
+
+ async def _generate_text_mode(self, request, context, request_id):
+ """Generate prefill using OpenAI-compatible format (text-in-text-out)."""
+ # Get text input using InputParamManager
+ input_text = self.input_param_manager.get_input_param(
+ request, use_tokenizer=True
+ )
+
+ # Build prompt for vLLM
+ prompt = TextPrompt(prompt=input_text)
+
+ # Build sampling params from OpenAI-style request
+ sampling_params = build_sampling_params_openai(
+ request, self.default_sampling_params
+ )
+ sampling_params.detokenize = False # Prefill doesn't need detokenization
+
+ # Configure for prefill-only mode with remote decode
+ if sampling_params.extra_args is None:
+ sampling_params.extra_args = {}
+ sampling_params.extra_args["kv_transfer_params"] = {
+ "do_remote_decode": True,
+ }
+ sampling_params_defaults = {
+ "do_remote_prefill": False,
+ "remote_engine_id": None,
+ "remote_block_ids": None,
+ "remote_host": None,
+ "remote_port": None,
+ }
+ # Add only missing keys
+ for k, v in sampling_params_defaults.items():
+ sampling_params.extra_args["kv_transfer_params"].setdefault(k, v)
+ # Override for prefill: only generate 1 token
+ sampling_params.max_tokens = 1
+ sampling_params.min_tokens = 1
+
+ dp_rank = request.get("dp_rank", None)
+
+ async with self._abort_monitor(context, request_id, is_prefill=True):
+ try:
+ gen = self.engine_client.generate(
+ prompt, sampling_params, request_id, data_parallel_rank=dp_rank
+ )
+ except EngineDeadError as e:
+ logger.error(f"vLLM EngineDeadError: {e}")
+ logger.warning("Initiating Dynamo Runtime shutdown.")
+ self.runtime.shutdown()
+ os._exit(1)
+
+ try:
+ async for res in gen:
+ logger.debug(f"kv transfer params: {res.kv_transfer_params}")
+
+ token_ids = res.outputs[0].token_ids if res.outputs else []
+
+ output: Dict[str, Any] = {
+ "token_ids": list(token_ids),
+ "disaggregated_params": (
+ {"kv_transfer_params": res.kv_transfer_params}
+ if res.kv_transfer_params
+ else None
+ ),
+ "completion_usage": BaseWorkerHandler._build_completion_usage(
+ request_output=res
+ ),
+ }
+
+ yield output
+ except asyncio.CancelledError:
+ # raise the error because we cannot migrate prefill requests
+ raise GeneratorExit(
+ "Prefill engine was shut down during token generation"
+ ) from None
diff --git a/components/src/dynamo/vllm/health_check.py b/components/src/dynamo/vllm/health_check.py
index d24230930d..fdf85e241a 100644
--- a/components/src/dynamo/vllm/health_check.py
+++ b/components/src/dynamo/vllm/health_check.py
@@ -8,11 +8,15 @@
"""
import logging
+from typing import TYPE_CHECKING, Optional
from dynamo.health_check import HealthCheckPayload
logger = logging.getLogger(__name__)
+if TYPE_CHECKING:
+ from vllm.v1.engine.async_llm import AsyncLLM
+
def _get_bos_token_id_from_engine(engine_client) -> int:
"""
@@ -45,6 +49,36 @@ def _get_bos_token_id_from_engine(engine_client) -> int:
return 1
+def _make_default_payload(
+ engine_client: Optional["AsyncLLM"], use_text_input: bool
+) -> dict:
+ sampling_options = {
+ "temperature": 0.0,
+ }
+
+ stop_conditions = {
+ "max_tokens": 1,
+ "stop": None,
+ "stop_token_ids": None,
+ "include_stop_str_in_output": False,
+ "ignore_eos": False,
+ }
+
+ if use_text_input:
+ return {
+ "prompt": "Test",
+ **sampling_options,
+ **stop_conditions,
+ }
+ else:
+ bos_token_id = _get_bos_token_id_from_engine(engine_client)
+ return {
+ "token_ids": [bos_token_id],
+ "sampling_options": sampling_options,
+ "stop_conditions": stop_conditions,
+ }
+
+
class VllmHealthCheckPayload(HealthCheckPayload):
"""
vLLM-specific health check payload.
@@ -52,32 +86,18 @@ class VllmHealthCheckPayload(HealthCheckPayload):
Provides vLLM defaults and inherits environment override support from base class.
"""
- def __init__(self, engine_client=None):
+ def __init__(self, engine_client=None, use_text_input: bool = False):
"""
Initialize vLLM health check payload with vLLM-specific defaults.
Args:
engine_client: Optional vLLM AsyncLLM engine client to extract BOS token from.
If provided, will attempt to use the model's actual BOS token.
+ use_text_input: If True, use text-based input (prompt field) instead of token_ids.
+ This should match the use_vllm_tokenizer config setting.
"""
- bos_token_id = _get_bos_token_id_from_engine(engine_client)
- # Set vLLM default payload - minimal request that completes quickly
- # The handler expects token_ids, sampling_options, and stop_conditions
- self.default_payload = {
- "token_ids": [bos_token_id],
- "sampling_options": {
- "max_tokens": 1,
- "temperature": 0.0,
- },
- "stop_conditions": {
- "stop": None,
- "stop_token_ids": None,
- "include_stop_str_in_output": False,
- "ignore_eos": False,
- "min_tokens": 0,
- },
- }
+ self.default_payload = _make_default_payload(engine_client, use_text_input)
super().__init__()
@@ -88,7 +108,7 @@ class VllmPrefillHealthCheckPayload(HealthCheckPayload):
The prefill handler expects PreprocessedRequest format with sampling_options and stop_conditions.
"""
- def __init__(self, engine_client=None):
+ def __init__(self, engine_client=None, use_text_input: bool = False):
"""
Initialize vLLM prefill health check payload with proper PreprocessedRequest structure.
@@ -96,23 +116,5 @@ def __init__(self, engine_client=None):
engine_client: Optional vLLM AsyncLLM engine client to extract BOS token from.
If provided, will attempt to use the model's actual BOS token.
"""
- bos_token_id = _get_bos_token_id_from_engine(engine_client)
-
- # Prefill handler expects PreprocessedRequest format: token_ids, sampling_options, stop_conditions
- # The handler will override max_tokens/min_tokens to 1 and add do_remote_decode
- self.default_payload = {
- "token_ids": [bos_token_id],
- "sampling_options": {
- "temperature": 0.0,
- "top_p": 1.0,
- "top_k": -1,
- },
- "stop_conditions": {
- "stop": None,
- "stop_token_ids": None,
- "include_stop_str_in_output": False,
- "ignore_eos": False,
- "min_tokens": 0,
- },
- }
+ self.default_payload = _make_default_payload(engine_client, use_text_input)
super().__init__()
diff --git a/components/src/dynamo/vllm/main.py b/components/src/dynamo/vllm/main.py
index d698add3f8..b26d663891 100644
--- a/components/src/dynamo/vllm/main.py
+++ b/components/src/dynamo/vllm/main.py
@@ -224,6 +224,7 @@ def setup_kv_event_publisher(
worker_id=generate_endpoint.connection_id(),
kv_block_size=vllm_config.cache_config.block_size,
zmq_endpoint=zmq_endpoint,
+ enable_local_indexer=config.enable_local_indexer,
)
kv_publisher = ZmqKvEventPublisher(component=component, config=zmq_config)
kv_publishers.append(kv_publisher)
@@ -336,6 +337,7 @@ async def register_vllm_model(
runtime_config.total_kv_blocks = runtime_values["num_gpu_blocks"]
runtime_config.max_num_seqs = runtime_values["max_num_seqs"]
runtime_config.max_num_batched_tokens = runtime_values["max_num_batched_tokens"]
+ runtime_config.enable_local_indexer = config.enable_local_indexer
# Add tool/reasoning parsers for decode models
if model_type != ModelType.Prefill:
@@ -384,6 +386,7 @@ async def init_prefill(runtime: DistributedRuntime, config: Config):
enable_multimodal=config.enable_multimodal,
generate_endpoint=generate_endpoint,
config=config,
+ use_vllm_tokenizer=config.use_vllm_tokenizer,
)
handler.add_temp_dir(prometheus_temp_dir)
@@ -418,8 +421,11 @@ async def init_prefill(runtime: DistributedRuntime, config: Config):
# Register prefill model with ModelType.Prefill
if not config.engine_args.data_parallel_rank: # if rank is 0 or None then register
+ model_input = (
+ ModelInput.Text if config.use_vllm_tokenizer else ModelInput.Tokens
+ )
await register_vllm_model(
- ModelInput.Tokens,
+ model_input,
ModelType.Prefill,
generate_endpoint,
config,
@@ -428,7 +434,9 @@ async def init_prefill(runtime: DistributedRuntime, config: Config):
migration_limit=0, # Prefill doesn't support migration
)
- health_check_payload = VllmPrefillHealthCheckPayload(engine_client).to_dict()
+ health_check_payload = VllmPrefillHealthCheckPayload(
+ engine_client, use_text_input=config.use_vllm_tokenizer
+ ).to_dict()
try:
logger.debug("Starting serve_endpoint for prefill worker")
@@ -497,6 +505,7 @@ async def init(runtime: DistributedRuntime, config: Config):
enable_multimodal=config.enable_multimodal,
generate_endpoint=generate_endpoint,
config=config,
+ use_vllm_tokenizer=config.use_vllm_tokenizer,
)
handler.add_temp_dir(prometheus_temp_dir)
@@ -536,6 +545,10 @@ async def init(runtime: DistributedRuntime, config: Config):
f"Registering model with endpoint types: {config.dyn_endpoint_types}"
)
+ model_input = (
+ ModelInput.Text if config.use_vllm_tokenizer else ModelInput.Tokens
+ )
+
# Warn if custom template provided but chat endpoint not enabled
if config.custom_jinja_template and "chat" not in config.dyn_endpoint_types:
logger.warning(
@@ -544,7 +557,7 @@ async def init(runtime: DistributedRuntime, config: Config):
)
await register_vllm_model(
- ModelInput.Tokens,
+ model_input,
model_type,
generate_endpoint,
config,
@@ -553,7 +566,9 @@ async def init(runtime: DistributedRuntime, config: Config):
migration_limit=config.migration_limit,
)
- health_check_payload = VllmHealthCheckPayload(engine_client).to_dict()
+ health_check_payload = VllmHealthCheckPayload(
+ engine_client, use_text_input=config.use_vllm_tokenizer
+ ).to_dict()
try:
logger.debug("Starting serve_endpoint for decode worker")
diff --git a/components/src/dynamo/vllm/multimodal_handlers/encode_worker_handler.py b/components/src/dynamo/vllm/multimodal_handlers/encode_worker_handler.py
index 059ba57a9d..d72804f284 100644
--- a/components/src/dynamo/vllm/multimodal_handlers/encode_worker_handler.py
+++ b/components/src/dynamo/vllm/multimodal_handlers/encode_worker_handler.py
@@ -69,7 +69,6 @@ async def async_init(self, runtime: DistributedRuntime):
# Create and initialize a dynamo connector for this worker.
# We'll needs this to move data between this worker and remote workers efficiently.
self._connector = connect.Connector()
- await self._connector.initialize()
logger.info("Encode worker startup completed.")
async def generate(
@@ -130,7 +129,7 @@ async def generate(
request.embeddings_shape = tuple(embeddings.shape)
descriptor = connect.Descriptor(embeddings_cpu)
- with self._connector.create_readable(descriptor) as readable:
+ with await self._connector.create_readable(descriptor) as readable:
request.serialized_request = readable.metadata()
# Clear the image URL as hint that the image is passed as embeddings.
request.multimodal_input.image_url = None
diff --git a/components/src/dynamo/vllm/multimodal_handlers/processor_handler.py b/components/src/dynamo/vllm/multimodal_handlers/processor_handler.py
index eb84c20190..1ee10d02cd 100644
--- a/components/src/dynamo/vllm/multimodal_handlers/processor_handler.py
+++ b/components/src/dynamo/vllm/multimodal_handlers/processor_handler.py
@@ -11,7 +11,7 @@
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.entrypoints.openai.protocol import ChatCompletionRequest, CompletionRequest
from vllm.outputs import RequestOutput
-from vllm.transformers_utils.tokenizer import AnyTokenizer
+from vllm.tokenizers import TokenizerLike as AnyTokenizer
from dynamo.runtime import Client
diff --git a/components/src/dynamo/vllm/multimodal_handlers/worker_handler.py b/components/src/dynamo/vllm/multimodal_handlers/worker_handler.py
index 727d5bdb87..0db99946ea 100644
--- a/components/src/dynamo/vllm/multimodal_handlers/worker_handler.py
+++ b/components/src/dynamo/vllm/multimodal_handlers/worker_handler.py
@@ -52,7 +52,6 @@ def __init__(
async def async_init(self, runtime: DistributedRuntime):
"""Async initialization - connector needs async setup"""
self._connector = connect.Connector()
- await self._connector.initialize()
logger.info("Multimodal Decode Worker async initialization completed.")
async def generate(self, request: vLLMMultimodalRequest, context):
@@ -138,7 +137,6 @@ async def async_init(self, runtime: DistributedRuntime):
"""Async initialization for connector that requires async setup"""
# Initialize the connector asynchronously
self._connector = connect.Connector()
- await self._connector.initialize()
logger.info("Multimodal PD Worker async initialization completed.")
async def generate(self, request: vLLMMultimodalRequest, context):
diff --git a/components/src/dynamo/vllm/multimodal_utils/chat_processor.py b/components/src/dynamo/vllm/multimodal_utils/chat_processor.py
index fe8d95dc81..3a693131d9 100644
--- a/components/src/dynamo/vllm/multimodal_utils/chat_processor.py
+++ b/components/src/dynamo/vllm/multimodal_utils/chat_processor.py
@@ -28,9 +28,22 @@
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
from vllm.entrypoints.openai.serving_completion import OpenAIServingCompletion
from vllm.entrypoints.openai.serving_engine import RequestPrompt
+from vllm.entrypoints.openai.serving_models import BaseModelPath, OpenAIServingModels
from vllm.inputs.data import TokensPrompt
from vllm.sampling_params import SamplingParams
-from vllm.transformers_utils.tokenizer import AnyTokenizer
+from vllm.tokenizers import TokenizerLike as AnyTokenizer
+
+
+class StubEngineClient:
+ """
+ Stub EngineClient for preprocessing-only use of OpenAIServingChat/Completion.
+ Provides the minimal attributes required by OpenAIServingModels.
+ """
+
+ def __init__(self, model_config: ModelConfig):
+ self.model_config = model_config
+ self.input_processor = None
+ self.io_processor = None
@runtime_checkable
@@ -120,12 +133,19 @@ class ChatProcessor:
def __init__(self, tokenizer: AnyTokenizer, model_config: ModelConfig):
self.tokenizer = tokenizer
self.model_config = model_config
+ # Create stub engine client and models for preprocessing-only usage
+ stub_engine = StubEngineClient(model_config)
+ serving_models = OpenAIServingModels(
+ engine_client=stub_engine,
+ base_model_paths=[
+ BaseModelPath(name=model_config.model, model_path=model_config.model)
+ ],
+ )
self.openai_serving = OpenAIServingChat(
- engine_client=None,
- model_config=model_config,
- models=None,
- request_logger=None,
+ engine_client=stub_engine,
+ models=serving_models,
response_role="assistant",
+ request_logger=None,
chat_template=None,
chat_template_content_format="auto",
)
@@ -186,7 +206,6 @@ async def stream_response(
conversation,
self.tokenizer,
request_metadata,
- enable_force_include_usage=False,
):
if raw_response.startswith("data: [DONE]"):
yield raw_response
@@ -220,7 +239,6 @@ async def stream_response(
conversation,
self.tokenizer,
request_metadata,
- enable_force_include_usage=False,
):
if raw_response.startswith("data: [DONE]"):
break
@@ -267,10 +285,17 @@ class CompletionsProcessor:
def __init__(self, tokenizer: AnyTokenizer, model_config: ModelConfig):
self.tokenizer = tokenizer
self.model_config = model_config
+ # Create stub engine client and models for preprocessing-only usage
+ stub_engine = StubEngineClient(model_config)
+ serving_models = OpenAIServingModels(
+ engine_client=stub_engine,
+ base_model_paths=[
+ BaseModelPath(name=model_config.model, model_path=model_config.model)
+ ],
+ )
self.openai_serving = OpenAIServingCompletion(
- engine_client=None,
- model_config=model_config,
- models=None,
+ engine_client=stub_engine,
+ models=serving_models,
request_logger=None,
)
diff --git a/components/src/dynamo/vllm/multimodal_utils/protocol.py b/components/src/dynamo/vllm/multimodal_utils/protocol.py
index ef8d2bea91..c05f6cdeeb 100644
--- a/components/src/dynamo/vllm/multimodal_utils/protocol.py
+++ b/components/src/dynamo/vllm/multimodal_utils/protocol.py
@@ -26,7 +26,7 @@
from vllm.multimodal.inputs import MultiModalUUIDDict # noqa: F401
from vllm.outputs import CompletionOutput
from vllm.sampling_params import SamplingParams
-from vllm.sequence import RequestMetrics
+from vllm.v1.metrics.stats import RequestStateStats
import dynamo.nixl_connect as connect
@@ -156,7 +156,7 @@ class MyRequestOutput(BaseModel):
https://github.com/vllm-project/vllm/blob/a4c402a756fa3213caf9d2cde0e4ceb2d57727f2/vllm/outputs.py#L85
This class is used to serialize the RequestOutput and any recursively defined types
- We can do this because PromptLogprobs, RequestMetrics, and CompletionOutput are all serializable dataclasses
+ We can do this because PromptLogprobs, RequestStateStats, and CompletionOutput are all serializable dataclasses
"""
model_config = ConfigDict(arbitrary_types_allowed=True)
@@ -167,7 +167,7 @@ class MyRequestOutput(BaseModel):
prompt_logprobs: Optional[PromptLogprobs] = None
outputs: List[CompletionOutput]
finished: bool
- metrics: Optional[RequestMetrics] = None
+ metrics: Optional[RequestStateStats] = None
kv_transfer_params: Optional[dict[str, Any]] = None
# lora_request: Optional[LoRARequest] = None
# encoder_prompt: Optional[str] = None
diff --git a/container/Dockerfile b/container/Dockerfile
index ae639f7314..333c572dfa 100644
--- a/container/Dockerfile
+++ b/container/Dockerfile
@@ -1,6 +1,18 @@
# syntax=docker/dockerfile:1.10.0
# SPDX-FileCopyrightText: Copyright (c) 2024-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
+#
+# NOTE FOR dynamo_base AND wheel_builder STAGES:
+#
+# All changes to dynamo_base and wheel_builder stages should be replicated across
+# Dockerfile and Dockerfile. images.:
+# - Dockerfile
+# - Dockerfile.vllm
+# - Dockerfile.sglang
+# - Dockerfile.trtllm
+# This duplication was introduced purposely to quickly enable Docker layer caching and
+# deduplication. Please ensure these stages stay in sync until the duplication can be
+# addressed.
##################################
########## Build Arguments ########
@@ -14,6 +26,7 @@ ARG BASE_IMAGE_TAG
ARG PYTHON_VERSION
ARG ENABLE_KVBM
+ARG ENABLE_MEDIA_NIXL
ARG CARGO_BUILD_JOBS
# Define general architecture ARGs for supporting both x86 and aarch64 builds.
@@ -35,9 +48,9 @@ ARG SCCACHE_BUCKET=""
ARG SCCACHE_REGION=""
# NIXL configuration
-ARG NIXL_UCX_REF=v1.19.0
-ARG NIXL_REF=0.7.1
-ARG NIXL_GDRCOPY_REF=v2.5.1
+ARG NIXL_UCX_REF
+ARG NIXL_REF
+ARG NIXL_GDRCOPY_REF
##################################
########## Base Image ############
@@ -201,10 +214,11 @@ ENV SCCACHE_BUCKET=${USE_SCCACHE:+${SCCACHE_BUCKET}} \
RUN --mount=type=secret,id=aws-key-id,env=AWS_ACCESS_KEY_ID \
--mount=type=secret,id=aws-secret-id,env=AWS_SECRET_ACCESS_KEY \
export SCCACHE_S3_KEY_PREFIX="${SCCACHE_S3_KEY_PREFIX:-${ARCH}}" && \
- CC=${USE_SCCACHE:+sccache gcc} && \
- CXX=${USE_SCCACHE:+sccache g++} && \
- export CC=${CC} && \
- export CXX=${CXX} && \
+ if [ "$USE_SCCACHE" = "true" ]; then \
+ export CMAKE_C_COMPILER_LAUNCHER="sccache" && \
+ export CMAKE_CXX_COMPILER_LAUNCHER="sccache" && \
+ export CMAKE_CUDA_COMPILER_LAUNCHER="sccache"; \
+ fi && \
cd /usr/local/src && \
git clone https://github.com/openucx/ucx.git && \
cd ucx && \
@@ -235,6 +249,11 @@ RUN --mount=type=secret,id=aws-key-id,env=AWS_ACCESS_KEY_ID \
RUN --mount=type=secret,id=aws-key-id,env=AWS_ACCESS_KEY_ID \
--mount=type=secret,id=aws-secret-id,env=AWS_SECRET_ACCESS_KEY \
export SCCACHE_S3_KEY_PREFIX="${SCCACHE_S3_KEY_PREFIX:-${ARCH}}" && \
+ if [ "$USE_SCCACHE" = "true" ]; then \
+ export CMAKE_C_COMPILER_LAUNCHER="sccache" && \
+ export CMAKE_CXX_COMPILER_LAUNCHER="sccache" && \
+ export CMAKE_CUDA_COMPILER_LAUNCHER="sccache"; \
+ fi && \
source ${VIRTUAL_ENV}/bin/activate && \
git clone --depth 1 --branch ${NIXL_REF} "https://github.com/ai-dynamo/nixl.git" && \
cd nixl && \
@@ -260,6 +279,11 @@ RUN echo "$NIXL_LIB_DIR" > /etc/ld.so.conf.d/nixl.conf && \
RUN --mount=type=secret,id=aws-key-id,env=AWS_ACCESS_KEY_ID \
--mount=type=secret,id=aws-secret-id,env=AWS_SECRET_ACCESS_KEY \
export SCCACHE_S3_KEY_PREFIX="${SCCACHE_S3_KEY_PREFIX:-${ARCH}}" && \
+ if [ "$USE_SCCACHE" = "true" ]; then \
+ export CMAKE_C_COMPILER_LAUNCHER="sccache" && \
+ export CMAKE_CXX_COMPILER_LAUNCHER="sccache" && \
+ export CMAKE_CUDA_COMPILER_LAUNCHER="sccache"; \
+ fi && \
cd /workspace/nixl && \
uv build . --out-dir /opt/dynamo/dist/nixl --python $PYTHON_VERSION
@@ -274,11 +298,20 @@ ARG ENABLE_KVBM
RUN --mount=type=secret,id=aws-key-id,env=AWS_ACCESS_KEY_ID \
--mount=type=secret,id=aws-secret-id,env=AWS_SECRET_ACCESS_KEY \
export SCCACHE_S3_KEY_PREFIX=${SCCACHE_S3_KEY_PREFIX:-${ARCH}} && \
+ if [ "$USE_SCCACHE" = "true" ]; then \
+ export CMAKE_C_COMPILER_LAUNCHER="sccache" && \
+ export CMAKE_CXX_COMPILER_LAUNCHER="sccache" && \
+ export RUSTC_WRAPPER="sccache"; \
+ fi && \
source ${VIRTUAL_ENV}/bin/activate && \
cd /opt/dynamo && \
uv build --wheel --out-dir /opt/dynamo/dist && \
cd /opt/dynamo/lib/bindings/python && \
- maturin build --release --out /opt/dynamo/dist && \
+ if [ "$ENABLE_MEDIA_NIXL" = "true" ]; then \
+ maturin build --release --features dynamo-llm/media-nixl --out /opt/dynamo/dist; \
+ else \
+ maturin build --release --out /opt/dynamo/dist; \
+ fi && \
if [ "$ENABLE_KVBM" = "true" ]; then \
cd /opt/dynamo/lib/bindings/kvbm && \
maturin build --release --out target/wheels && \
@@ -354,7 +387,7 @@ USER dynamo
ENV HOME=/home/dynamo \
DYNAMO_HOME=/opt/dynamo \
CARGO_TARGET_DIR=/opt/dynamo/target
-ENV LD_LIBRARY_PATH=${NIXL_LIB_DIR}:${NIXL_PLUGIN_DIR}:/usr/local/ucx/lib:/usr/local/ucx/lib/ucx:${LD_LIBRARY_PATH}
+ENV LD_LIBRARY_PATH=${NIXL_LIB_DIR}:${NIXL_PLUGIN_DIR}:/usr/local/ucx/lib:/usr/local/ucx/lib/ucx:/usr/local/cuda/compat/lib.real:${LD_LIBRARY_PATH}
# Create and activate virtual environment
ARG PYTHON_VERSION
@@ -379,10 +412,15 @@ RUN uv pip install \
/opt/dynamo/wheelhouse/ai_dynamo*any.whl \
/opt/dynamo/wheelhouse/nixl/nixl*.whl && \
if [ "$ENABLE_KVBM" = "true" ]; then \
- uv pip install /opt/dynamo/wheelhouse/kvbm*.whl; \
- fi \
- && cd /workspace/benchmarks \
- && UV_GIT_LFS=1 uv pip install --no-cache .
+ KVBM_WHEEL=$(ls /opt/dynamo/wheelhouse/kvbm*.whl 2>/dev/null | head -1); \
+ if [ -z "$KVBM_WHEEL" ]; then \
+ echo "ERROR: ENABLE_KVBM is true but no KVBM wheel found in wheelhouse" >&2; \
+ exit 1; \
+ fi; \
+ uv pip install "$KVBM_WHEEL"; \
+ fi && \
+ cd /workspace/benchmarks && \
+ UV_GIT_LFS=1 uv pip install --no-cache .
# Setup launch banner in common directory accessible to all users
RUN --mount=type=bind,source=./container/launch_message/runtime.txt,target=/opt/dynamo/launch_message.txt \
diff --git a/container/Dockerfile.docs b/container/Dockerfile.docs
index ffcf58d767..f9376fd363 100644
--- a/container/Dockerfile.docs
+++ b/container/Dockerfile.docs
@@ -18,6 +18,10 @@ FROM ubuntu:24.04
ARG DYNAMO_COMMIT_SHA
ENV DYNAMO_COMMIT_SHA=$DYNAMO_COMMIT_SHA
+# Version for documentation (e.g., "0.3.0" for releases, "dev" for main/PRs)
+ARG DYNAMO_DOCS_VERSION=dev
+ENV DYNAMO_DOCS_VERSION=$DYNAMO_DOCS_VERSION
+
COPY --from=ghcr.io/astral-sh/uv:latest /uv /uvx /bin/
RUN apt-get update && \
diff --git a/container/Dockerfile.local_dev b/container/Dockerfile.local_dev
index c24bec9718..5ce054659f 100644
--- a/container/Dockerfile.local_dev
+++ b/container/Dockerfile.local_dev
@@ -14,22 +14,16 @@
ARG DEV_BASE=""
FROM ${DEV_BASE} AS local-dev
-# Don't want dynamo to be editable, just change uid and gid.
-ENV USERNAME=dynamo
-ARG USER_UID
-ARG USER_GID
-ARG WORKSPACE_DIR=/workspace
-
-ARG DYNAMO_COMMIT_SHA
-ENV DYNAMO_COMMIT_SHA=$DYNAMO_COMMIT_SHA
-
-ARG ARCH
+# Switch to root for package installation (dev stage ends as dynamo user)
+USER root
+# Reset SHELL to non-login bash (dev stage uses login shell)
+SHELL ["/bin/bash", "-c"]
# Update package lists and install developer utilities. Some of these may exist in the base image,
# but to ensure consistency across all dev images, we explicitly list all required dev tools here.
RUN apt-get update && apt-get install -y \
# Development utilities
- curl wget git vim nano \
+ curl wget git vim nano less \
# System utilities
htop nvtop tmux screen \
# Network utilities
@@ -45,21 +39,9 @@ RUN apt-get update && apt-get install -y \
# File utilities
tree fd-find ripgrep \
# Shell utilities
- zsh fish bash-completion
-
-# https://code.visualstudio.com/remote/advancedcontainers/add-nonroot-user
-# Configure user with sudo access for Dev Container workflows
-RUN apt-get install -y sudo gnupg2 gnupg1 \
- && echo "$USERNAME ALL=(root) NOPASSWD:ALL" > /etc/sudoers.d/$USERNAME \
- && chmod 0440 /etc/sudoers.d/$USERNAME \
- && mkdir -p /home/$USERNAME \
- # Handle GID conflicts: if target GID exists and it's not our group, remove it
- && (getent group $USER_GID | grep -v "^$USERNAME:" && groupdel $(getent group $USER_GID | cut -d: -f1) || true) \
- # Create group if it doesn't exist, otherwise modify existing group
- && (getent group $USERNAME > /dev/null 2>&1 && groupmod -g $USER_GID $USERNAME || groupadd -g $USER_GID $USERNAME) \
- && usermod -u $USER_UID -g $USER_GID $USERNAME \
- && chown -R $USERNAME:$USERNAME /home/$USERNAME \
- && chsh -s /bin/bash $USERNAME
+ zsh fish bash-completion \
+ # User management
+ sudo gnupg2 gnupg1
# Install awk separately with fault tolerance
# awk is a virtual package with multiple implementations (gawk, mawk, original-awk).
@@ -71,12 +53,34 @@ RUN (apt-get install -y gawk || \
echo "Warning: Could not install any awk implementation") && \
(which awk && echo "awk successfully installed: $(which awk)" || echo "awk not available")
+
+# Don't want dynamo to be editable, just change uid and gid.
+ENV USERNAME=dynamo
+ARG USER_UID
+ARG USER_GID
+ARG WORKSPACE_DIR=/workspace
+ARG ARCH=amd64
+
# Add NVIDIA devtools repository and install development tools
RUN wget -qO - https://developer.download.nvidia.com/devtools/repos/ubuntu2404/${ARCH}/nvidia.pub | gpg --dearmor -o /etc/apt/keyrings/nvidia-devtools.gpg && \
echo "deb [signed-by=/etc/apt/keyrings/nvidia-devtools.gpg] https://developer.download.nvidia.com/devtools/repos/ubuntu2404/${ARCH} /" | tee /etc/apt/sources.list.d/nvidia-devtools.list && \
apt-get update && \
apt-get install -y nsight-systems-2025.5.1
+# https://code.visualstudio.com/remote/advancedcontainers/add-nonroot-user
+# Configure user with sudo access for Dev Container workflows
+RUN echo "$USERNAME ALL=(root) NOPASSWD:ALL" > /etc/sudoers.d/$USERNAME \
+ && chmod 0440 /etc/sudoers.d/$USERNAME \
+ && mkdir -p /home/$USERNAME \
+ # Handle GID conflicts: if target GID exists and it's not our group, remove it
+ && (getent group $USER_GID | grep -v "^$USERNAME:" && groupdel $(getent group $USER_GID | cut -d: -f1) || true) \
+ # Create group if it doesn't exist, otherwise modify existing group
+ && (getent group $USERNAME > /dev/null 2>&1 && groupmod -g $USER_GID $USERNAME || groupadd -g $USER_GID $USERNAME) \
+ && usermod -u $USER_UID -g $USER_GID -G 0 $USERNAME \
+ && chown $USERNAME:$USER_GID /home/$USERNAME \
+ && chsh -s /bin/bash $USERNAME
+
+
# Clean up package lists at the end
RUN rm -rf /var/lib/apt/lists/*
@@ -87,45 +91,26 @@ ENV WORKSPACE_DIR=${WORKSPACE_DIR}
# Path configuration notes:
# - DYNAMO_HOME: Main project directory (workspace mount point)
# - CARGO_TARGET_DIR: Build artifacts in workspace/target for persistence
-# - CARGO_HOME: Must be in $HOME/.cargo (not workspace) because:
-# * Workspace gets mounted to different paths where cargo binaries may not exist
-# * Contains critical cargo binaries and registry that need consistent paths
-# - RUSTUP_HOME: Must be in $HOME/.rustup (not workspace) because:
-# * Contains rust toolchain binaries that must be at expected system paths
-# * Workspace mount point would break rustup's toolchain resolution
# - PATH: Includes cargo binaries for rust tool access
ENV HOME=/home/$USERNAME
ENV DYNAMO_HOME=${WORKSPACE_DIR}
ENV CARGO_TARGET_DIR=${WORKSPACE_DIR}/target
-ENV CARGO_HOME=${HOME}/.cargo
-ENV RUSTUP_HOME=${HOME}/.rustup
+# NOTE: CARGO_HOME and RUSTUP_HOME are already inherited from dev stage (Dockerfile.sglang|trtllm|vllm)
ENV PATH=${CARGO_HOME}/bin:$PATH
-# Copy Rust toolchain from system directories to user home directories with proper ownership
-RUN rsync -a --chown=$USER_UID:$USER_GID /usr/local/rustup/ $RUSTUP_HOME/
-
-RUN rsync -a --chown=$USER_UID:$USER_GID /usr/local/cargo/ $CARGO_HOME/
-
-# Copy virtual environment with proper ownership using rsync instead of chown.
-# Why rsync instead of chown -R:
-# chown -R is extremely slow in Docker containers, especially on large directory trees
-# like Python virtual environments with thousands of files. This is a well-documented
-# Docker performance issue. rsync --chown is 3-4x faster as it sets ownership during copy.
-RUN rsync -a --chown=$USER_UID:$USER_GID ${VIRTUAL_ENV}/ /tmp/venv-temp/ && \
- rm -rf ${VIRTUAL_ENV} && \
- mv /tmp/venv-temp ${VIRTUAL_ENV}
-
-# At this point, we are executing as the ubuntu user
+# Switch to dynamo user (dev stage has umask 002, so files should already be group-writable)
USER $USERNAME
WORKDIR $HOME
# https://code.visualstudio.com/remote/advancedcontainers/persist-bash-history
RUN SNIPPET="export PROMPT_COMMAND='history -a' && export HISTFILE=$HOME/.commandhistory/.bash_history" \
&& mkdir -p $HOME/.commandhistory \
+ && chmod g+w $HOME/.commandhistory \
&& touch $HOME/.commandhistory/.bash_history \
&& echo "$SNIPPET" >> "$HOME/.bashrc"
-RUN mkdir -p /home/$USERNAME/.cache/
+RUN mkdir -p /home/$USERNAME/.cache/ \
+ && chmod g+w /home/$USERNAME/.cache/
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
CMD []
diff --git a/container/Dockerfile.sglang b/container/Dockerfile.sglang
index bff39a2dfe..7296472f7d 100644
--- a/container/Dockerfile.sglang
+++ b/container/Dockerfile.sglang
@@ -1,6 +1,33 @@
# syntax=docker/dockerfile:1.10.0
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
+#
+# NOTE FOR dynamo_base AND wheel_builder STAGES:
+#
+# All changes to dynamo_base and wheel_builder stages should be replicated across
+# Dockerfile and Dockerfile. images.:
+# - Dockerfile
+# - Dockerfile.vllm
+# - Dockerfile.sglang
+# - Dockerfile.trtllm
+# This duplication was introduced purposely to quickly enable Docker layer caching and
+# deduplication. Please ensure these stages stay in sync until the duplication can be
+# addressed.
+#
+# Throughout this file, we make certain paths group-writable because this allows
+# both the dynamo user (UID 1000) and Dev Container users (UID != 1000) to work
+# properly without needing slow chown -R operations (which can add 2-10 extra
+# minutes).
+#
+# DEVELOPMENT PATHS THAT MUST BE GROUP-WRITABLE (for non-virtualenv containers):
+# /workspace - Users create/modify project files
+# /home/dynamo - Users create config/cache files
+# /home/dynamo/.local - SGLang uses $HOME/.local/lib/python3.10/site-packages for pip install
+#
+# HOW TO ACHIEVE GROUP-WRITABLE PERMISSIONS:
+# 1. SHELL + /etc/profile.d - Login shell sources umask 002 globally for all RUN commands (775/664)
+# 2. COPY --chmod=775 - Sets permissions on copied children (not destination)
+# 3. chmod g+w (no -R) - Fixes destination dirs only (milliseconds vs minutes)
# This section contains build arguments that are common and shared with
# the plain Dockerfile, so they should NOT have a default. The source of truth is from build.sh.
@@ -11,19 +38,296 @@ ARG BASE_IMAGE_TAG
ARG FRAMEWORK_IMAGE
ARG FRAMEWORK_IMAGE_TAG
ARG PYTHON_VERSION
+ARG ENABLE_KVBM
+ARG ENABLE_MEDIA_NIXL
+ARG CARGO_BUILD_JOBS
ARG CUDA_VERSION
ARG ARCH=amd64
ARG ARCH_ALT=x86_64
-ARG CARGO_BUILD_JOBS
# sccache configuration - inherit from base build
ARG USE_SCCACHE
ARG SCCACHE_BUCKET=""
ARG SCCACHE_REGION=""
-ARG DYNAMO_BASE_IMAGE="dynamo:latest-none"
-FROM ${DYNAMO_BASE_IMAGE} AS dynamo_base
+# NIXL configuration
+ARG NIXL_UCX_REF
+ARG NIXL_REF
+ARG NIXL_GDRCOPY_REF
+
+##################################
+########## Base Image ############
+##################################
+
+FROM ${BASE_IMAGE}:${BASE_IMAGE_TAG} AS dynamo_base
+
+ARG ARCH
+ARG ARCH_ALT
+
+USER root
+WORKDIR /opt/dynamo
+
+# Install uv package manager
+COPY --from=ghcr.io/astral-sh/uv:latest /uv /uvx /bin/
+
+# Install NATS server
+ENV NATS_VERSION="v2.10.28"
+RUN --mount=type=cache,target=/var/cache/apt \
+ wget --tries=3 --waitretry=5 https://github.com/nats-io/nats-server/releases/download/${NATS_VERSION}/nats-server-${NATS_VERSION}-${ARCH}.deb && \
+ dpkg -i nats-server-${NATS_VERSION}-${ARCH}.deb && rm nats-server-${NATS_VERSION}-${ARCH}.deb
+
+# Install etcd
+ENV ETCD_VERSION="v3.5.21"
+RUN wget --tries=3 --waitretry=5 https://github.com/etcd-io/etcd/releases/download/$ETCD_VERSION/etcd-$ETCD_VERSION-linux-${ARCH}.tar.gz -O /tmp/etcd.tar.gz && \
+ mkdir -p /usr/local/bin/etcd && \
+ tar -xvf /tmp/etcd.tar.gz -C /usr/local/bin/etcd --strip-components=1 && \
+ rm /tmp/etcd.tar.gz
+ENV PATH=/usr/local/bin/etcd/:$PATH
+
+# Rust Setup
+# Rust environment setup
+ENV RUSTUP_HOME=/usr/local/rustup \
+ CARGO_HOME=/usr/local/cargo \
+ PATH=/usr/local/cargo/bin:$PATH \
+ RUST_VERSION=1.90.0
+
+# Define Rust target based on ARCH_ALT ARG
+ARG RUSTARCH=${ARCH_ALT}-unknown-linux-gnu
+
+# Install Rust
+RUN wget --tries=3 --waitretry=5 "https://static.rust-lang.org/rustup/archive/1.28.1/${RUSTARCH}/rustup-init" && \
+ chmod +x rustup-init && \
+ ./rustup-init -y --no-modify-path --profile minimal --default-toolchain $RUST_VERSION --default-host ${RUSTARCH} && \
+ rm rustup-init && \
+ chmod -R a+w $RUSTUP_HOME $CARGO_HOME
+
+
+##################################
+##### Wheel Build Image ##########
+##################################
+
+# Redeclare ARCH_ALT ARG so it's available for interpolation in the FROM instruction
+ARG ARCH_ALT
+
+FROM quay.io/pypa/manylinux_2_28_${ARCH_ALT} AS wheel_builder
+
+# Redeclare ARGs for this stage
+ARG ARCH
+ARG ARCH_ALT
+ARG CARGO_BUILD_JOBS
+
+WORKDIR /workspace
+
+# Copy CUDA from base stage
+COPY --from=dynamo_base /usr/local/cuda /usr/local/cuda
+COPY --from=dynamo_base /etc/ld.so.conf.d/hpcx.conf /etc/ld.so.conf.d/hpcx.conf
+
+# Set environment variables first so they can be used in COPY commands
+ENV CARGO_BUILD_JOBS=${CARGO_BUILD_JOBS:-16} \
+ RUSTUP_HOME=/usr/local/rustup \
+ CARGO_HOME=/usr/local/cargo \
+ CARGO_TARGET_DIR=/opt/dynamo/target \
+ PATH=/usr/local/cargo/bin:$PATH
+
+# Copy artifacts from base stage
+COPY --from=dynamo_base $RUSTUP_HOME $RUSTUP_HOME
+COPY --from=dynamo_base $CARGO_HOME $CARGO_HOME
+# Install system dependencies
+RUN yum groupinstall -y 'Development Tools' && \
+ dnf install -y almalinux-release-synergy && \
+ dnf config-manager --set-enabled powertools && \
+ dnf install -y \
+ # Build tools
+ cmake \
+ ninja-build \
+ clang-devel \
+ gcc-c++ \
+ flex \
+ wget \
+ # Kernel module build dependencies
+ dkms \
+ # Protobuf support
+ protobuf-compiler \
+ # RDMA/InfiniBand support (required for UCX build with --with-verbs)
+ libibverbs \
+ libibverbs-devel \
+ rdma-core \
+ rdma-core-devel \
+ libibumad \
+ libibumad-devel \
+ librdmacm-devel \
+ numactl-devel
+
+# Ensure a modern protoc is available (required for --experimental_allow_proto3_optional)
+RUN set -eux; \
+ PROTOC_VERSION=25.3; \
+ case "${ARCH_ALT}" in \
+ x86_64) PROTOC_ZIP="protoc-${PROTOC_VERSION}-linux-x86_64.zip" ;; \
+ aarch64) PROTOC_ZIP="protoc-${PROTOC_VERSION}-linux-aarch_64.zip" ;; \
+ *) echo "Unsupported architecture: ${ARCH_ALT}" >&2; exit 1 ;; \
+ esac; \
+ wget --tries=3 --waitretry=5 -O /tmp/protoc.zip "https://github.com/protocolbuffers/protobuf/releases/download/v${PROTOC_VERSION}/${PROTOC_ZIP}"; \
+ rm -f /usr/local/bin/protoc /usr/bin/protoc; \
+ unzip -o /tmp/protoc.zip -d /usr/local bin/protoc include/*; \
+ chmod +x /usr/local/bin/protoc; \
+ ln -s /usr/local/bin/protoc /usr/bin/protoc; \
+ protoc --version
+
+# Point build tools explicitly at the modern protoc
+ENV PROTOC=/usr/local/bin/protoc
+
+ENV CUDA_PATH=/usr/local/cuda \
+ PATH=/usr/local/cuda/bin:$PATH \
+ LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/local/lib:/usr/local/lib64:$LD_LIBRARY_PATH \
+ NVIDIA_DRIVER_CAPABILITIES=video,compute,utility
+
+# Create virtual environment for building wheels
+ARG PYTHON_VERSION
+ENV VIRTUAL_ENV=/workspace/.venv
+RUN uv venv ${VIRTUAL_ENV} --python $PYTHON_VERSION && \
+ uv pip install --upgrade meson pybind11 patchelf maturin[patchelf]
+
+ARG NIXL_UCX_REF
+ARG NIXL_REF
+ARG NIXL_GDRCOPY_REF
+
+# Build and install gdrcopy
+RUN git clone --depth 1 --branch ${NIXL_GDRCOPY_REF} https://github.com/NVIDIA/gdrcopy.git && \
+ cd gdrcopy/packages && \
+ CUDA=/usr/local/cuda ./build-rpm-packages.sh && \
+ rpm -Uvh gdrcopy-kmod-*.el8.noarch.rpm && \
+ rpm -Uvh gdrcopy-*.el8.${ARCH_ALT}.rpm && \
+ rpm -Uvh gdrcopy-devel-*.el8.noarch.rpm
+
+# Install SCCACHE if requested
+ARG USE_SCCACHE
+ARG SCCACHE_BUCKET
+ARG SCCACHE_REGION
+COPY container/use-sccache.sh /tmp/use-sccache.sh
+RUN if [ "$USE_SCCACHE" = "true" ]; then \
+ /tmp/use-sccache.sh install; \
+ fi
+
+# Set SCCACHE environment variables
+ENV SCCACHE_BUCKET=${USE_SCCACHE:+${SCCACHE_BUCKET}} \
+ SCCACHE_REGION=${USE_SCCACHE:+${SCCACHE_REGION}} \
+ RUSTC_WRAPPER=${USE_SCCACHE:+sccache}
+
+# Build and install UCX
+RUN --mount=type=secret,id=aws-key-id,env=AWS_ACCESS_KEY_ID \
+ --mount=type=secret,id=aws-secret-id,env=AWS_SECRET_ACCESS_KEY \
+ export SCCACHE_S3_KEY_PREFIX="${SCCACHE_S3_KEY_PREFIX:-${ARCH}}" && \
+ if [ "$USE_SCCACHE" = "true" ]; then \
+ export CMAKE_C_COMPILER_LAUNCHER="sccache" && \
+ export CMAKE_CXX_COMPILER_LAUNCHER="sccache" && \
+ export CMAKE_CUDA_COMPILER_LAUNCHER="sccache"; \
+ fi && \
+ cd /usr/local/src && \
+ git clone https://github.com/openucx/ucx.git && \
+ cd ucx && \
+ git checkout $NIXL_UCX_REF && \
+ ./autogen.sh && \
+ ./contrib/configure-release \
+ --prefix=/usr/local/ucx \
+ --enable-shared \
+ --disable-static \
+ --disable-doxygen-doc \
+ --enable-optimizations \
+ --enable-cma \
+ --enable-devel-headers \
+ --with-cuda=/usr/local/cuda \
+ --with-verbs \
+ --with-dm \
+ --with-gdrcopy=/usr/local \
+ --with-efa \
+ --enable-mt && \
+ make -j && \
+ make -j install-strip && \
+ /tmp/use-sccache.sh show-stats "UCX" && \
+ echo "/usr/local/ucx/lib" > /etc/ld.so.conf.d/ucx.conf && \
+ echo "/usr/local/ucx/lib/ucx" >> /etc/ld.so.conf.d/ucx.conf && \
+ ldconfig
+
+# build and install nixl
+RUN --mount=type=secret,id=aws-key-id,env=AWS_ACCESS_KEY_ID \
+ --mount=type=secret,id=aws-secret-id,env=AWS_SECRET_ACCESS_KEY \
+ export SCCACHE_S3_KEY_PREFIX="${SCCACHE_S3_KEY_PREFIX:-${ARCH}}" && \
+ if [ "$USE_SCCACHE" = "true" ]; then \
+ export CMAKE_C_COMPILER_LAUNCHER="sccache" && \
+ export CMAKE_CXX_COMPILER_LAUNCHER="sccache" && \
+ export CMAKE_CUDA_COMPILER_LAUNCHER="sccache"; \
+ fi && \
+ source ${VIRTUAL_ENV}/bin/activate && \
+ git clone --depth 1 --branch ${NIXL_REF} "https://github.com/ai-dynamo/nixl.git" && \
+ cd nixl && \
+ mkdir build && \
+ meson setup build/ --prefix=/opt/nvidia/nvda_nixl --buildtype=release \
+ -Dcudapath_lib="/usr/local/cuda/lib64" \
+ -Dcudapath_inc="/usr/local/cuda/include" \
+ -Ducx_path="/usr/local/ucx" && \
+ cd build && \
+ ninja && \
+ ninja install && \
+ /tmp/use-sccache.sh show-stats "NIXL"
+
+ENV NIXL_LIB_DIR=/opt/nvidia/nvda_nixl/lib64 \
+ NIXL_PLUGIN_DIR=/opt/nvidia/nvda_nixl/lib64/plugins \
+ NIXL_PREFIX=/opt/nvidia/nvda_nixl
+ENV LD_LIBRARY_PATH=${NIXL_LIB_DIR}:${NIXL_PLUGIN_DIR}:/usr/local/ucx/lib:/usr/local/ucx/lib/ucx:${LD_LIBRARY_PATH}
+
+RUN echo "$NIXL_LIB_DIR" > /etc/ld.so.conf.d/nixl.conf && \
+ echo "$NIXL_PLUGIN_DIR" >> /etc/ld.so.conf.d/nixl.conf && \
+ ldconfig
+
+RUN --mount=type=secret,id=aws-key-id,env=AWS_ACCESS_KEY_ID \
+ --mount=type=secret,id=aws-secret-id,env=AWS_SECRET_ACCESS_KEY \
+ export SCCACHE_S3_KEY_PREFIX="${SCCACHE_S3_KEY_PREFIX:-${ARCH}}" && \
+ if [ "$USE_SCCACHE" = "true" ]; then \
+ export CMAKE_C_COMPILER_LAUNCHER="sccache" && \
+ export CMAKE_CXX_COMPILER_LAUNCHER="sccache" && \
+ export CMAKE_CUDA_COMPILER_LAUNCHER="sccache"; \
+ fi && \
+ cd /workspace/nixl && \
+ uv build . --out-dir /opt/dynamo/dist/nixl --python $PYTHON_VERSION
+
+# Copy source code (order matters for layer caching)
+COPY pyproject.toml README.md LICENSE Cargo.toml Cargo.lock rust-toolchain.toml hatch_build.py /opt/dynamo/
+COPY launch/ /opt/dynamo/launch/
+COPY lib/ /opt/dynamo/lib/
+COPY components/ /opt/dynamo/components/
+
+# Build dynamo wheels
+ARG ENABLE_KVBM
+RUN --mount=type=secret,id=aws-key-id,env=AWS_ACCESS_KEY_ID \
+ --mount=type=secret,id=aws-secret-id,env=AWS_SECRET_ACCESS_KEY \
+ export SCCACHE_S3_KEY_PREFIX=${SCCACHE_S3_KEY_PREFIX:-${ARCH}} && \
+ if [ "$USE_SCCACHE" = "true" ]; then \
+ export CMAKE_C_COMPILER_LAUNCHER="sccache" && \
+ export CMAKE_CXX_COMPILER_LAUNCHER="sccache" && \
+ export RUSTC_WRAPPER="sccache"; \
+ fi && \
+ source ${VIRTUAL_ENV}/bin/activate && \
+ cd /opt/dynamo && \
+ uv build --wheel --out-dir /opt/dynamo/dist && \
+ cd /opt/dynamo/lib/bindings/python && \
+ if [ "$ENABLE_MEDIA_NIXL" = "true" ]; then \
+ maturin build --release --features dynamo-llm/media-nixl --out /opt/dynamo/dist; \
+ else \
+ maturin build --release --out /opt/dynamo/dist; \
+ fi && \
+ if [ "$ENABLE_KVBM" = "true" ]; then \
+ cd /opt/dynamo/lib/bindings/kvbm && \
+ maturin build --release --out target/wheels && \
+ auditwheel repair \
+ --exclude libnixl.so \
+ --exclude libnixl_build.so \
+ --exclude libnixl_common.so \
+ --plat manylinux_2_28_${ARCH_ALT} \
+ --wheel-dir /opt/dynamo/dist \
+ target/wheels/*.whl; \
+ fi && \
+ /tmp/use-sccache.sh show-stats "Dynamo"
########################################################
########## Framework Development Image ################
@@ -51,16 +355,13 @@ ARG DEEPEP_COMMIT=9af0e0d0e74f3577af1979c9b9e1ac2cad0104ee
ARG DEEPEP_GB_COMMIT=1b14ad661c7640137fcfe93cccb2694ede1220b0
ARG CMAKE_BUILD_PARALLEL_LEVEL=2
ARG SGL_KERNEL_VERSION=0.3.16.post5
-ARG SGLANG_COMMIT=0.5.4.post3
+ARG SGLANG_COMMIT=0.5.6
ARG GDRCOPY_COMMIT=v2.4.4
ARG NVSHMEM_VERSION=3.3.9
ARG GRACE_BLACKWELL=false
ARG ARCH
ARG ARCH_ALT
ARG PYTHON_VERSION
-ARG USE_SCCACHE
-ARG SCCACHE_BUCKET
-ARG SCCACHE_REGION
ARG CARGO_BUILD_JOBS
ARG CUDA_VERSION
@@ -163,21 +464,6 @@ RUN apt-get update \
&& rm -rf /var/lib/apt/lists/* \
&& apt-get clean
-# Install sccache if requested
-COPY container/use-sccache.sh /tmp/use-sccache.sh
-RUN if [ "$USE_SCCACHE" = "true" ]; then \
- /tmp/use-sccache.sh install; \
-fi
-
-# Set environment variables - they'll be empty strings if USE_SCCACHE=false
-ENV SCCACHE_BUCKET=${USE_SCCACHE:+${SCCACHE_BUCKET}} \
- SCCACHE_REGION=${USE_SCCACHE:+${SCCACHE_REGION}} \
- SCCACHE_S3_KEY_PREFIX=${USE_SCCACHE:+${ARCH}} \
- RUSTC_WRAPPER=${USE_SCCACHE:+sccache} \
- CMAKE_C_COMPILER_LAUNCHER=${USE_SCCACHE:+sccache} \
- CMAKE_CXX_COMPILER_LAUNCHER=${USE_SCCACHE:+sccache} \
- CMAKE_CUDA_COMPILER_LAUNCHER=${USE_SCCACHE:+sccache}
-
WORKDIR /sgl-workspace
# GDRCopy installation
@@ -190,18 +476,25 @@ RUN git clone --depth 1 --branch ${GDRCOPY_COMMIT} https://github.com/NVIDIA/gdr
# Fix DeepEP IBGDA symlink
RUN ln -sf /usr/lib/$(uname -m)-linux-gnu/libmlx5.so.1 /usr/lib/$(uname -m)-linux-gnu/libmlx5.so
-# Create dynamo user EARLY - before copying files, with group 0 for OpenShift compatibility
+# Create dynamo user with group 0 for OpenShift compatibility
RUN userdel -r ubuntu > /dev/null 2>&1 || true \
&& useradd -m -s /bin/bash -g 0 dynamo \
&& [ `id -u dynamo` -eq 1000 ] \
&& mkdir -p /workspace /home/dynamo/.cache /opt/dynamo \
- && chown -R dynamo: /sgl-workspace /workspace /home/dynamo /opt/dynamo \
- && chmod -R g+w /sgl-workspace /workspace /home/dynamo/.cache /opt/dynamo
+ # Non-recursive chown - only the directories themselves, not contents
+ && chown dynamo:0 /sgl-workspace /workspace /home/dynamo /home/dynamo/.cache /opt/dynamo \
+ # No chmod needed: umask 002 handles new files, COPY --chmod handles copied content
+ # Set umask globally for all subsequent RUN commands (must be done as root before USER dynamo)
+ # NOTE: Setting ENV UMASK=002 does NOT work - umask is a shell builtin, not an environment variable
+ && mkdir -p /etc/profile.d && echo 'umask 002' > /etc/profile.d/00-umask.sh
USER dynamo
ENV HOME=/home/dynamo
+# This picks up the umask 002 from the /etc/profile.d/00-umask.sh file for subsequent RUN commands
+SHELL ["/bin/bash", "-l", "-o", "pipefail", "-c"]
-# Install SGLang (requires CUDA 12.8.1 or 12.9.1)
+# Install SGLang (requires CUDA 12.8.1 or 12.9.1). Note that when system-wide packages is not writable,
+# so it gets installed to ~/.local/lib/python/site-packages.
RUN python3 -m pip install --no-cache-dir --ignore-installed pip==25.3 setuptools==80.9.0 wheel==0.45.1 html5lib==1.1 six==1.17.0 \
&& git clone --depth 1 --branch v${SGLANG_COMMIT} https://github.com/sgl-project/sglang.git \
&& cd sglang \
@@ -235,10 +528,7 @@ RUN --mount=type=cache,target=/var/cache/curl,uid=1000,gid=0 \
&& sed -i 's/#define NUM_CPU_TIMEOUT_SECS 100/#define NUM_CPU_TIMEOUT_SECS 1000/' csrc/kernels/configs.cuh
# Build and install NVSHMEM library only (without python library)
-RUN --mount=type=secret,id=aws-key-id,env=AWS_ACCESS_KEY_ID \
- --mount=type=secret,id=aws-secret-id,env=AWS_SECRET_ACCESS_KEY \
- export SCCACHE_S3_KEY_PREFIX=${SCCACHE_S3_KEY_PREFIX:-${ARCH}} && \
- cd /sgl-workspace/nvshmem && \
+RUN cd /sgl-workspace/nvshmem && \
if [ "$GRACE_BLACKWELL" = true ]; then CUDA_ARCH="90;100;120"; else CUDA_ARCH="90"; fi && \
NVSHMEM_SHMEM_SUPPORT=0 \
NVSHMEM_UCX_SUPPORT=0 \
@@ -249,15 +539,11 @@ RUN --mount=type=secret,id=aws-key-id,env=AWS_ACCESS_KEY_ID \
NVSHMEM_TIMEOUT_DEVICE_POLLING=0 \
NVSHMEM_USE_GDRCOPY=1 \
cmake -S . -B build/ -DCMAKE_INSTALL_PREFIX=${NVSHMEM_DIR} -DCMAKE_CUDA_ARCHITECTURES=${CUDA_ARCH} -DNVSHMEM_BUILD_PYTHON_LIB=OFF && \
- cmake --build build --target install -j${CMAKE_BUILD_PARALLEL_LEVEL} && \
- /tmp/use-sccache.sh show-stats "NVSHMEM"
+ cmake --build build --target install -j${CMAKE_BUILD_PARALLEL_LEVEL}
# Build nvshmem4py wheels separately (Python 3.10, CUDA 12) to avoid building the python library twice for multiple python versions
# Need to reconfigure with PYTHON_LIB=ON to add the nvshmem4py subdirectory
-RUN --mount=type=secret,id=aws-key-id,env=AWS_ACCESS_KEY_ID \
- --mount=type=secret,id=aws-secret-id,env=AWS_SECRET_ACCESS_KEY \
- export SCCACHE_S3_KEY_PREFIX=${SCCACHE_S3_KEY_PREFIX:-${ARCH}} && \
- cd /sgl-workspace/nvshmem && \
+RUN cd /sgl-workspace/nvshmem && \
if [ "$GRACE_BLACKWELL" = true ]; then CUDA_ARCH="90;100;120"; else CUDA_ARCH="90"; fi && \
NVSHMEM_SHMEM_SUPPORT=0 \
NVSHMEM_UCX_SUPPORT=0 \
@@ -268,19 +554,17 @@ RUN --mount=type=secret,id=aws-key-id,env=AWS_ACCESS_KEY_ID \
NVSHMEM_TIMEOUT_DEVICE_POLLING=0 \
NVSHMEM_USE_GDRCOPY=1 \
cmake -S . -B build/ -DCMAKE_INSTALL_PREFIX=${NVSHMEM_DIR} -DCMAKE_CUDA_ARCHITECTURES=${CUDA_ARCH} -DNVSHMEM_BUILD_PYTHON_LIB=ON && \
- cmake --build build --target build_nvshmem4py_wheel_cu12_${PYTHON_VERSION} -j${CMAKE_BUILD_PARALLEL_LEVEL} && \
- /tmp/use-sccache.sh show-stats "NVSHMEM4PY"
+ cmake --build build --target build_nvshmem4py_wheel_cu12_${PYTHON_VERSION} -j${CMAKE_BUILD_PARALLEL_LEVEL}
# Install DeepEP
-RUN --mount=type=secret,id=aws-key-id,env=AWS_ACCESS_KEY_ID \
- --mount=type=secret,id=aws-secret-id,env=AWS_SECRET_ACCESS_KEY \
- export SCCACHE_S3_KEY_PREFIX=${SCCACHE_S3_KEY_PREFIX:-${ARCH}} && \
- cd /sgl-workspace/DeepEP && \
+RUN cd /sgl-workspace/DeepEP && \
NVSHMEM_DIR=${NVSHMEM_DIR} TORCH_CUDA_ARCH_LIST="9.0;10.0" pip install --no-build-isolation .
# Copy rust installation from dynamo_base to avoid duplication efforts
-COPY --from=dynamo_base /usr/local/rustup /usr/local/rustup
-COPY --from=dynamo_base /usr/local/cargo /usr/local/cargo
+# Pattern: COPY --chmod=775 ; RUN chmod g+w because COPY --chmod only affects /*, not
+COPY --from=dynamo_base --chown=dynamo:0 --chmod=775 /usr/local/rustup /usr/local/rustup
+COPY --from=dynamo_base --chown=dynamo:0 --chmod=775 /usr/local/cargo /usr/local/cargo
+RUN chmod g+w /usr/local/rustup /usr/local/cargo
ENV RUSTUP_HOME=/usr/local/rustup \
CARGO_HOME=/usr/local/cargo \
@@ -333,16 +617,20 @@ ${NIXL_PLUGIN_DIR}:\
/usr/local/nvidia/lib64:\
${LD_LIBRARY_PATH}
-# Copy NATS and ETCD from dynamo_base, and UCX/NIXL
+# Copy NATS and ETCD from dynamo_base, and UCX/NIXL from wheel_builder
COPY --from=dynamo_base /usr/bin/nats-server /usr/bin/nats-server
COPY --from=dynamo_base /usr/local/bin/etcd/ /usr/local/bin/etcd/
-COPY --from=dynamo_base /usr/local/ucx /usr/local/ucx
-COPY --from=dynamo_base $NIXL_PREFIX $NIXL_PREFIX
+COPY --from=wheel_builder /usr/local/ucx /usr/local/ucx
+COPY --chown=dynamo: --from=wheel_builder $NIXL_PREFIX $NIXL_PREFIX
+COPY --chown=dynamo: --from=wheel_builder /opt/nvidia/nvda_nixl/lib64/. ${NIXL_LIB_DIR}/
+COPY --chown=dynamo: --from=wheel_builder /opt/dynamo/dist/nixl/ /opt/dynamo/wheelhouse/nixl/
+COPY --chown=dynamo: --from=wheel_builder /workspace/nixl/build/src/bindings/python/nixl-meta/nixl-*.whl /opt/dynamo/wheelhouse/nixl/
ENV PATH=/usr/local/bin/etcd/:/usr/local/cuda/nvvm/bin:${HOME}/.local/bin:$PATH
# Install Dynamo wheels from dynamo_base wheelhouse
-COPY --chown=dynamo: benchmarks/ /opt/dynamo/benchmarks/
-COPY --chown=dynamo: --from=dynamo_base /opt/dynamo/wheelhouse/ /opt/dynamo/wheelhouse/
+# Pattern: COPY --chmod=775 ; chmod g+w done later as root because COPY --chmod only affects /*, not
+COPY --chmod=775 --chown=dynamo:0 benchmarks/ /opt/dynamo/benchmarks/
+COPY --chmod=775 --chown=dynamo:0 --from=wheel_builder /opt/dynamo/dist/*.whl /opt/dynamo/wheelhouse/
RUN python3 -m pip install \
/opt/dynamo/wheelhouse/ai_dynamo_runtime*.whl \
/opt/dynamo/wheelhouse/ai_dynamo*any.whl \
@@ -361,7 +649,16 @@ RUN --mount=type=bind,source=./container/deps/requirements.txt,target=/tmp/requi
--requirement /tmp/requirements.test.txt
## Copy attribution files and launch banner with correct ownership
-COPY --chown=dynamo: ATTRIBUTION* LICENSE /workspace/
+COPY --chmod=664 --chown=dynamo:0 ATTRIBUTION* LICENSE /workspace/
+
+# Copy tests, benchmarks, deploy and components for CI with correct ownership
+# Pattern: COPY --chmod=775 ; chmod g+w done later as root because COPY --chmod only affects /*, not
+COPY --chmod=775 --chown=dynamo:0 tests /workspace/tests
+COPY --chmod=775 --chown=dynamo:0 examples /workspace/examples
+COPY --chmod=775 --chown=dynamo:0 benchmarks /workspace/benchmarks
+COPY --chmod=775 --chown=dynamo:0 deploy /workspace/deploy
+COPY --chmod=775 --chown=dynamo:0 components/ /workspace/components/
+COPY --chmod=775 --chown=dynamo:0 recipes/ /workspace/recipes/
# Setup launch banner in common directory accessible to all users
RUN --mount=type=bind,source=./container/launch_message/runtime.txt,target=/opt/dynamo/launch_message.txt \
@@ -369,20 +666,16 @@ RUN --mount=type=bind,source=./container/launch_message/runtime.txt,target=/opt/
# Setup environment for all users
USER root
-RUN chmod 755 /opt/dynamo/.launch_screen && \
+# Fix directory permissions: COPY --chmod only affects contents, not the directory itself
+RUN chmod g+w /workspace /workspace/* /opt/dynamo /opt/dynamo/* && \
+ chown dynamo:0 /workspace /opt/dynamo/ && \
+ chmod 755 /opt/dynamo/.launch_screen && \
echo 'source /opt/dynamo/venv/bin/activate' >> /etc/bash.bashrc && \
echo 'cat /opt/dynamo/.launch_screen' >> /etc/bash.bashrc
USER dynamo
# Copy tests, benchmarks, deploy and components for CI with correct ownership
-COPY --chown=dynamo: tests /workspace/tests
-COPY --chown=dynamo: examples /workspace/examples
-COPY --chown=dynamo: benchmarks /workspace/benchmarks
-COPY --chown=dynamo: deploy /workspace/deploy
-COPY --chown=dynamo: components/ /workspace/components/
-COPY --chown=dynamo: recipes/ /workspace/recipes/
-
ARG DYNAMO_COMMIT_SHA
ENV DYNAMO_COMMIT_SHA=$DYNAMO_COMMIT_SHA
@@ -419,6 +712,8 @@ ENV VIRTUAL_ENV=/opt/dynamo/venv \
PATH="/opt/dynamo/venv/bin:${PATH}"
USER root
+# venv permissions are handled by umask 002 set earlier
+
# Install development tools and utilities
RUN apt-get update -y && \
apt-get install -y --no-install-recommends \
@@ -477,7 +772,7 @@ RUN curl --retry 3 --retry-delay 2 -LSso /usr/local/bin/clang-format https://git
&& rm -rf clangd_18.1.3 clangd.zip
# Editable install of dynamo
-COPY pyproject.toml README.md hatch_build.py /workspace/
+COPY --chmod=664 pyproject.toml README.md hatch_build.py /workspace/
RUN python3 -m pip install --no-deps -e .
# Install Python development packages
diff --git a/container/Dockerfile.trtllm b/container/Dockerfile.trtllm
index ea55a535eb..6e0d3ae0cf 100644
--- a/container/Dockerfile.trtllm
+++ b/container/Dockerfile.trtllm
@@ -1,5 +1,32 @@
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
+#
+# NOTE FOR dynamo_base AND wheel_builder STAGES:
+#
+# All changes to dynamo_base and wheel_builder stages should be replicated across
+# Dockerfile and Dockerfile. images.:
+# - Dockerfile
+# - Dockerfile.vllm
+# - Dockerfile.sglang
+# - Dockerfile.trtllm
+# This duplication was introduced purposely to quickly enable Docker layer caching and
+# deduplication. Please ensure these stages stay in sync until the duplication can be
+# addressed.
+#
+# Throughout this file, we make certain paths group-writable because this allows
+# both the dynamo user (UID 1000) and Dev Container users (UID != 1000) to work
+# properly without needing slow chown -R operations (which can add 2-10 extra
+# minutes).
+#
+# DEVELOPMENT PATHS THAT MUST BE GROUP-WRITABLE (for virtualenv containers):
+# /workspace - Users create/modify project files
+# /home/dynamo - Users create config/cache files
+# /opt/dynamo/venv - TensorRT-LLM uses venv, so entire venv must be writable for pip install
+#
+# HOW TO ACHIEVE GROUP-WRITABLE PERMISSIONS:
+# 1. SHELL + /etc/profile.d - Login shell sources umask 002 globally for all RUN commands (775/664)
+# 2. COPY --chmod=775 - Sets permissions on copied children (not destination)
+# 3. chmod g+w (no -R) - Fixes destination dirs only (milliseconds vs minutes)
# This section contains build arguments that are common and shared with
# the plain Dockerfile, so they should NOT have a default. The source of truth is from build.sh.
@@ -8,6 +35,8 @@ ARG BASE_IMAGE_TAG
ARG PYTHON_VERSION
ARG ENABLE_KVBM
+ARG ENABLE_MEDIA_NIXL
+ARG CARGO_BUILD_JOBS
ARG PYTORCH_BASE_IMAGE="nvcr.io/nvidia/pytorch"
ARG PYTORCH_BASE_IMAGE_TAG="25.10-py3"
@@ -20,6 +49,16 @@ ARG TENSORRTLLM_PIP_WHEEL="tensorrt-llm"
ARG TENSORRTLLM_INDEX_URL="https://pypi.nvidia.com/"
ARG GITHUB_TRTLLM_COMMIT
+# SCCACHE configuration
+ARG USE_SCCACHE
+ARG SCCACHE_BUCKET=""
+ARG SCCACHE_REGION=""
+
+# NIXL configuration
+ARG NIXL_UCX_REF
+ARG NIXL_REF
+ARG NIXL_GDRCOPY_REF
+
# Define general architecture ARGs for supporting both x86 and aarch64 builds.
# ARCH: Used for package suffixes (e.g., amd64, arm64)
# ARCH_ALT: Used for Rust targets, manylinux suffix (e.g., x86_64, aarch64)
@@ -35,12 +74,282 @@ ARG GITHUB_TRTLLM_COMMIT
ARG ARCH=amd64
ARG ARCH_ALT=x86_64
-ARG DYNAMO_BASE_IMAGE="dynamo:latest-none"
-FROM ${DYNAMO_BASE_IMAGE} AS dynamo_base
-
# Copy artifacts from NGC PyTorch image
FROM ${PYTORCH_BASE_IMAGE}:${PYTORCH_BASE_IMAGE_TAG} AS pytorch_base
+##################################
+########## Base Image ############
+##################################
+
+FROM ${BASE_IMAGE}:${BASE_IMAGE_TAG} AS dynamo_base
+
+ARG ARCH
+ARG ARCH_ALT
+
+USER root
+WORKDIR /opt/dynamo
+
+# Install uv package manager
+COPY --from=ghcr.io/astral-sh/uv:latest /uv /uvx /bin/
+
+# Install NATS server
+ENV NATS_VERSION="v2.10.28"
+RUN --mount=type=cache,target=/var/cache/apt \
+ wget --tries=3 --waitretry=5 https://github.com/nats-io/nats-server/releases/download/${NATS_VERSION}/nats-server-${NATS_VERSION}-${ARCH}.deb && \
+ dpkg -i nats-server-${NATS_VERSION}-${ARCH}.deb && rm nats-server-${NATS_VERSION}-${ARCH}.deb
+
+# Install etcd
+ENV ETCD_VERSION="v3.5.21"
+RUN wget --tries=3 --waitretry=5 https://github.com/etcd-io/etcd/releases/download/$ETCD_VERSION/etcd-$ETCD_VERSION-linux-${ARCH}.tar.gz -O /tmp/etcd.tar.gz && \
+ mkdir -p /usr/local/bin/etcd && \
+ tar -xvf /tmp/etcd.tar.gz -C /usr/local/bin/etcd --strip-components=1 && \
+ rm /tmp/etcd.tar.gz
+ENV PATH=/usr/local/bin/etcd/:$PATH
+
+# Rust Setup
+# Rust environment setup
+ENV RUSTUP_HOME=/usr/local/rustup \
+ CARGO_HOME=/usr/local/cargo \
+ PATH=/usr/local/cargo/bin:$PATH \
+ RUST_VERSION=1.90.0
+
+# Define Rust target based on ARCH_ALT ARG
+ARG RUSTARCH=${ARCH_ALT}-unknown-linux-gnu
+
+# Install Rust
+RUN wget --tries=3 --waitretry=5 "https://static.rust-lang.org/rustup/archive/1.28.1/${RUSTARCH}/rustup-init" && \
+ chmod +x rustup-init && \
+ ./rustup-init -y --no-modify-path --profile minimal --default-toolchain $RUST_VERSION --default-host ${RUSTARCH} && \
+ rm rustup-init && \
+ chmod -R a+w $RUSTUP_HOME $CARGO_HOME
+
+
+##################################
+##### Wheel Build Image ##########
+##################################
+
+# Redeclare ARCH_ALT ARG so it's available for interpolation in the FROM instruction
+ARG ARCH_ALT
+
+FROM quay.io/pypa/manylinux_2_28_${ARCH_ALT} AS wheel_builder
+
+# Redeclare ARGs for this stage
+ARG ARCH
+ARG ARCH_ALT
+ARG CARGO_BUILD_JOBS
+
+WORKDIR /workspace
+
+# Copy CUDA from base stage
+COPY --from=dynamo_base /usr/local/cuda /usr/local/cuda
+COPY --from=dynamo_base /etc/ld.so.conf.d/hpcx.conf /etc/ld.so.conf.d/hpcx.conf
+
+# Set environment variables first so they can be used in COPY commands
+ENV CARGO_BUILD_JOBS=${CARGO_BUILD_JOBS:-16} \
+ RUSTUP_HOME=/usr/local/rustup \
+ CARGO_HOME=/usr/local/cargo \
+ CARGO_TARGET_DIR=/opt/dynamo/target \
+ PATH=/usr/local/cargo/bin:$PATH
+
+# Copy artifacts from base stage
+COPY --from=dynamo_base $RUSTUP_HOME $RUSTUP_HOME
+COPY --from=dynamo_base $CARGO_HOME $CARGO_HOME
+# Install system dependencies
+RUN yum groupinstall -y 'Development Tools' && \
+ dnf install -y almalinux-release-synergy && \
+ dnf config-manager --set-enabled powertools && \
+ dnf install -y \
+ # Build tools
+ cmake \
+ ninja-build \
+ clang-devel \
+ gcc-c++ \
+ flex \
+ wget \
+ # Kernel module build dependencies
+ dkms \
+ # Protobuf support
+ protobuf-compiler \
+ # RDMA/InfiniBand support (required for UCX build with --with-verbs)
+ libibverbs \
+ libibverbs-devel \
+ rdma-core \
+ rdma-core-devel \
+ libibumad \
+ libibumad-devel \
+ librdmacm-devel \
+ numactl-devel
+
+# Ensure a modern protoc is available (required for --experimental_allow_proto3_optional)
+RUN set -eux; \
+ PROTOC_VERSION=25.3; \
+ case "${ARCH_ALT}" in \
+ x86_64) PROTOC_ZIP="protoc-${PROTOC_VERSION}-linux-x86_64.zip" ;; \
+ aarch64) PROTOC_ZIP="protoc-${PROTOC_VERSION}-linux-aarch_64.zip" ;; \
+ *) echo "Unsupported architecture: ${ARCH_ALT}" >&2; exit 1 ;; \
+ esac; \
+ wget --tries=3 --waitretry=5 -O /tmp/protoc.zip "https://github.com/protocolbuffers/protobuf/releases/download/v${PROTOC_VERSION}/${PROTOC_ZIP}"; \
+ rm -f /usr/local/bin/protoc /usr/bin/protoc; \
+ unzip -o /tmp/protoc.zip -d /usr/local bin/protoc include/*; \
+ chmod +x /usr/local/bin/protoc; \
+ ln -s /usr/local/bin/protoc /usr/bin/protoc; \
+ protoc --version
+
+# Point build tools explicitly at the modern protoc
+ENV PROTOC=/usr/local/bin/protoc
+
+ENV CUDA_PATH=/usr/local/cuda \
+ PATH=/usr/local/cuda/bin:$PATH \
+ LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/local/lib:/usr/local/lib64:$LD_LIBRARY_PATH \
+ NVIDIA_DRIVER_CAPABILITIES=video,compute,utility
+
+# Create virtual environment for building wheels
+ARG PYTHON_VERSION
+ENV VIRTUAL_ENV=/workspace/.venv
+RUN uv venv ${VIRTUAL_ENV} --python $PYTHON_VERSION && \
+ uv pip install --upgrade meson pybind11 patchelf maturin[patchelf]
+
+ARG NIXL_UCX_REF
+ARG NIXL_REF
+ARG NIXL_GDRCOPY_REF
+
+# Build and install gdrcopy
+RUN git clone --depth 1 --branch ${NIXL_GDRCOPY_REF} https://github.com/NVIDIA/gdrcopy.git && \
+ cd gdrcopy/packages && \
+ CUDA=/usr/local/cuda ./build-rpm-packages.sh && \
+ rpm -Uvh gdrcopy-kmod-*.el8.noarch.rpm && \
+ rpm -Uvh gdrcopy-*.el8.${ARCH_ALT}.rpm && \
+ rpm -Uvh gdrcopy-devel-*.el8.noarch.rpm
+
+# Install SCCACHE if requested
+ARG USE_SCCACHE
+ARG SCCACHE_BUCKET
+ARG SCCACHE_REGION
+COPY container/use-sccache.sh /tmp/use-sccache.sh
+RUN if [ "$USE_SCCACHE" = "true" ]; then \
+ /tmp/use-sccache.sh install; \
+ fi
+
+# Set SCCACHE environment variables
+ENV SCCACHE_BUCKET=${USE_SCCACHE:+${SCCACHE_BUCKET}} \
+ SCCACHE_REGION=${USE_SCCACHE:+${SCCACHE_REGION}}
+
+# Build and install UCX
+RUN --mount=type=secret,id=aws-key-id,env=AWS_ACCESS_KEY_ID \
+ --mount=type=secret,id=aws-secret-id,env=AWS_SECRET_ACCESS_KEY \
+ export SCCACHE_S3_KEY_PREFIX="${SCCACHE_S3_KEY_PREFIX:-${ARCH}}" && \
+ if [ "$USE_SCCACHE" = "true" ]; then \
+ export CMAKE_C_COMPILER_LAUNCHER="sccache" && \
+ export CMAKE_CXX_COMPILER_LAUNCHER="sccache" && \
+ export CMAKE_CUDA_COMPILER_LAUNCHER="sccache"; \
+ fi && \
+ cd /usr/local/src && \
+ git clone https://github.com/openucx/ucx.git && \
+ cd ucx && \
+ git checkout $NIXL_UCX_REF && \
+ ./autogen.sh && \
+ ./contrib/configure-release \
+ --prefix=/usr/local/ucx \
+ --enable-shared \
+ --disable-static \
+ --disable-doxygen-doc \
+ --enable-optimizations \
+ --enable-cma \
+ --enable-devel-headers \
+ --with-cuda=/usr/local/cuda \
+ --with-verbs \
+ --with-dm \
+ --with-gdrcopy=/usr/local \
+ --with-efa \
+ --enable-mt && \
+ make -j && \
+ make -j install-strip && \
+ /tmp/use-sccache.sh show-stats "UCX" && \
+ echo "/usr/local/ucx/lib" > /etc/ld.so.conf.d/ucx.conf && \
+ echo "/usr/local/ucx/lib/ucx" >> /etc/ld.so.conf.d/ucx.conf && \
+ ldconfig
+
+# build and install nixl
+RUN --mount=type=secret,id=aws-key-id,env=AWS_ACCESS_KEY_ID \
+ --mount=type=secret,id=aws-secret-id,env=AWS_SECRET_ACCESS_KEY \
+ export SCCACHE_S3_KEY_PREFIX="${SCCACHE_S3_KEY_PREFIX:-${ARCH}}" && \
+ if [ "$USE_SCCACHE" = "true" ]; then \
+ export CMAKE_C_COMPILER_LAUNCHER="sccache" && \
+ export CMAKE_CXX_COMPILER_LAUNCHER="sccache" && \
+ export CMAKE_CUDA_COMPILER_LAUNCHER="sccache"; \
+ fi && \
+ source ${VIRTUAL_ENV}/bin/activate && \
+ git clone --depth 1 --branch ${NIXL_REF} "https://github.com/ai-dynamo/nixl.git" && \
+ cd nixl && \
+ mkdir build && \
+ meson setup build/ --prefix=/opt/nvidia/nvda_nixl --buildtype=release \
+ -Dcudapath_lib="/usr/local/cuda/lib64" \
+ -Dcudapath_inc="/usr/local/cuda/include" \
+ -Ducx_path="/usr/local/ucx" && \
+ cd build && \
+ ninja && \
+ ninja install && \
+ /tmp/use-sccache.sh show-stats "NIXL"
+
+ENV NIXL_LIB_DIR=/opt/nvidia/nvda_nixl/lib64 \
+ NIXL_PLUGIN_DIR=/opt/nvidia/nvda_nixl/lib64/plugins \
+ NIXL_PREFIX=/opt/nvidia/nvda_nixl
+ENV LD_LIBRARY_PATH=${NIXL_LIB_DIR}:${NIXL_PLUGIN_DIR}:/usr/local/ucx/lib:/usr/local/ucx/lib/ucx:${LD_LIBRARY_PATH}
+
+RUN echo "$NIXL_LIB_DIR" > /etc/ld.so.conf.d/nixl.conf && \
+ echo "$NIXL_PLUGIN_DIR" >> /etc/ld.so.conf.d/nixl.conf && \
+ ldconfig
+
+RUN --mount=type=secret,id=aws-key-id,env=AWS_ACCESS_KEY_ID \
+ --mount=type=secret,id=aws-secret-id,env=AWS_SECRET_ACCESS_KEY \
+ export SCCACHE_S3_KEY_PREFIX="${SCCACHE_S3_KEY_PREFIX:-${ARCH}}" && \
+ if [ "$USE_SCCACHE" = "true" ]; then \
+ export CMAKE_C_COMPILER_LAUNCHER="sccache" && \
+ export CMAKE_CXX_COMPILER_LAUNCHER="sccache" && \
+ export CMAKE_CUDA_COMPILER_LAUNCHER="sccache"; \
+ fi && \
+ cd /workspace/nixl && \
+ uv build . --out-dir /opt/dynamo/dist/nixl --python $PYTHON_VERSION
+
+# Copy source code (order matters for layer caching)
+COPY pyproject.toml README.md LICENSE Cargo.toml Cargo.lock rust-toolchain.toml hatch_build.py /opt/dynamo/
+COPY launch/ /opt/dynamo/launch/
+COPY lib/ /opt/dynamo/lib/
+COPY components/ /opt/dynamo/components/
+
+# Build dynamo wheels
+ARG ENABLE_KVBM
+ARG USE_SCCACHE
+RUN --mount=type=secret,id=aws-key-id,env=AWS_ACCESS_KEY_ID \
+ --mount=type=secret,id=aws-secret-id,env=AWS_SECRET_ACCESS_KEY \
+ export SCCACHE_S3_KEY_PREFIX=${SCCACHE_S3_KEY_PREFIX:-${ARCH}} && \
+ if [ "$USE_SCCACHE" = "true" ]; then \
+ export CMAKE_C_COMPILER_LAUNCHER="sccache" && \
+ export CMAKE_CXX_COMPILER_LAUNCHER="sccache" && \
+ export RUSTC_WRAPPER="sccache"; \
+ fi && \
+ source ${VIRTUAL_ENV}/bin/activate && \
+ cd /opt/dynamo && \
+ uv build --wheel --out-dir /opt/dynamo/dist && \
+ cd /opt/dynamo/lib/bindings/python && \
+ if [ "$ENABLE_MEDIA_NIXL" = "true" ]; then \
+ maturin build --release --features dynamo-llm/media-nixl --out /opt/dynamo/dist; \
+ else \
+ maturin build --release --out /opt/dynamo/dist; \
+ fi && \
+ if [ "$ENABLE_KVBM" = "true" ]; then \
+ cd /opt/dynamo/lib/bindings/kvbm && \
+ maturin build --release --out target/wheels && \
+ auditwheel repair \
+ --exclude libnixl.so \
+ --exclude libnixl_build.so \
+ --exclude libnixl_common.so \
+ --plat manylinux_2_28_${ARCH_ALT} \
+ --wheel-dir /opt/dynamo/dist \
+ target/wheels/*.whl; \
+ fi && \
+ /tmp/use-sccache.sh show-stats "Dynamo"
+
##################################################
########## Framework Builder Stage ##############
##################################################
@@ -148,7 +457,7 @@ RUN if [ "$HAS_TRTLLM_CONTEXT" = "1" ]; then \
sed -i 's/pip3 install/uv pip install/g' /tmp/install_tensorrt.sh && \
bash /tmp/install_tensorrt.sh && \
# Install TensorRT-LLM wheel from the provided index URL, allow dependencies from PyPI
- # TRTLLM 1.2.0rc2 has issues installing from pypi with uv, installing from direct wheel link works best
+ # TRTLLM 1.2.0rc5 has issues installing from pypi with uv, installing from direct wheel link works best
# explicitly installing triton 3.5.0 as trtllm only lists triton as dependency on x64_64 for some reason
if echo "${TENSORRTLLM_PIP_WHEEL}" | grep -q '^tensorrt-llm=='; then \
TRTLLM_VERSION=$(echo "${TENSORRTLLM_PIP_WHEEL}" | sed -E 's/tensorrt-llm==([0-9a-zA-Z.+-]+).*/\1/'); \
@@ -238,8 +547,12 @@ RUN userdel -r ubuntu > /dev/null 2>&1 || true \
&& useradd -m -s /bin/bash -g 0 dynamo \
&& [ `id -u dynamo` -eq 1000 ] \
&& mkdir -p /home/dynamo/.cache /opt/dynamo \
- && chown -R dynamo: /workspace /home/dynamo /opt/dynamo \
- && chmod -R g+w /workspace /home/dynamo/.cache /opt/dynamo
+ # Non-recursive chown - only the directories themselves, not contents
+ && chown dynamo:0 /home/dynamo /home/dynamo/.cache /opt/dynamo /workspace \
+ # No chmod needed: umask 002 handles new files, COPY --chmod handles copied content
+ # Set umask globally for all subsequent RUN commands (must be done as root before USER dynamo)
+ # NOTE: Setting ENV UMASK=002 does NOT work - umask is a shell builtin, not an environment variable
+ && mkdir -p /etc/profile.d && echo 'umask 002' > /etc/profile.d/00-umask.sh
# Install Python, build-essential and python3-dev as apt dependencies
ARG PYTHON_VERSION
@@ -291,6 +604,9 @@ RUN if [ ${ARCH_ALT} = "x86_64" ]; then \
# Switch to dynamo user
USER dynamo
ENV HOME=/home/dynamo
+# This picks up the umask 002 from the /etc/profile.d/00-umask.sh file for subsequent RUN commands
+SHELL ["/bin/bash", "-l", "-o", "pipefail", "-c"]
+
ENV DYNAMO_HOME=/workspace
ENV NIXL_PREFIX=/opt/nvidia/nvda_nixl
ENV NIXL_LIB_DIR=$NIXL_PREFIX/lib/${ARCH_ALT}-linux-gnu
@@ -301,13 +617,17 @@ COPY --from=framework /usr/local/tensorrt /usr/local/tensorrt
COPY --from=framework /usr/lib/${ARCH_ALT}-linux-gnu/libgomp.so* /usr/lib/${ARCH_ALT}-linux-gnu/
# Copy pre-built venv with PyTorch and TensorRT-LLM from framework stage
-COPY --chown=dynamo: --from=framework ${VIRTUAL_ENV} ${VIRTUAL_ENV}
+# Pattern: COPY --chmod=775 ; chmod g+w done later as root because COPY --chmod only affects /*, not
+COPY --chmod=775 --chown=dynamo:0 --from=framework ${VIRTUAL_ENV} ${VIRTUAL_ENV}
# Copy UCX from framework image as plugin for NIXL
# Copy NIXL source from framework image
-# Copy dynamo wheels for gitlab artifacts
-COPY --chown=dynamo: --from=dynamo_base /usr/local/ucx /usr/local/ucx
-COPY --chown=dynamo: --from=dynamo_base $NIXL_PREFIX $NIXL_PREFIX
+# Copy dynamo wheels for gitlab artifacts (read-only, no group-write needed)
+COPY --chown=dynamo: --from=wheel_builder /usr/local/ucx /usr/local/ucx
+COPY --chown=dynamo: --from=wheel_builder $NIXL_PREFIX $NIXL_PREFIX
+COPY --chown=dynamo: --from=wheel_builder /opt/nvidia/nvda_nixl/lib64/. ${NIXL_LIB_DIR}/
+COPY --chown=dynamo: --from=wheel_builder /opt/dynamo/dist/nixl/ /opt/dynamo/wheelhouse/nixl/
+COPY --chown=dynamo: --from=wheel_builder /workspace/nixl/build/src/bindings/python/nixl-meta/nixl-*.whl /opt/dynamo/wheelhouse/nixl/
ENV TENSORRT_LIB_DIR=/usr/local/tensorrt/targets/${ARCH_ALT}-linux-gnu/lib
ENV PATH="/usr/local/ucx/bin:${VIRTUAL_ENV}/bin:/opt/hpcx/ompi/bin:/usr/local/bin/etcd/:/usr/local/cuda/bin:/usr/local/cuda/nvvm/bin:$PATH"
@@ -324,22 +644,30 @@ $TENSORRT_LIB_DIR:\
$LD_LIBRARY_PATH
ENV OPAL_PREFIX=/opt/hpcx/ompi
-COPY --chown=dynamo: ATTRIBUTION* LICENSE /workspace/
-COPY --chown=dynamo: benchmarks/ /workspace/benchmarks/
+COPY --chmod=664 --chown=dynamo:0 ATTRIBUTION* LICENSE /workspace/
+COPY --chmod=775 --chown=dynamo:0 benchmarks/ /workspace/benchmarks/
# Install dynamo, NIXL, and dynamo-specific dependencies
+# Pattern: COPY --chmod=775 ; chmod g+w done later as root because COPY --chmod only affects /*, not
ARG ENABLE_KVBM
-COPY --chown=dynamo: --from=dynamo_base /opt/dynamo/wheelhouse/ /opt/dynamo/wheelhouse/
+COPY --chmod=775 --chown=dynamo:0 --from=wheel_builder /opt/dynamo/dist/*.whl /opt/dynamo/wheelhouse/
RUN uv pip install \
--no-cache \
/opt/dynamo/wheelhouse/ai_dynamo_runtime*.whl \
/opt/dynamo/wheelhouse/ai_dynamo*any.whl \
- /opt/dynamo/wheelhouse/nixl/nixl*.whl \
- && if [ "${ENABLE_KVBM}" = "true" ]; then \
- uv pip install --no-cache /opt/dynamo/wheelhouse/kvbm*.whl; \
- fi \
- && cd /workspace/benchmarks \
- && UV_GIT_LFS=1 uv pip install --no-cache .
+ /opt/dynamo/wheelhouse/nixl/nixl*.whl && \
+ if [ "${ENABLE_KVBM}" = "true" ]; then \
+ KVBM_WHEEL=$(ls /opt/dynamo/wheelhouse/kvbm*.whl 2>/dev/null | head -1); \
+ if [ -z "$KVBM_WHEEL" ]; then \
+ echo "ERROR: ENABLE_KVBM is true but no KVBM wheel found in wheelhouse" >&2; \
+ exit 1; \
+ fi; \
+ uv pip install --no-cache "$KVBM_WHEEL"; \
+ fi && \
+ cd /workspace/benchmarks && \
+ UV_GIT_LFS=1 uv pip install --no-cache . && \
+ # pip/uv bypasses umask when creating .egg-info files, but chmod -R is fast here (small directory)
+ chmod -R g+w /workspace/benchmarks
# Install common and test dependencies
RUN --mount=type=bind,source=./container/deps/requirements.txt,target=/tmp/requirements.txt \
@@ -352,12 +680,13 @@ RUN --mount=type=bind,source=./container/deps/requirements.txt,target=/tmp/requi
--requirement /tmp/requirements.test.txt \
cupy-cuda13x
-# Copy tests, benchmarks, deploy and components for CI
-COPY --chown=dynamo: tests /workspace/tests
-COPY --chown=dynamo: examples /workspace/examples
-COPY --chown=dynamo: deploy /workspace/deploy
-COPY --chown=dynamo: components/ /workspace/components/
-COPY --chown=dynamo: recipes/ /workspace/recipes/
+# Copy tests, deploy and components for CI with correct ownership
+# Pattern: COPY --chmod=775 ; chmod g+w done later as root because COPY --chmod only affects /*, not
+COPY --chmod=775 --chown=dynamo:0 tests /workspace/tests
+COPY --chmod=775 --chown=dynamo:0 examples /workspace/examples
+COPY --chmod=775 --chown=dynamo:0 deploy /workspace/deploy
+COPY --chmod=775 --chown=dynamo:0 components/ /workspace/components/
+COPY --chmod=775 --chown=dynamo:0 recipes/ /workspace/recipes/
# Setup launch banner in common directory accessible to all users
RUN --mount=type=bind,source=./container/launch_message/runtime.txt,target=/opt/dynamo/launch_message.txt \
@@ -365,7 +694,10 @@ RUN --mount=type=bind,source=./container/launch_message/runtime.txt,target=/opt/
# Setup environment for all users
USER root
-RUN chmod 755 /opt/dynamo/.launch_screen && \
+# Fix directory permissions: COPY --chmod only affects contents, not the directory itself
+RUN chmod g+w ${VIRTUAL_ENV} /workspace /workspace/* /opt/dynamo /opt/dynamo/* && \
+ chown dynamo:0 ${VIRTUAL_ENV} /workspace /opt/dynamo/ && \
+ chmod 755 /opt/dynamo/.launch_screen && \
echo 'source /opt/dynamo/venv/bin/activate' >> /etc/bash.bashrc && \
echo 'cat /opt/dynamo/.launch_screen' >> /etc/bash.bashrc
@@ -426,6 +758,10 @@ RUN apt-get update -y && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
+# Set umask for group-writable files in dev stage (runs as root)
+RUN mkdir -p /etc/profile.d && echo 'umask 002' > /etc/profile.d/00-umask.sh
+SHELL ["/bin/bash", "-l", "-o", "pipefail", "-c"]
+
# Set workspace directory variable
ENV WORKSPACE_DIR=${WORKSPACE_DIR} \
DYNAMO_HOME=${WORKSPACE_DIR} \
@@ -435,8 +771,11 @@ ENV WORKSPACE_DIR=${WORKSPACE_DIR} \
VIRTUAL_ENV=/opt/dynamo/venv \
PATH=/usr/local/cargo/bin:$PATH
-COPY --from=dynamo_base /usr/local/rustup /usr/local/rustup
-COPY --from=dynamo_base /usr/local/cargo /usr/local/cargo
+# Copy rust installation from dynamo_base to avoid duplication efforts
+# Pattern: COPY --chmod=775 ; chmod g+w because COPY --chmod only affects /*, not
+COPY --from=dynamo_base --chmod=775 /usr/local/rustup /usr/local/rustup
+COPY --from=dynamo_base --chmod=775 /usr/local/cargo /usr/local/cargo
+RUN chmod g+w /usr/local/rustup /usr/local/cargo
# Install maturin, for maturin develop
RUN uv pip install --no-cache maturin[patchelf]
diff --git a/container/Dockerfile.vllm b/container/Dockerfile.vllm
index fda3069610..1898466bfa 100644
--- a/container/Dockerfile.vllm
+++ b/container/Dockerfile.vllm
@@ -1,32 +1,48 @@
# syntax=docker/dockerfile:1.10.0
# SPDX-FileCopyrightText: Copyright (c) 2024-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
+#
+# NOTE FOR dynamo_base AND wheel_builder STAGES:
+#
+# All changes to dynamo_base and wheel_builder stages should be replicated across
+# Dockerfile and Dockerfile. images.:
+# - Dockerfile
+# - Dockerfile.vllm
+# - Dockerfile.sglang
+# - Dockerfile.trtllm
+# This duplication was introduced purposely to quickly enable Docker layer caching and
+# deduplication. Please ensure these stages stay in sync until the duplication can be
+# addressed.
+#
+# Throughout this file, we make certain paths group-writable because this allows
+# both the dynamo user (UID 1000) and Dev Container users (UID != 1000) to work
+# properly without needing slow chown -R operations (which can add 2-10 extra
+# minutes).
+#
+# DEVELOPMENT PATHS THAT MUST BE GROUP-WRITABLE (for virtualenv containers):
+# /workspace - Users create/modify project files
+# /home/dynamo - Users create config/cache files
+# /opt/dynamo/venv - vLLM uses venv, so entire venv must be writable for pip install
+#
+# HOW TO ACHIEVE GROUP-WRITABLE PERMISSIONS:
+# 1. SHELL + /etc/profile.d - Login shell sources umask 002 globally for all RUN commands (775/664)
+# 2. COPY --chmod=775 - Sets permissions on copied children (not destination)
+# 3. chmod g+w (no -R) - Fixes destination dirs only (milliseconds vs minutes)
+
+##################################
+########## Build Arguments ########
+##################################
+
+# This section contains build arguments that are common and shared across various
+# Dockerfile., so they should NOT have a default. The source of truth is from build.sh.
-# This section contains build arguments that are common and shared with
-# the plain Dockerfile, so they should NOT have a default. The source of truth is from build.sh.
ARG BASE_IMAGE
ARG BASE_IMAGE_TAG
ARG PYTHON_VERSION
ARG ENABLE_KVBM
-
-ARG RUNTIME_IMAGE="nvcr.io/nvidia/cuda"
-ARG RUNTIME_IMAGE_TAG="12.8.1-runtime-ubuntu24.04"
-ARG CUDA_VERSION="12.8"
-
-# Make sure to update the dependency version in pyproject.toml when updating this
-ARG VLLM_REF="v0.11.0"
-# FlashInfer only respected when building vLLM from source, ie when VLLM_REF does not start with 'v' or for arm64 builds
-ARG FLASHINF_REF="v0.3.1"
-ARG TORCH_BACKEND="cu128"
-
-# If left blank, then we will fallback to vLLM defaults
-ARG DEEPGEMM_REF=""
-
-# sccache configuration - inherit from base build
-ARG USE_SCCACHE
-ARG SCCACHE_BUCKET=""
-ARG SCCACHE_REGION=""
+ARG ENABLE_MEDIA_NIXL
+ARG CARGO_BUILD_JOBS
# Define general architecture ARGs for supporting both x86 and aarch64 builds.
# ARCH: Used for package suffixes (e.g., amd64, arm64)
@@ -37,17 +53,304 @@ ARG SCCACHE_REGION=""
#
# For arm64/aarch64, build with:
# --build-arg ARCH=arm64 --build-arg ARCH_ALT=aarch64
-#
-# NOTE: There isn't an easy way to define one of these values based on the other value
-# without adding if statements everywhere, so just define both as ARGs for now.
+#TODO OPS-592: Leverage uname -m to determine ARCH instead of passing it as an arg
ARG ARCH=amd64
ARG ARCH_ALT=x86_64
-ARG DYNAMO_BASE_IMAGE="dynamo:latest-none"
-FROM ${DYNAMO_BASE_IMAGE} AS dynamo_base
+# SCCACHE configuration
+ARG USE_SCCACHE
+ARG SCCACHE_BUCKET=""
+ARG SCCACHE_REGION=""
+
+# NIXL configuration
+ARG NIXL_UCX_REF
+ARG NIXL_REF
+ARG NIXL_GDRCOPY_REF
+
+ARG RUNTIME_IMAGE="nvcr.io/nvidia/cuda"
+ARG RUNTIME_IMAGE_TAG="12.9.0-runtime-ubuntu24.04"
+ARG CUDA_VERSION="12.9"
+
+# Make sure to update the dependency version in pyproject.toml when updating this
+ARG VLLM_REF="v0.12.0"
+# FlashInfer Ref used to install flashinfer-cubin and flashinfer-jit-cache
+ARG FLASHINF_REF="v0.5.3"
+
+# If left blank, then we will fallback to vLLM defaults
+ARG DEEPGEMM_REF=""
+ARG LMCACHE_REF="0.3.10"
+
+##################################
+########## Base Image ############
+##################################
+
+FROM ${BASE_IMAGE}:${BASE_IMAGE_TAG} AS dynamo_base
+
+ARG ARCH
+ARG ARCH_ALT
+
+USER root
+WORKDIR /opt/dynamo
+
+# Install uv package manager
+COPY --from=ghcr.io/astral-sh/uv:latest /uv /uvx /bin/
+
+# Install NATS server
+ENV NATS_VERSION="v2.10.28"
+RUN --mount=type=cache,target=/var/cache/apt \
+ wget --tries=3 --waitretry=5 https://github.com/nats-io/nats-server/releases/download/${NATS_VERSION}/nats-server-${NATS_VERSION}-${ARCH}.deb && \
+ dpkg -i nats-server-${NATS_VERSION}-${ARCH}.deb && rm nats-server-${NATS_VERSION}-${ARCH}.deb
+
+# Install etcd
+ENV ETCD_VERSION="v3.5.21"
+RUN wget --tries=3 --waitretry=5 https://github.com/etcd-io/etcd/releases/download/$ETCD_VERSION/etcd-$ETCD_VERSION-linux-${ARCH}.tar.gz -O /tmp/etcd.tar.gz && \
+ mkdir -p /usr/local/bin/etcd && \
+ tar -xvf /tmp/etcd.tar.gz -C /usr/local/bin/etcd --strip-components=1 && \
+ rm /tmp/etcd.tar.gz
+ENV PATH=/usr/local/bin/etcd/:$PATH
+
+# Rust Setup
+# Rust environment setup
+ENV RUSTUP_HOME=/usr/local/rustup \
+ CARGO_HOME=/usr/local/cargo \
+ PATH=/usr/local/cargo/bin:$PATH \
+ RUST_VERSION=1.90.0
+
+# Define Rust target based on ARCH_ALT ARG
+ARG RUSTARCH=${ARCH_ALT}-unknown-linux-gnu
+
+# Install Rust
+RUN wget --tries=3 --waitretry=5 "https://static.rust-lang.org/rustup/archive/1.28.1/${RUSTARCH}/rustup-init" && \
+ chmod +x rustup-init && \
+ ./rustup-init -y --no-modify-path --profile minimal --default-toolchain $RUST_VERSION --default-host ${RUSTARCH} && \
+ rm rustup-init && \
+ chmod -R a+w $RUSTUP_HOME $CARGO_HOME
+
+
+##################################
+##### Wheel Build Image ##########
+##################################
+
+# Redeclare ARCH_ALT ARG so it's available for interpolation in the FROM instruction
+ARG ARCH_ALT
+
+FROM quay.io/pypa/manylinux_2_28_${ARCH_ALT} AS wheel_builder
+
+# Redeclare ARGs for this stage
+ARG ARCH
+ARG ARCH_ALT
+ARG CARGO_BUILD_JOBS
+
+WORKDIR /workspace
+
+# Copy CUDA from base stage
+COPY --from=dynamo_base /usr/local/cuda /usr/local/cuda
+COPY --from=dynamo_base /etc/ld.so.conf.d/hpcx.conf /etc/ld.so.conf.d/hpcx.conf
+
+# Set environment variables first so they can be used in COPY commands
+ENV CARGO_BUILD_JOBS=${CARGO_BUILD_JOBS:-16} \
+ RUSTUP_HOME=/usr/local/rustup \
+ CARGO_HOME=/usr/local/cargo \
+ CARGO_TARGET_DIR=/opt/dynamo/target \
+ PATH=/usr/local/cargo/bin:$PATH
+
+# Copy artifacts from base stage
+COPY --from=dynamo_base $RUSTUP_HOME $RUSTUP_HOME
+COPY --from=dynamo_base $CARGO_HOME $CARGO_HOME
+# Install system dependencies
+RUN yum groupinstall -y 'Development Tools' && \
+ dnf install -y almalinux-release-synergy && \
+ dnf config-manager --set-enabled powertools && \
+ dnf install -y \
+ # Build tools
+ cmake \
+ ninja-build \
+ clang-devel \
+ gcc-c++ \
+ flex \
+ wget \
+ # Kernel module build dependencies
+ dkms \
+ # Protobuf support
+ protobuf-compiler \
+ # RDMA/InfiniBand support (required for UCX build with --with-verbs)
+ libibverbs \
+ libibverbs-devel \
+ rdma-core \
+ rdma-core-devel \
+ libibumad \
+ libibumad-devel \
+ librdmacm-devel \
+ numactl-devel
+
+# Ensure a modern protoc is available (required for --experimental_allow_proto3_optional)
+RUN set -eux; \
+ PROTOC_VERSION=25.3; \
+ case "${ARCH_ALT}" in \
+ x86_64) PROTOC_ZIP="protoc-${PROTOC_VERSION}-linux-x86_64.zip" ;; \
+ aarch64) PROTOC_ZIP="protoc-${PROTOC_VERSION}-linux-aarch_64.zip" ;; \
+ *) echo "Unsupported architecture: ${ARCH_ALT}" >&2; exit 1 ;; \
+ esac; \
+ wget --tries=3 --waitretry=5 -O /tmp/protoc.zip "https://github.com/protocolbuffers/protobuf/releases/download/v${PROTOC_VERSION}/${PROTOC_ZIP}"; \
+ rm -f /usr/local/bin/protoc /usr/bin/protoc; \
+ unzip -o /tmp/protoc.zip -d /usr/local bin/protoc include/*; \
+ chmod +x /usr/local/bin/protoc; \
+ ln -s /usr/local/bin/protoc /usr/bin/protoc; \
+ protoc --version
+
+# Point build tools explicitly at the modern protoc
+ENV PROTOC=/usr/local/bin/protoc
+
+ENV CUDA_PATH=/usr/local/cuda \
+ PATH=/usr/local/cuda/bin:$PATH \
+ LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/local/lib:/usr/local/lib64:$LD_LIBRARY_PATH \
+ NVIDIA_DRIVER_CAPABILITIES=video,compute,utility
+
+# Create virtual environment for building wheels
+ARG PYTHON_VERSION
+ENV VIRTUAL_ENV=/workspace/.venv
+RUN uv venv ${VIRTUAL_ENV} --python $PYTHON_VERSION && \
+ uv pip install --upgrade meson pybind11 patchelf maturin[patchelf]
+
+ARG NIXL_UCX_REF
+ARG NIXL_REF
+ARG NIXL_GDRCOPY_REF
+
+# Build and install gdrcopy
+RUN git clone --depth 1 --branch ${NIXL_GDRCOPY_REF} https://github.com/NVIDIA/gdrcopy.git && \
+ cd gdrcopy/packages && \
+ CUDA=/usr/local/cuda ./build-rpm-packages.sh && \
+ rpm -Uvh gdrcopy-kmod-*.el8.noarch.rpm && \
+ rpm -Uvh gdrcopy-*.el8.${ARCH_ALT}.rpm && \
+ rpm -Uvh gdrcopy-devel-*.el8.noarch.rpm
+
+# Install SCCACHE if requested
+ARG USE_SCCACHE
+ARG SCCACHE_BUCKET
+ARG SCCACHE_REGION
+COPY container/use-sccache.sh /tmp/use-sccache.sh
+RUN if [ "$USE_SCCACHE" = "true" ]; then \
+ /tmp/use-sccache.sh install; \
+ fi
+
+# Set SCCACHE environment variables
+ENV SCCACHE_BUCKET=${USE_SCCACHE:+${SCCACHE_BUCKET}} \
+ SCCACHE_REGION=${USE_SCCACHE:+${SCCACHE_REGION}}
-# Copy cuda tools and libs from base image
-FROM ${BASE_IMAGE}:${BASE_IMAGE_TAG} AS base
+# Build and install UCX
+RUN --mount=type=secret,id=aws-key-id,env=AWS_ACCESS_KEY_ID \
+ --mount=type=secret,id=aws-secret-id,env=AWS_SECRET_ACCESS_KEY \
+ export SCCACHE_S3_KEY_PREFIX="${SCCACHE_S3_KEY_PREFIX:-${ARCH}}" && \
+ if [ "$USE_SCCACHE" = "true" ]; then \
+ export CMAKE_C_COMPILER_LAUNCHER="sccache" && \
+ export CMAKE_CXX_COMPILER_LAUNCHER="sccache" && \
+ export CMAKE_CUDA_COMPILER_LAUNCHER="sccache"; \
+ fi && \
+ cd /usr/local/src && \
+ git clone https://github.com/openucx/ucx.git && \
+ cd ucx && \
+ git checkout $NIXL_UCX_REF && \
+ ./autogen.sh && \
+ ./contrib/configure-release \
+ --prefix=/usr/local/ucx \
+ --enable-shared \
+ --disable-static \
+ --disable-doxygen-doc \
+ --enable-optimizations \
+ --enable-cma \
+ --enable-devel-headers \
+ --with-cuda=/usr/local/cuda \
+ --with-verbs \
+ --with-dm \
+ --with-gdrcopy=/usr/local \
+ --with-efa \
+ --enable-mt && \
+ make -j && \
+ make -j install-strip && \
+ /tmp/use-sccache.sh show-stats "UCX" && \
+ echo "/usr/local/ucx/lib" > /etc/ld.so.conf.d/ucx.conf && \
+ echo "/usr/local/ucx/lib/ucx" >> /etc/ld.so.conf.d/ucx.conf && \
+ ldconfig
+
+# build and install nixl
+RUN --mount=type=secret,id=aws-key-id,env=AWS_ACCESS_KEY_ID \
+ --mount=type=secret,id=aws-secret-id,env=AWS_SECRET_ACCESS_KEY \
+ export SCCACHE_S3_KEY_PREFIX="${SCCACHE_S3_KEY_PREFIX:-${ARCH}}" && \
+ if [ "$USE_SCCACHE" = "true" ]; then \
+ export CMAKE_C_COMPILER_LAUNCHER="sccache" && \
+ export CMAKE_CXX_COMPILER_LAUNCHER="sccache" && \
+ export CMAKE_CUDA_COMPILER_LAUNCHER="sccache"; \
+ fi && \
+ source ${VIRTUAL_ENV}/bin/activate && \
+ git clone --depth 1 --branch ${NIXL_REF} "https://github.com/ai-dynamo/nixl.git" && \
+ cd nixl && \
+ mkdir build && \
+ meson setup build/ --prefix=/opt/nvidia/nvda_nixl --buildtype=release \
+ -Dcudapath_lib="/usr/local/cuda/lib64" \
+ -Dcudapath_inc="/usr/local/cuda/include" \
+ -Ducx_path="/usr/local/ucx" && \
+ cd build && \
+ ninja && \
+ ninja install && \
+ /tmp/use-sccache.sh show-stats "NIXL"
+
+ENV NIXL_LIB_DIR=/opt/nvidia/nvda_nixl/lib64 \
+ NIXL_PLUGIN_DIR=/opt/nvidia/nvda_nixl/lib64/plugins \
+ NIXL_PREFIX=/opt/nvidia/nvda_nixl
+ENV LD_LIBRARY_PATH=${NIXL_LIB_DIR}:${NIXL_PLUGIN_DIR}:/usr/local/ucx/lib:/usr/local/ucx/lib/ucx:${LD_LIBRARY_PATH}
+
+RUN echo "$NIXL_LIB_DIR" > /etc/ld.so.conf.d/nixl.conf && \
+ echo "$NIXL_PLUGIN_DIR" >> /etc/ld.so.conf.d/nixl.conf && \
+ ldconfig
+
+RUN --mount=type=secret,id=aws-key-id,env=AWS_ACCESS_KEY_ID \
+ --mount=type=secret,id=aws-secret-id,env=AWS_SECRET_ACCESS_KEY \
+ export SCCACHE_S3_KEY_PREFIX="${SCCACHE_S3_KEY_PREFIX:-${ARCH}}" && \
+ if [ "$USE_SCCACHE" = "true" ]; then \
+ export CMAKE_C_COMPILER_LAUNCHER="sccache" && \
+ export CMAKE_CXX_COMPILER_LAUNCHER="sccache" && \
+ export CMAKE_CUDA_COMPILER_LAUNCHER="sccache"; \
+ fi && \
+ cd /workspace/nixl && \
+ uv build . --out-dir /opt/dynamo/dist/nixl --python $PYTHON_VERSION
+
+# Copy source code (order matters for layer caching)
+COPY pyproject.toml README.md LICENSE Cargo.toml Cargo.lock rust-toolchain.toml hatch_build.py /opt/dynamo/
+COPY launch/ /opt/dynamo/launch/
+COPY lib/ /opt/dynamo/lib/
+COPY components/ /opt/dynamo/components/
+
+# Build dynamo wheels
+ARG ENABLE_KVBM
+RUN --mount=type=secret,id=aws-key-id,env=AWS_ACCESS_KEY_ID \
+ --mount=type=secret,id=aws-secret-id,env=AWS_SECRET_ACCESS_KEY \
+ export SCCACHE_S3_KEY_PREFIX=${SCCACHE_S3_KEY_PREFIX:-${ARCH}} && \
+ if [ "$USE_SCCACHE" = "true" ]; then \
+ export CMAKE_C_COMPILER_LAUNCHER="sccache" && \
+ export CMAKE_CXX_COMPILER_LAUNCHER="sccache" && \
+ export RUSTC_WRAPPER="sccache"; \
+ fi && \
+ source ${VIRTUAL_ENV}/bin/activate && \
+ cd /opt/dynamo && \
+ uv build --wheel --out-dir /opt/dynamo/dist && \
+ cd /opt/dynamo/lib/bindings/python && \
+ if [ "$ENABLE_MEDIA_NIXL" == "true" ]; then \
+ maturin build --release --features dynamo-llm/media-nixl --out /opt/dynamo/dist; \
+ else \
+ maturin build --release --out /opt/dynamo/dist; \
+ fi && \
+ if [ "$ENABLE_KVBM" == "true" ]; then \
+ cd /opt/dynamo/lib/bindings/kvbm && \
+ maturin build --release --out target/wheels && \
+ auditwheel repair \
+ --exclude libnixl.so \
+ --exclude libnixl_build.so \
+ --exclude libnixl_common.so \
+ --plat manylinux_2_28_${ARCH_ALT} \
+ --wheel-dir /opt/dynamo/dist \
+ target/wheels/*.whl; \
+ fi && \
+ /tmp/use-sccache.sh show-stats "Dynamo"
########################################################
########## Framework Development Image ################
@@ -110,42 +413,19 @@ ARG VLLM_REF
ARG VLLM_GIT_URL
ARG DEEPGEMM_REF
ARG FLASHINF_REF
-ARG TORCH_BACKEND
+ARG LMCACHE_REF
ARG CUDA_VERSION
ARG MAX_JOBS=16
ENV MAX_JOBS=$MAX_JOBS
ENV CUDA_HOME=/usr/local/cuda
-# Install sccache if requested
-COPY container/use-sccache.sh /tmp/use-sccache.sh
-# Install sccache if requested
-ARG USE_SCCACHE
-ARG ARCH_ALT
-ARG SCCACHE_BUCKET
-ARG SCCACHE_REGION
-
-ENV ARCH_ALT=${ARCH_ALT}
-RUN if [ "$USE_SCCACHE" = "true" ]; then \
- /tmp/use-sccache.sh install; \
- fi
-
-# Set environment variables - they'll be empty strings if USE_SCCACHE=false
-ENV SCCACHE_BUCKET=${USE_SCCACHE:+${SCCACHE_BUCKET}} \
- SCCACHE_REGION=${USE_SCCACHE:+${SCCACHE_REGION}} \
- CMAKE_C_COMPILER_LAUNCHER=${USE_SCCACHE:+sccache} \
- CMAKE_CXX_COMPILER_LAUNCHER=${USE_SCCACHE:+sccache} \
- CMAKE_CUDA_COMPILER_LAUNCHER=${USE_SCCACHE:+sccache}
# Install VLLM and related dependencies
RUN --mount=type=bind,source=./container/deps/,target=/tmp/deps \
--mount=type=cache,target=/root/.cache/uv \
- --mount=type=secret,id=aws-key-id,env=AWS_ACCESS_KEY_ID \
- --mount=type=secret,id=aws-secret-id,env=AWS_SECRET_ACCESS_KEY \
- export SCCACHE_S3_KEY_PREFIX=${SCCACHE_S3_KEY_PREFIX:-${ARCH}} && \
- cp /tmp/deps/vllm/install_vllm.sh /tmp/install_vllm.sh && \
- chmod +x /tmp/install_vllm.sh && \
- /tmp/install_vllm.sh --editable --vllm-ref $VLLM_REF --max-jobs $MAX_JOBS --arch $ARCH --installation-dir /opt ${DEEPGEMM_REF:+--deepgemm-ref "$DEEPGEMM_REF"} ${FLASHINF_REF:+--flashinf-ref "$FLASHINF_REF"} --torch-backend $TORCH_BACKEND --cuda-version $CUDA_VERSION && \
- /tmp/use-sccache.sh show-stats "vLLM";
+ cp /tmp/deps/vllm/install_vllm.sh /tmp/install_vllm.sh && \
+ chmod +x /tmp/install_vllm.sh && \
+ /tmp/install_vllm.sh --vllm-ref $VLLM_REF --max-jobs $MAX_JOBS --arch $ARCH --installation-dir /opt ${DEEPGEMM_REF:+--deepgemm-ref "$DEEPGEMM_REF"} ${FLASHINF_REF:+--flashinf-ref "$FLASHINF_REF"} ${LMCACHE_REF:+--lmcache-ref "$LMCACHE_REF"} --cuda-version $CUDA_VERSION
ENV LD_LIBRARY_PATH=\
/opt/vllm/tools/ep_kernels/ep_kernels_workspace/nvshmem_install/lib:\
@@ -181,13 +461,13 @@ ENV PATH="${VIRTUAL_ENV}/bin:${PATH}"
ENV CUDA_DEVICE_ORDER=PCI_BUS_ID
# Copy CUDA development tools (nvcc, headers, dependencies, etc.) from base devel image
-COPY --from=base /usr/local/cuda/bin/nvcc /usr/local/cuda/bin/nvcc
-COPY --from=base /usr/local/cuda/bin/cudafe++ /usr/local/cuda/bin/cudafe++
-COPY --from=base /usr/local/cuda/bin/ptxas /usr/local/cuda/bin/ptxas
-COPY --from=base /usr/local/cuda/bin/fatbinary /usr/local/cuda/bin/fatbinary
-COPY --from=base /usr/local/cuda/include/ /usr/local/cuda/include/
-COPY --from=base /usr/local/cuda/nvvm /usr/local/cuda/nvvm
-COPY --from=base /usr/local/cuda/lib64/libcudart.so* /usr/local/cuda/lib64/
+COPY --from=dynamo_base /usr/local/cuda/bin/nvcc /usr/local/cuda/bin/nvcc
+COPY --from=dynamo_base /usr/local/cuda/bin/cudafe++ /usr/local/cuda/bin/cudafe++
+COPY --from=dynamo_base /usr/local/cuda/bin/ptxas /usr/local/cuda/bin/ptxas
+COPY --from=dynamo_base /usr/local/cuda/bin/fatbinary /usr/local/cuda/bin/fatbinary
+COPY --from=dynamo_base /usr/local/cuda/include/ /usr/local/cuda/include/
+COPY --from=dynamo_base /usr/local/cuda/nvvm /usr/local/cuda/nvvm
+COPY --from=dynamo_base /usr/local/cuda/lib64/libcudart.so* /usr/local/cuda/lib64/
RUN ln -s /usr/local/cuda/lib64/libcublas.so.12 /usr/local/cuda/lib64/libcublas.so
RUN ln -s /usr/local/cuda/lib64/libcublasLt.so.12 /usr/local/cuda/lib64/libcublasLt.so
@@ -210,8 +490,12 @@ RUN userdel -r ubuntu > /dev/null 2>&1 || true \
&& useradd -m -s /bin/bash -g 0 dynamo \
&& [ `id -u dynamo` -eq 1000 ] \
&& mkdir -p /home/dynamo/.cache /opt/dynamo \
- && chown -R dynamo: /workspace /home/dynamo /opt/dynamo \
- && chmod -R g+w /workspace /home/dynamo/.cache /opt/dynamo
+ # Non-recursive chown - only the directories themselves, not contents
+ && chown dynamo:0 /home/dynamo /home/dynamo/.cache /opt/dynamo /workspace \
+ # No chmod needed: umask 002 handles new files, COPY --chmod handles copied content
+ # Set umask globally for all subsequent RUN commands (must be done as root before USER dynamo)
+ # NOTE: Setting ENV UMASK=002 does NOT work - umask is a shell builtin, not an environment variable
+ && mkdir -p /etc/profile.d && echo 'umask 002' > /etc/profile.d/00-umask.sh
ARG ARCH_ALT
ARG PYTHON_VERSION
@@ -236,25 +520,32 @@ RUN apt-get update && \
# prometheus dependencies
ca-certificates \
# DeepGemm uses 'cuobjdump' which does not come with CUDA image
- cuda-command-line-tools-12-8 && \
+ cuda-command-line-tools-12-9 && \
rm -rf /var/lib/apt/lists/*
USER dynamo
ENV HOME=/home/dynamo
+# This picks up the umask 002 from the /etc/profile.d/00-umask.sh file for subsequent RUN commands
+SHELL ["/bin/bash", "-l", "-o", "pipefail", "-c"]
+
ENV NIXL_PREFIX=/opt/nvidia/nvda_nixl
ENV NIXL_LIB_DIR=$NIXL_PREFIX/lib/${ARCH_ALT}-linux-gnu
ENV NIXL_PLUGIN_DIR=$NIXL_LIB_DIR/plugins
### VIRTUAL ENVIRONMENT SETUP ###
# Copy entire virtual environment from framework container with correct ownership
-COPY --chown=dynamo: --from=framework ${VIRTUAL_ENV} ${VIRTUAL_ENV}
-
-# Copy vllm with correct ownership
-COPY --chown=dynamo: --from=framework /opt/vllm /opt/vllm
-
-# Copy UCX and NIXL to system directories
-COPY --chown=dynamo: --from=dynamo_base /usr/local/ucx /usr/local/ucx
-COPY --chown=dynamo: --from=dynamo_base $NIXL_PREFIX $NIXL_PREFIX
+# Pattern: COPY --chmod=775 ; chmod g+w done later as root because COPY --chmod only affects /*, not
+COPY --chmod=775 --chown=dynamo:0 --from=framework ${VIRTUAL_ENV} ${VIRTUAL_ENV}
+
+# Copy vllm with correct ownership (read-only, no group-write needed)
+COPY --chown=dynamo:0 --from=framework /opt/vllm /opt/vllm
+
+# Copy UCX and NIXL to system directories (read-only, no group-write needed)
+COPY --from=wheel_builder /usr/local/ucx /usr/local/ucx
+COPY --chown=dynamo: --from=wheel_builder $NIXL_PREFIX $NIXL_PREFIX
+COPY --chown=dynamo: --from=wheel_builder /opt/nvidia/nvda_nixl/lib64/. ${NIXL_LIB_DIR}/
+COPY --chown=dynamo: --from=wheel_builder /opt/dynamo/dist/nixl/ /opt/dynamo/wheelhouse/nixl/
+COPY --chown=dynamo: --from=wheel_builder /workspace/nixl/build/src/bindings/python/nixl-meta/nixl-*.whl /opt/dynamo/wheelhouse/nixl/
ENV PATH=/usr/local/ucx/bin:$PATH
ENV LD_LIBRARY_PATH=\
@@ -265,22 +556,31 @@ $NIXL_PLUGIN_DIR:\
/usr/local/ucx/lib/ucx:\
$LD_LIBRARY_PATH
-# Copy local files
-COPY --chown=dynamo: ATTRIBUTION* LICENSE /workspace/
-COPY --chown=dynamo: benchmarks/ /workspace/benchmarks/
+# Copy attribution files
+COPY --chmod=664 --chown=dynamo:0 ATTRIBUTION* LICENSE /workspace/
+# Pattern: COPY --chmod=775 ; chmod g+w done later as root because COPY --chmod only affects /*, not
+COPY --chmod=775 --chown=dynamo:0 benchmarks/ /workspace/benchmarks/
# Install dynamo, NIXL, and dynamo-specific dependencies
+# Pattern: COPY --chmod=775 ; chmod g+w done later as root because COPY --chmod only affects /*, not
ARG ENABLE_KVBM
-COPY --chown=dynamo: --from=dynamo_base /opt/dynamo/wheelhouse/ /opt/dynamo/wheelhouse/
+COPY --chmod=775 --chown=dynamo:0 --from=wheel_builder /opt/dynamo/dist/*.whl /opt/dynamo/wheelhouse/
RUN uv pip install \
/opt/dynamo/wheelhouse/ai_dynamo_runtime*.whl \
/opt/dynamo/wheelhouse/ai_dynamo*any.whl \
- /opt/dynamo/wheelhouse/nixl/nixl*.whl \
- && if [ "${ENABLE_KVBM}" = "true" ]; then \
- uv pip install /opt/dynamo/wheelhouse/kvbm*.whl; \
- fi \
- && cd /workspace/benchmarks \
- && UV_GIT_LFS=1 uv pip install --no-cache .
+ /opt/dynamo/wheelhouse/nixl/nixl*.whl && \
+ if [ "${ENABLE_KVBM}" = "true" ]; then \
+ KVBM_WHEEL=$(ls /opt/dynamo/wheelhouse/kvbm*.whl 2>/dev/null | head -1); \
+ if [ -z "$KVBM_WHEEL" ]; then \
+ echo "ERROR: ENABLE_KVBM is true but no KVBM wheel found in wheelhouse" >&2; \
+ exit 1; \
+ fi; \
+ uv pip install "$KVBM_WHEEL"; \
+ fi && \
+ cd /workspace/benchmarks && \
+ UV_GIT_LFS=1 uv pip install --no-cache . && \
+ # pip/uv bypasses umask when creating .egg-info files, but chmod -R is fast here (small directory)
+ chmod -R g+w /workspace/benchmarks
# Install common and test dependencies
RUN --mount=type=bind,source=./container/deps/requirements.txt,target=/tmp/requirements.txt \
@@ -290,13 +590,14 @@ RUN --mount=type=bind,source=./container/deps/requirements.txt,target=/tmp/requi
--requirement /tmp/requirements.txt \
--requirement /tmp/requirements.test.txt
-# Copy tests, benchmarks, deploy and components for CI
-COPY --chown=dynamo: tests /workspace/tests
-COPY --chown=dynamo: examples /workspace/examples
-COPY --chown=dynamo: deploy /workspace/deploy
-COPY --chown=dynamo: recipes/ /workspace/recipes/
-COPY --chown=dynamo: components/ /workspace/components/
-COPY --chown=dynamo: lib/ /workspace/lib/
+# Copy tests, deploy and components for CI with correct ownership
+# Pattern: COPY --chmod=775 ; chmod g+w done later as root because COPY --chmod only affects /*, not
+COPY --chmod=775 --chown=dynamo:0 tests /workspace/tests
+COPY --chmod=775 --chown=dynamo:0 examples /workspace/examples
+COPY --chmod=775 --chown=dynamo:0 deploy /workspace/deploy
+COPY --chmod=775 --chown=dynamo:0 recipes/ /workspace/recipes/
+COPY --chmod=775 --chown=dynamo:0 components/ /workspace/components/
+COPY --chmod=775 --chown=dynamo:0 lib/ /workspace/lib/
# Setup launch banner in common directory accessible to all users
RUN --mount=type=bind,source=./container/launch_message/runtime.txt,target=/opt/dynamo/launch_message.txt \
@@ -304,7 +605,9 @@ RUN --mount=type=bind,source=./container/launch_message/runtime.txt,target=/opt/
# Setup environment for all users
USER root
-RUN chmod 755 /opt/dynamo/.launch_screen && \
+# Fix directory permissions: COPY --chmod only affects contents, not the directory itself
+RUN chmod g+w /workspace /workspace/* /opt/dynamo /opt/dynamo/* ${VIRTUAL_ENV} && \
+ chmod 755 /opt/dynamo/.launch_screen && \
echo 'source /opt/dynamo/venv/bin/activate' >> /etc/bash.bashrc && \
echo 'cat /opt/dynamo/.launch_screen' >> /etc/bash.bashrc
@@ -363,6 +666,10 @@ RUN apt-get update -y && \
protobuf-compiler && \
rm -rf /var/lib/apt/lists/*
+# Set umask for group-writable files in dev stage (runs as root)
+RUN mkdir -p /etc/profile.d && echo 'umask 002' > /etc/profile.d/00-umask.sh
+SHELL ["/bin/bash", "-l", "-o", "pipefail", "-c"]
+
# Set workspace directory variable
ENV WORKSPACE_DIR=${WORKSPACE_DIR} \
DYNAMO_HOME=${WORKSPACE_DIR} \
@@ -372,11 +679,15 @@ ENV WORKSPACE_DIR=${WORKSPACE_DIR} \
VIRTUAL_ENV=/opt/dynamo/venv \
PATH=/usr/local/cargo/bin:$PATH
-COPY --from=dynamo_base /usr/local/rustup /usr/local/rustup
-COPY --from=dynamo_base /usr/local/cargo /usr/local/cargo
+# Copy rust installation from dynamo_base to avoid duplication efforts
+# Pattern: COPY --chmod=775 ; chmod g+w because COPY --chmod only affects /*, not
+COPY --from=dynamo_base --chmod=775 /usr/local/rustup /usr/local/rustup
+COPY --from=dynamo_base --chmod=775 /usr/local/cargo /usr/local/cargo
+RUN chmod g+w /usr/local/rustup /usr/local/cargo
# Install maturin, for maturin develop
# Editable install of dynamo
+COPY pyproject.toml README.md hatch_build.py /workspace/
RUN uv pip install maturin[patchelf] && \
uv pip install --no-deps -e .
diff --git a/container/README.md b/container/README.md
index 00220d6021..458193c3ce 100644
--- a/container/README.md
+++ b/container/README.md
@@ -18,6 +18,48 @@ The NVIDIA Dynamo project uses containerized development and deployment to maint
- `Dockerfile.frontend` - For Kubernetes Gateway API Inference Extension integration with EPP
- `Dockerfile.epp` - For building the Endpoint Picker (EPP) image
+### Stage Summary for Frameworks
+
+
+Show Stage Summary Table
+Dockerfile.${FRAMEWORK} General Structure
+
+Below is a summary of the general file structure for the framework Dockerfile stages. Some exceptions exist.
+
+| Stage/Filepath | Target |
+| --- | --- |
+| **STAGE dynamo_base** | **FROM ${BASE_IMAGE}** |
+| /bin/uv, /bin/uvx | COPY from ghcr.io/astral-sh/uv:latest (โ framework, runtime) |
+| /usr/bin/nats-server | Downloaded from GitHub (โ runtime) |
+| /usr/local/bin/etcd/ | Downloaded from GitHub (โ runtime) |
+| /usr/local/rustup/ | Installed via rustup-init (โ wheel_builder, dev) |
+| /usr/local/cargo/ | Installed via rustup-init (โ wheel_builder, dev) |
+| /usr/local/cuda/ | Inherited from BASE_IMAGE (โ wheel_builder, runtime) |
+| **STAGE: wheel_builder** | **FROM quay.io/pypa/manylinux_2_28_${ARCH_ALT}** |
+| /usr/local/ucx/ | Built from source (โ runtime)
+| /opt/nvidia/nvda_nixl/ | Built from source (โ runtime)
+| /opt/nvidia/nvda_nixl/lib64/ | Built from source (โ runtime)
+| /opt/dynamo/target/ | Cargo build output (โ runtime)
+| /opt/dynamo/dist/*.whl | Built wheels (โ runtime)
+| /opt/dynamo/dist/nixl/ | Built nixl wheels (โ runtime)
+| **STAGE: framework** | **FROM ${BASE_IMAGE}** |
+| /opt/dynamo/venv/ | Created with uv venv (โ runtime)
+| /${FRAMEWORK_INSTALL} | Built framework (โ runtime)
+| **STAGE: runtime** | **FROM ${RUNTIME_IMAGE}** |
+| /usr/local/cuda/{bin,include,nvvm}/ | COPY from dynamo_base |
+| /usr/bin/nats-server | COPY from dynamo_runtime |
+| /usr/local/bin/etcd/ | COPY from dynamo_runtime |
+| /usr/local/ucx/ | COPY from dynamo_runtime |
+| /opt/nvidia/nvda_nixl/ | COPY from wheel_builder |
+| /opt/dynamo/wheelhouse/ | COPY from wheel_builder |
+| /opt/dynamo/venv/ | COPY from framework |
+| /opt/vllm/ | COPY from framework |
+| /workspace/{tests,examples,deploy}/ |COPY from build context |
+| **STAGE: dev** | **FROM runtime** |
+| /usr/local/rustup/ | COPY from dynamo_runtime |
+| /usr/local/cargo/ | COPY from dynamo_runtime |
+
+
### Why Containerization?
Each inference framework (vLLM, TensorRT-LLM, SGLang) has specific CUDA versions, Python dependencies, and system libraries. Containers provide consistent environments, framework isolation, and proper GPU configurations across development and production.
@@ -37,102 +79,34 @@ The `build.sh` and `run.sh` scripts are convenience wrappers that simplify commo
## Development Targets Feature Matrix
-These targets are specified with `build.sh --target ` and correspond to Docker multi-stage build targets defined in the Dockerfiles (e.g., `FROM somebase AS `). Some commonly used targets include:
-
-- `runtime` - For running pre-built containers without development tools (minimal size, runs as non-root `dynamo` user with UID 1000 and GID 0)
-- `dev` - For development (inferencing/benchmarking/etc, runs as root user for maximum flexibility)
-- `local-dev` - For development with local user permissions matching host UID/GID. This is useful when mounting host partitions (with local user permissions) to Docker partitions. The `dynamo` user UID/GID is remapped to match the host user.
-
-Additional targets are available in the Dockerfiles for specific build stages and use cases.
-
-| Feature | **dev + `run.sh`** | **local-dev + `run.sh`** | **local-dev + Dev Container** |
-|---------|-------------------|--------------------------|-------------------------------|
-| **Default User** | root | dynamo (matched to host UID/GID) | dynamo (matched to host UID/GID) |
-| **User Setup** | None (root) | Matches UID/GID of `build.sh` user | Matches UID/GID of `build.sh` user |
-| **Permissions** | root | dynamo with sudo | dynamo with sudo |
-| **Home Directory** | `/root` | `/home/dynamo` | `/home/dynamo` |
-| **Working Directory** | `/workspace` | `/workspace` | `/workspace` |
-| **Rust Toolchain** | System install (`/usr/local/rustup`, `/usr/local/cargo`) | User install (`~/.rustup`, `~/.cargo`) | User install (`~/.rustup`, `~/.cargo`) |
-| **Python Env** | dynamo user owned | dynamo owned venv | dynamo owned venv |
-| **File Permissions** | root-level | user-level (dynamo), safe | user-level (dynamo), safe |
-| **Compatibility** | Legacy workflows, maximum flexibility | workspace writable on NFS, non-root security | workspace writable on NFS, non-root security |
+**Note**: In Dynamo, "targets" and "Docker stages" are synonymous. Each target corresponds to a stage in the multi-stage Docker build. Similarly, "frameworks" and "engines" are synonymous (vLLM, TensorRT-LLM, SGLang).
-## Environment Variables Across Build Stages
-
-Understanding how environment variables change across different build stages is crucial for development and debugging. The Dynamo build system uses a multi-stage Docker build process where environment variables are set, inherited, and overridden at different stages.
-
-### Build Stage Flow
-
-```
-Dockerfile โ base โ dev (dynamo-base image)
- โ
-Dockerfile.vllm โ framework โ runtime โ dev (vllm dev image)
- โ
-Dockerfile.local_dev โ local-dev (from vllm dev image)
-```
-
-### Environment Variables by Stage
-
-| Variable | **base** | **baseโdev** | **vllmโframework** | **vllmโruntime** | **vllmโdev** | **local-dev** |
-|----------------------|---------------------|----------------------|--------------------|--------------------|--------------|--------------------|
-| **DYNAMO_HOME** | โ Not set | `/opt/dynamo` | โ Not set | `/opt/dynamo` | `/workspace` โ
**OVERRIDE** | `/workspace` (inherited) |
-| **WORKSPACE_DIR** | โ Not set | โ Not set | โ Not set | โ Not set | `/workspace` | `/workspace` (inherited) |
-| **CARGO_TARGET_DIR** | โ Not set | `/opt/dynamo/target` | โ Not set | โ Not set | `/workspace/target` โ
**OVERRIDE** | `/workspace/target` (inherited) |
-| **VIRTUAL_ENV** | `/opt/dynamo/venv` | (inherited) | `/opt/dynamo/venv` | `/opt/dynamo/venv` | `/opt/dynamo/venv` โ
**REDEFINE** | `/opt/dynamo/venv` (inherited) |
-| **RUSTUP_HOME** | `/usr/local/rustup` | (inherited) | โ Not set | โ Not set | `/usr/local/rustup` | `/home/dynamo/.rustup` โ
**OVERRIDE** |
-| **CARGO_HOME** | `/usr/local/cargo` | (inherited) | โ Not set | โ Not set | `/usr/local/cargo` | `/home/dynamo/.cargo` โ
**OVERRIDE** |
-| **USERNAME** | โ Not set | `dynamo` | โ Not set | `dynamo` | โ Not set | `dynamo` |
-| **HOME** | (system default) | `/home/dynamo` | (system default) | `/home/dynamo` | (system default) | `/home/dynamo` |
-| **PATH** | (includes cargo) | (inherited) | (system default) | (includes venv, etcd, ucx) | `/usr/local/cargo/bin:$PATH` | `/home/dynamo/.cargo/bin:$PATH` โ
**OVERRIDE** |
-
-### Key Insights
-
-**1. DYNAMO_HOME Dual Purpose:**
-- `baseโdev` and `vllmโruntime`: `/opt/dynamo` - For **installed/packaged** Dynamo (CI, production)
-- `vllmโdev` and `local-dev`: `/workspace` - For **development** with source code mounted from host
-
-**2. Rust Toolchain Location:**
-- `dev` target: System-wide at `/usr/local/rustup` and `/usr/local/cargo` (suitable for root)
-- `local-dev` target: User-specific at `/home/dynamo/.rustup` and `/home/dynamo/.cargo` (proper UID/GID ownership)
-
-**3. Build Artifacts Location:**
-- `baseโdev`: `/opt/dynamo/target` - Build artifacts with installed package
-- `vllmโdev` onward: `/workspace/target` - Build artifacts in mounted workspace for persistence
-
-**4. Variables That Stay Constant:**
-- `VIRTUAL_ENV`: Always `/opt/dynamo/venv` (ownership changes in local-dev via rsync)
-- `WORKSPACE_DIR`: Always `/workspace` once set in vllmโdev
-- `DYNAMO_HOME`: Always `/workspace` once overridden in vllmโdev (for development)
-
-**5. local-dev Specific Changes:**
-From `Dockerfile.local_dev`, the Rust toolchain is moved to user home because:
-- Workspace mount points may change, breaking toolchain paths
-- User needs ownership of cargo binaries and registry for package installation
-- Toolchain requires consistent system paths that don't depend on workspace location
-
-The Python venv ownership is also updated via rsync in local-dev to match the user's UID/GID, ensuring package installation permissions work correctly.
-
-**6. Non-Root User Architecture:**
-Dynamo containers implement a multi-stage user strategy:
-- **runtime stage**: Runs as non-root `dynamo` user (UID 1000, GID 0) for production workloads
-- **dev stage**: Runs as root for maximum development flexibility (builds on runtime but switches to root)
-- **local-dev stage**: Runs as `dynamo` user with UID/GID matched to host user for safe file system operations
-- **Security**: Runtime and local-dev use non-root execution to reduce attack surface
-- **File Ownership**: All application files, virtual environments, and build artifacts are owned by `dynamo:root` (1000:0) in runtime stage
-- **Environment Setup**: Launch banner moved to `/opt/dynamo/.launch_screen` (shared across all users) and venv activation configured in `/etc/bash.bashrc` for system-wide availability. This replaces the previous per-user `~/.launch_screen` and `~/.bashrc` approach.
+| Feature | **runtime + `run.sh`** | **local-dev (`run.sh` or Dev Container)** | **dev + `run.sh`** (legacy) |
+|---------|----------------------|-------------------------------------------|--------------------------|
+| **Usage** | Benchmarking inference and deployments, non-root | Development, compilation, testing locally | Legacy workflows, root user, use with caution |
+| **User** | dynamo (UID 1000) | dynamo (UID=host user) with sudo | root (UID 0, use with caution) |
+| **Home Directory** | `/home/dynamo` | `/home/dynamo` | `/root` |
+| **Working Directory** | `/workspace` (in-container or mounted) | `/workspace` (must be mounted w/ `--mount-workspace`) | `/workspace` (must be mounted w/ `--mount-workspace`) |
+| **Rust Toolchain** | None (uses pre-built wheels) | System install (`/usr/local/rustup`, `/usr/local/cargo`) | System install (`/usr/local/rustup`, `/usr/local/cargo`) |
+| **Cargo Target** | None | `/workspace/target` | `/workspace/target` |
+| **Python Env** | venv (`/opt/dynamo/venv`) for vllm/trtllm, system site-packages for sglang | venv (`/opt/dynamo/venv`) for vllm/trtllm, system site-packages for sglang | venv (`/opt/dynamo/venv`) for vllm/trtllm, system site-packages for sglang |
## Usage Guidelines
-- **Use runtime target**: for production deployments. Runs as non-root `dynamo` user (UID 1000, GID 0) for security
-- **Use dev + `run.sh`**: for command-line testing and inferencing. Runs as root for maximum flexibility
-- **Use local-dev + `run.sh`**: for command-line development and Docker mounted partitions. Runs as `dynamo` user with UID/GID matched to your local user. Add `-it` flag for interactive sessions
-- **Use local-dev + Dev Container**: VS Code/Cursor Dev Container Plugin, using `dynamo` user with UID/GID matched to your local user
+- **Use runtime target**: for benchmarking inference and deployments. Runs as non-root `dynamo` user (UID 1000, GID 0) for security
+- **Use local-dev + `run.sh`**: for command-line development and Docker mounted partitions. Runs as `dynamo` user with UID matched to your local user, GID 0. Add `-it` flag for interactive sessions
+- **Use local-dev + Dev Container**: VS Code/Cursor Dev Container Plugin, using `dynamo` user with UID matched to your local user, GID 0
+- **Use dev + `run.sh`**: Root user, use with caution. Runs as root for backward compatibility with early workflows
## Example Commands
-### 1. dev + `run.sh` (runs as root):
+### 1. runtime target (runs as non-root dynamo user):
```bash
-run.sh ...
+# Build runtime image
+./build.sh --framework vllm --target runtime
+
+# Run runtime container
+./run.sh --image dynamo:latest-vllm-runtime -it
```
### 2. local-dev + `run.sh` (runs as dynamo user with matched host UID/GID):
@@ -141,16 +115,7 @@ run.sh --mount-workspace -it --image dynamo:latest-vllm-local-dev ...
```
### 3. local-dev + Dev Container Extension:
-Use VS Code/Cursor Dev Container Extension with devcontainer.json configuration. The `dynamo` user UID/GID is automatically matched to your local user.
-
-### 4. runtime target (runs as non-root dynamo user):
-```bash
-# Build runtime image
-./build.sh --framework vllm --target runtime
-
-# Run runtime container
-./run.sh --image dynamo:latest-vllm-runtime
-```
+Use VS Code/Cursor Dev Container Extension with devcontainer.json configuration. The `dynamo` user UID is automatically matched to your local user.
## Build and Run Scripts Overview
@@ -196,23 +161,6 @@ The `build.sh` script is responsible for building Docker images for different AI
./build.sh --build-arg CUSTOM_ARG=value
```
-### build.sh --dev-image - Local Development Image Builder
-
-The `build.sh --dev-image` option takes a dev image and then builds a local-dev image, which contains proper local user permissions. It also includes extra developer utilities (debugging tools, text editors, system monitors, etc.).
-
-**Common Usage Examples:**
-
-```bash
-# Build local-dev image from dev image dynamo:latest-vllm
-./build.sh --dev-image dynamo:latest-vllm --framework vllm
-
-# Build with custom tag from dev image dynamo:latest-vllm
-./build.sh --dev-image dynamo:latest-vllm --framework vllm --tag my-local:dev
-
-# Dry run to see what would be built
-./build.sh --dev-image dynamo:latest-vllm --framework vllm --dry-run
-```
-
### Building the Frontend Image
The frontend image is a specialized container that includes the Dynamo components (NATS, etcd, dynamo, NIXL, etc) along with the Endpoint Picker (EPP) for Kubernetes Gateway API Inference Extension integration. This image is primarily used for inference gateway deployments.
@@ -230,6 +178,7 @@ Follow the instructions in [`deploy/inference-gateway/README.md`](../deploy/infe
The base image contains the core Dynamo runtime components, NATS server, etcd, and Python dependencies:
```bash
# Build the base dev image (framework=none for frontend-only deployment)
+# Note: --framework none defaults ENABLE_MEDIA_NIXL=false
./build.sh --framework none --target dev
```
diff --git a/container/build.sh b/container/build.sh
index aac74644fd..4680add783 100755
--- a/container/build.sh
+++ b/container/build.sh
@@ -89,7 +89,7 @@ DEFAULT_TENSORRTLLM_PIP_WHEEL_DIR="/tmp/trtllm_wheel/"
# TensorRT-LLM commit to use for building the trtllm wheel if not provided.
# Important Note: This commit is not used in our CI pipeline. See the CI
# variables to learn how to run a pipeline with a specific commit.
-DEFAULT_EXPERIMENTAL_TRTLLM_COMMIT="31116825b39f4e6a6a1e127001f5204b73d1dc32" # 1.2.0rc2
+DEFAULT_EXPERIMENTAL_TRTLLM_COMMIT="e4c707845ff58fcc0b1d87afb4dd0e64885c780a" # 1.2.0rc5
TRTLLM_COMMIT=""
TRTLLM_USE_NIXL_KVCACHE_EXPERIMENTAL="0"
TRTLLM_GIT_URL=""
@@ -98,7 +98,7 @@ TRTLLM_GIT_URL=""
DEFAULT_TENSORRTLLM_INDEX_URL="https://pypi.nvidia.com/"
# TODO: Remove the version specification from here and use the ai-dynamo[trtllm] package.
# Need to update the Dockerfile.trtllm to use the ai-dynamo[trtllm] package.
-DEFAULT_TENSORRTLLM_PIP_WHEEL="tensorrt-llm==1.2.0rc3"
+DEFAULT_TENSORRTLLM_PIP_WHEEL="tensorrt-llm==1.2.0rc5"
TENSORRTLLM_PIP_WHEEL=""
VLLM_BASE_IMAGE="nvcr.io/nvidia/cuda-dl-base"
@@ -106,7 +106,7 @@ VLLM_BASE_IMAGE="nvcr.io/nvidia/cuda-dl-base"
# Please check https://github.com/ai-dynamo/dynamo/pull/1065
# for details and reproducer to manually test if the image
# can be updated to later versions.
-VLLM_BASE_IMAGE_TAG="25.01-cuda12.8-devel-ubuntu24.04"
+VLLM_BASE_IMAGE_TAG="25.04-cuda12.9-devel-ubuntu24.04"
NONE_BASE_IMAGE="nvcr.io/nvidia/cuda-dl-base"
NONE_BASE_IMAGE_TAG="25.01-cuda12.8-devel-ubuntu24.04"
@@ -122,9 +122,14 @@ SGLANG_FRAMEWORK_IMAGE_TAG="${SGLANG_CUDA_VERSION}-cudnn-devel-ubuntu24.04"
NIXL_REF=0.7.1
NIXL_UCX_REF=v1.19.0
NIXL_UCX_EFA_REF=9d2b88a1f67faf9876f267658bd077b379b8bb76
+NIXL_GDRCOPY_REF=v2.5.1
NO_CACHE=""
+# KVBM (KV Cache Block Manager) - default disabled, enabled automatically for VLLM/TRTLLM
+# or can be explicitly enabled via --enable-kvbm flag
+ENABLE_KVBM=false
+
# sccache configuration for S3
USE_SCCACHE=""
SCCACHE_BUCKET=""
@@ -194,7 +199,6 @@ get_options() {
fi
;;
--base-image)
- # Note: --base-image cannot be used with --dev-image
if [ "$2" ]; then
BASE_IMAGE=$2
shift
@@ -218,14 +222,6 @@ get_options() {
missing_requirement "$1"
fi
;;
- --dev-image)
- if [ "$2" ]; then
- DEV_IMAGE_INPUT=$2
- shift
- else
- missing_requirement "$1"
- fi
- ;;
--uid)
if [ "$2" ]; then
CUSTOM_UID=$2
@@ -272,7 +268,7 @@ get_options() {
;;
--cache-from)
if [ "$2" ]; then
- CACHE_FROM="--cache-from $2"
+ CACHE_FROM+="--cache-from $2 "
shift
else
missing_requirement "$1"
@@ -280,7 +276,7 @@ get_options() {
;;
--cache-to)
if [ "$2" ]; then
- CACHE_TO="--cache-to $2"
+ CACHE_TO+="--cache-to $2 "
shift
else
missing_requirement "$1"
@@ -297,6 +293,9 @@ get_options() {
--enable-kvbm)
ENABLE_KVBM=true
;;
+ --enable-media-nixl)
+ ENABLE_MEDIA_NIXL=true
+ ;;
--make-efa)
NIXL_UCX_REF=$NIXL_UCX_EFA_REF
;;
@@ -345,20 +344,10 @@ get_options() {
shift
done
- # Validate argument combinations
- if [[ -n "${DEV_IMAGE_INPUT:-}" && -n "${BASE_IMAGE:-}" ]]; then
- error "ERROR: --dev-image cannot be used with --base-image. Use --dev-image to build from existing images or --base-image to build new images."
- fi
-
- # Validate that --target and --dev-image cannot be used together
- if [[ -n "${DEV_IMAGE_INPUT:-}" && -n "${TARGET:-}" ]]; then
- error "ERROR: --target cannot be used with --dev-image. Use --target to build from scratch or --dev-image to build from existing images."
- fi
-
- # Validate that --uid and --gid are only used with local-dev related options
+ # Validate that --uid and --gid are only used with local-dev target
if [[ -n "${CUSTOM_UID:-}" || -n "${CUSTOM_GID:-}" ]]; then
- if [[ -z "${DEV_IMAGE_INPUT:-}" && "${TARGET:-}" != "local-dev" ]]; then
- error "ERROR: --uid and --gid can only be used with --dev-image or --target local-dev"
+ if [[ "${TARGET:-}" != "local-dev" ]]; then
+ error "ERROR: --uid and --gid can only be used with --target local-dev"
fi
fi
@@ -460,15 +449,15 @@ show_help() {
echo " [--cache-from cache location to start from]"
echo " [--cache-to location where to cache the build output]"
echo " [--tag tag for image]"
- echo " [--dev-image dev image to build local-dev from]"
- echo " [--uid user ID for local-dev images (only with --dev-image or --target local-dev)]"
- echo " [--gid group ID for local-dev images (only with --dev-image or --target local-dev)]"
+ echo " [--uid user ID for local-dev images (only with --target local-dev)]"
+ echo " [--gid group ID for local-dev images (only with --target local-dev)]"
echo " [--no-cache disable docker build cache]"
echo " [--dry-run print docker commands without running]"
echo " [--build-context name=path to add build context]"
echo " [--release-build perform a release build]"
echo " [--make-efa Enables EFA support for NIXL]"
echo " [--enable-kvbm Enables KVBM support in Python 3.12]"
+ echo " [--enable-media-nixl Enable media processing with NIXL support (default: true for frameworks, false for none)]"
echo " [--use-sccache enable sccache for Rust/C/C++ compilation caching]"
echo " [--sccache-bucket S3 bucket name for sccache (required with --use-sccache)]"
echo " [--sccache-region S3 region for sccache (required with --use-sccache)]"
@@ -543,17 +532,13 @@ fi
# Add NIXL_REF as a build argument
BUILD_ARGS+=" --build-arg NIXL_REF=${NIXL_REF} "
-# Function to build local-dev image with header
+# Function to build local-dev image
build_local_dev_with_header() {
local dev_base_image="$1"
local tags="$2"
local success_msg="$3"
local header_title="$4"
- echo "======================================"
- echo "$header_title"
- echo "======================================"
-
# Get user info right before using it
USER_UID=${CUSTOM_UID:-$(id -u)}
USER_GID=${CUSTOM_GID:-$(id -g)}
@@ -566,7 +551,8 @@ build_local_dev_with_header() {
exit 1
fi
- echo "Building new local-dev image from: $dev_base_image"
+ echo ""
+ echo "Now building new local-dev image from: $dev_base_image"
echo "User 'dynamo' will have UID: $USER_UID, GID: $USER_GID"
# Show the docker command being executed if not in dry-run mode
@@ -593,8 +579,8 @@ build_local_dev_with_header() {
# Show usage instructions
echo ""
echo "To run the local-dev image as the local user ($USER_UID/$USER_GID):"
- # Extract the last tag from the tags string
- last_tag=$(echo "$tags" | grep -o -- '--tag [^ ]*' | tail -1 | cut -d' ' -f2)
+ # Extract the first tag from the tags string (the full version tag, not the latest tag)
+ last_tag=$(echo "$tags" | grep -o -- '--tag [^ ]*' | head -1 | cut -d' ' -f2)
# Calculate relative path to run.sh from current working directory
# Get the directory where build.sh is located
build_dir="$(dirname "${BASH_SOURCE[0]}")"
@@ -798,24 +784,41 @@ fi
# ENABLE_KVBM: Used in base Dockerfile for block-manager feature.
# Declared but not currently used in Dockerfile.{vllm,trtllm}.
+# Force KVBM to be enabled for VLLM and TRTLLM frameworks
if [[ $FRAMEWORK == "VLLM" ]] || [[ $FRAMEWORK == "TRTLLM" ]]; then
echo "Forcing enable_kvbm to true in ${FRAMEWORK} image build"
ENABLE_KVBM=true
-else
- ENABLE_KVBM=false
fi
+# For other frameworks, ENABLE_KVBM defaults to false unless --enable-kvbm flag was provided
-if [ ! -z ${ENABLE_KVBM} ]; then
- echo "Enabling the KVBM in the dynamo image"
+if [[ ${ENABLE_KVBM} == "true" ]]; then
+ echo "Enabling KVBM in the dynamo image"
BUILD_ARGS+=" --build-arg ENABLE_KVBM=${ENABLE_KVBM} "
fi
-# NIXL_UCX_REF: Used in base Dockerfile only.
-# Passed to framework Dockerfile.{vllm,sglang,...} where it's NOT used.
+# ENABLE_MEDIA_NIXL: Enable media processing with NIXL support
+# Used in base Dockerfile for maturin build feature flag.
+# Can be explicitly overridden with --enable-media-nixl flag
+if [ -z "${ENABLE_MEDIA_NIXL}" ]; then
+ if [[ $FRAMEWORK == "VLLM" ]] || [[ $FRAMEWORK == "TRTLLM" ]] || [[ $FRAMEWORK == "SGLANG" ]]; then
+ ENABLE_MEDIA_NIXL=true
+ else
+ ENABLE_MEDIA_NIXL=false
+ fi
+fi
+BUILD_ARGS+=" --build-arg ENABLE_MEDIA_NIXL=${ENABLE_MEDIA_NIXL} "
+
+# NIXL_UCX_REF: Used in dynamo base stages.
if [ -n "${NIXL_UCX_REF}" ]; then
BUILD_ARGS+=" --build-arg NIXL_UCX_REF=${NIXL_UCX_REF} "
fi
+# NIXL_GDRCOPY_REF: Used in dynamo base stages.
+if [ -n "${NIXL_GDRCOPY_REF}" ]; then
+ BUILD_ARGS+=" --build-arg NIXL_GDRCOPY_REF=${NIXL_GDRCOPY_REF} "
+
+fi
+
# MAX_JOBS is only used by Dockerfile.vllm
if [ -n "${MAX_JOBS}" ]; then
BUILD_ARGS+=" --build-arg MAX_JOBS=${MAX_JOBS} "
@@ -853,117 +856,27 @@ fi
show_image_options
-if [ -z "$RUN_PREFIX" ]; then
- set -x
-fi
-
-
-# Skip Build 1 and Build 2 if DEV_IMAGE_INPUT is set (we'll handle it at the bottom)
-if [[ -z "${DEV_IMAGE_INPUT:-}" ]]; then
- # Follow 2-step build process for all frameworks
- if [[ $FRAMEWORK != "NONE" ]]; then
- # Define base image tag with framework suffix to prevent clobbering
- # Different frameworks require different base configurations:
- # - VLLM: Python 3.12, ENABLE_KVBM=true, BASE_IMAGE=cuda-dl-base
- # - SGLANG: Python 3.10, BASE_IMAGE=cuda-dl-base
- # - TRTLLM: Python 3.12, ENABLE_KVBM=true, BASE_IMAGE=pytorch
- # Without unique tags, building different frameworks would overwrite each other's names
- DYNAMO_BASE_IMAGE="dynamo-base:${VERSION}-${FRAMEWORK,,}"
- # Start base image build
- echo "======================================"
- echo "Starting Build 1: Base Image"
- echo "======================================"
-
- # Create build log directory for BuildKit reports
- BUILD_LOG_DIR="${BUILD_CONTEXT}/build-logs"
- mkdir -p "${BUILD_LOG_DIR}"
- BASE_BUILD_LOG="${BUILD_LOG_DIR}/base-image-build.log"
-
- # Use BuildKit for enhanced metadata
- if [ -z "$RUN_PREFIX" ]; then
- if docker buildx version &>/dev/null; then
- docker buildx build --progress=plain --load -f "${SOURCE_DIR}/Dockerfile" --target runtime $PLATFORM $BUILD_ARGS $CACHE_FROM $CACHE_TO --tag $DYNAMO_BASE_IMAGE $BUILD_CONTEXT_ARG $BUILD_CONTEXT $NO_CACHE 2>&1 | tee "${BASE_BUILD_LOG}"
- BUILD_EXIT_CODE=${PIPESTATUS[0]}
- else
- DOCKER_BUILDKIT=1 docker build --progress=plain -f "${SOURCE_DIR}/Dockerfile" --target runtime $PLATFORM $BUILD_ARGS $CACHE_FROM $CACHE_TO --tag $DYNAMO_BASE_IMAGE $BUILD_CONTEXT_ARG $BUILD_CONTEXT $NO_CACHE 2>&1 | tee "${BASE_BUILD_LOG}"
- BUILD_EXIT_CODE=${PIPESTATUS[0]}
- fi
-
- if [ ${BUILD_EXIT_CODE} -ne 0 ]; then
- exit ${BUILD_EXIT_CODE}
- fi
- else
- $RUN_PREFIX docker build -f "${SOURCE_DIR}/Dockerfile" --target runtime $PLATFORM $BUILD_ARGS $CACHE_FROM $CACHE_TO --tag $DYNAMO_BASE_IMAGE $BUILD_CONTEXT_ARG $BUILD_CONTEXT $NO_CACHE
- fi
-
- # Start framework build
- echo "======================================"
- echo "Starting Build 2: Framework Image"
- echo "======================================"
-
- FRAMEWORK_BUILD_LOG="${BUILD_LOG_DIR}/framework-${FRAMEWORK,,}-build.log"
-
- BUILD_ARGS+=" --build-arg DYNAMO_BASE_IMAGE=${DYNAMO_BASE_IMAGE}"
-
- # Use BuildKit for enhanced metadata
- if [ -z "$RUN_PREFIX" ]; then
- if docker buildx version &>/dev/null; then
- docker buildx build --progress=plain --load -f $DOCKERFILE $TARGET_STR $PLATFORM $BUILD_ARGS $CACHE_FROM $CACHE_TO $TAG $LATEST_TAG $BUILD_CONTEXT_ARG $BUILD_CONTEXT $NO_CACHE 2>&1 | tee "${FRAMEWORK_BUILD_LOG}"
- BUILD_EXIT_CODE=${PIPESTATUS[0]}
- else
- DOCKER_BUILDKIT=1 docker build --progress=plain -f $DOCKERFILE $TARGET_STR $PLATFORM $BUILD_ARGS $CACHE_FROM $CACHE_TO $TAG $LATEST_TAG $BUILD_CONTEXT_ARG $BUILD_CONTEXT $NO_CACHE 2>&1 | tee "${FRAMEWORK_BUILD_LOG}"
- BUILD_EXIT_CODE=${PIPESTATUS[0]}
- fi
-
- if [ ${BUILD_EXIT_CODE} -ne 0 ]; then
- exit ${BUILD_EXIT_CODE}
- fi
- else
- $RUN_PREFIX docker build -f $DOCKERFILE $TARGET_STR $PLATFORM $BUILD_ARGS $CACHE_FROM $CACHE_TO $TAG $LATEST_TAG $BUILD_CONTEXT_ARG $BUILD_CONTEXT $NO_CACHE
- fi
- else
- # Create build log directory for BuildKit reports
- BUILD_LOG_DIR="${BUILD_CONTEXT}/build-logs"
- mkdir -p "${BUILD_LOG_DIR}"
- SINGLE_BUILD_LOG="${BUILD_LOG_DIR}/single-stage-build.log"
-
- # Use BuildKit for enhanced metadata
- if [ -z "$RUN_PREFIX" ]; then
- if docker buildx version &>/dev/null; then
- docker buildx build --progress=plain --load -f $DOCKERFILE $TARGET_STR $PLATFORM $BUILD_ARGS $CACHE_FROM $CACHE_TO $TAG $LATEST_TAG $BUILD_CONTEXT_ARG $BUILD_CONTEXT $NO_CACHE 2>&1 | tee "${SINGLE_BUILD_LOG}"
- BUILD_EXIT_CODE=${PIPESTATUS[0]}
- else
- DOCKER_BUILDKIT=1 docker build --progress=plain -f $DOCKERFILE $TARGET_STR $PLATFORM $BUILD_ARGS $CACHE_FROM $CACHE_TO $TAG $LATEST_TAG $BUILD_CONTEXT_ARG $BUILD_CONTEXT $NO_CACHE 2>&1 | tee "${SINGLE_BUILD_LOG}"
- BUILD_EXIT_CODE=${PIPESTATUS[0]}
- fi
+# Always build the main image first
+# Create build log directory for BuildKit reports
+BUILD_LOG_DIR="${BUILD_CONTEXT}/build-logs"
+mkdir -p "${BUILD_LOG_DIR}"
+SINGLE_BUILD_LOG="${BUILD_LOG_DIR}/single-stage-build.log"
- if [ ${BUILD_EXIT_CODE} -ne 0 ]; then
- exit ${BUILD_EXIT_CODE}
- fi
- else
- $RUN_PREFIX docker build -f $DOCKERFILE $TARGET_STR $PLATFORM $BUILD_ARGS $CACHE_FROM $CACHE_TO $TAG $LATEST_TAG $BUILD_CONTEXT_ARG $BUILD_CONTEXT $NO_CACHE
- fi
- fi
+# Use BuildKit for enhanced metadata
+if docker buildx version &>/dev/null; then
+ $RUN_PREFIX docker buildx build --progress=plain --load -f $DOCKERFILE $TARGET_STR $PLATFORM $BUILD_ARGS $CACHE_FROM $CACHE_TO $TAG $LATEST_TAG $BUILD_CONTEXT_ARG $BUILD_CONTEXT $NO_CACHE 2>&1 | tee "${SINGLE_BUILD_LOG}"
+ BUILD_EXIT_CODE=${PIPESTATUS[0]}
+else
+ $RUN_PREFIX DOCKER_BUILDKIT=1 docker build --progress=plain -f $DOCKERFILE $TARGET_STR $PLATFORM $BUILD_ARGS $CACHE_FROM $CACHE_TO $TAG $LATEST_TAG $BUILD_CONTEXT_ARG $BUILD_CONTEXT $NO_CACHE 2>&1 | tee "${SINGLE_BUILD_LOG}"
+ BUILD_EXIT_CODE=${PIPESTATUS[0]}
fi
-# Handle --dev-image option (build local-dev from existing dev image)
-if [[ -n "${DEV_IMAGE_INPUT:-}" ]]; then
- # Validate that the dev image is not already a local-dev image
- if [[ "$DEV_IMAGE_INPUT" == *"-local-dev" ]]; then
- echo "ERROR: Cannot use local-dev image as dev image input: '$DEV_IMAGE_INPUT'"
- exit 1
- fi
-
- # Build tag arguments - always add -local-dev suffix for --dev-image
- # Generate local-dev tag from input image
- if [[ "$DEV_IMAGE_INPUT" == *:* ]]; then
- LOCAL_DEV_TAG="--tag ${DEV_IMAGE_INPUT}-local-dev"
- else
- LOCAL_DEV_TAG="--tag ${DEV_IMAGE_INPUT}:latest-local-dev"
- fi
+if [ ${BUILD_EXIT_CODE} -ne 0 ]; then
+ exit ${BUILD_EXIT_CODE}
+fi
- build_local_dev_with_header "$DEV_IMAGE_INPUT" "$LOCAL_DEV_TAG" "Successfully built local-dev image: ${LOCAL_DEV_TAG#--tag }" "Building Local-Dev Image"
-elif [[ "${LOCAL_DEV_BUILD:-}" == "true" ]]; then
+# Handle local-dev target
+if [[ "${LOCAL_DEV_BUILD:-}" == "true" ]]; then
# Use the first tag name (TAG) if available, otherwise use latest
if [[ -n "$TAG" ]]; then
DEV_IMAGE=$(echo "$TAG" | sed 's/--tag //' | sed 's/-local-dev$//')
@@ -985,8 +898,10 @@ elif [[ "${LOCAL_DEV_BUILD:-}" == "true" ]]; then
LOCAL_DEV_TAGS+=" --tag ${LATEST_TAG_NAME}-local-dev"
fi
- build_local_dev_with_header "$DEV_IMAGE" "$LOCAL_DEV_TAGS" "Successfully built local-dev images" "Starting Build 3: Local-Dev Image"
+ # Extract first tag for success message
+ FIRST_TAG=$(echo "$LOCAL_DEV_TAGS" | grep -o -- '--tag [^ ]*' | head -1 | cut -d' ' -f2)
+ build_local_dev_with_header "$DEV_IMAGE" "$LOCAL_DEV_TAGS" "Successfully built $FIRST_TAG" "Building Local-Dev Image"
fi
-{ set +x; } 2>/dev/null
\ No newline at end of file
+{ set +x; } 2>/dev/null
diff --git a/container/deps/requirements.txt b/container/deps/requirements.txt
index 08d3cd6c9f..9b1b2a0447 100644
--- a/container/deps/requirements.txt
+++ b/container/deps/requirements.txt
@@ -11,9 +11,9 @@
# maximum versions available on different platforms (x86_64 vs aarch64, different CUDA versions)
# For Multimodal EPD (required for device_map="auto" in vision model loading)
-accelerate==1.12.0
-aiconfigurator @ git+https://github.com/ai-dynamo/aiconfigurator.git@5554d2eb8206738c66048bf2d72183e9bcd85759
-aiofiles==24.1.0
+accelerate
+aiconfigurator[webapp] @ git+https://github.com/ai-dynamo/aiconfigurator.git@7f7ad5e248f3eaa4a0b74a069095828a4f356e60
+aiofiles
aiperf @ git+https://github.com/ai-dynamo/aiperf.git@4d3fa29403c8f75da22a14f1f7b3aeb27db9288f
av==15.0.0
fastapi==0.120.1
@@ -30,6 +30,7 @@ msgspec==0.19.0
mypy==1.18.2
nvidia-ml-py<=13.580.65 # NVIDIA/CUDA related, may vary by driver version
opentelemetry-api<=1.38.0 # May need to stay in sync with other components
+opentelemetry-exporter-otlp<=1.38.0 # May need to stay in sync with other components
opentelemetry-sdk<=1.38.0 # May need to stay in sync with other components
pip<=25.0.1 # System pip, varies by platform
pmdarima==2.1.1
@@ -38,7 +39,7 @@ prometheus-api-client==0.6.0
prometheus_client==0.23.1
prophet==1.2.1
protobuf==5.29.5
-pydantic>=2.11.4,<2.12 # Required by aiconfigurator==0.4.0
+pydantic>=2.11.4,<2.13 # vllm==0.12.0 depends on pydantic>=2.12.0
pyright==1.1.407
PyYAML==6.0.3
scikit-learn==1.7.2
@@ -51,8 +52,8 @@ tensorboard==2.19.0
tensorboardX==2.6.2.2
# Transformers version constraint for container builds
# - vLLM 0.11.0: >=4.55.2, vLLM 0.11.2: >=4.56.0,<5
-# - TensorRT-LLM 1.2.0rc2/rc3: ==4.56.0
-# - SGLang 0.5.4.post3: ==4.57.1
+# - TensorRT-LLM 1.2.0rc5: ==4.56.0
+# - SGLang 0.5.6: ==4.57.1
# Using >=4.56.0 and <=4.57.1 to satisfy all frameworks
transformers>=4.56.0,<=4.57.1
types-aiofiles==25.1.0.20251011
diff --git a/container/deps/vllm/install_vllm.sh b/container/deps/vllm/install_vllm.sh
index 0ebbb58823..8365deecf6 100755
--- a/container/deps/vllm/install_vllm.sh
+++ b/container/deps/vllm/install_vllm.sh
@@ -2,18 +2,16 @@
# SPDX-FileCopyrightText: Copyright (c) 2024-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
-# This script is used to install vLLM and its dependencies
-# If installing vLLM from a release tag, we will use pip to manage the install
-# Otherwise, we will use git to checkout the vLLM source code and build it from source.
-# The dependencies are installed in the following order:
-# 1. vLLM
-# 2. LMCache
+# This script installs vLLM and its dependencies from PyPI (release versions only).
+# Installation order:
+# 1. LMCache (installed first so vLLM's dependencies take precedence)
+# 2. vLLM
# 3. DeepGEMM
# 4. EP kernels
set -euo pipefail
-VLLM_REF="v0.11.0"
+VLLM_REF="v0.12.0"
# Basic Configurations
ARCH=$(uname -m)
@@ -21,34 +19,19 @@ MAX_JOBS=16
INSTALLATION_DIR=/tmp
# VLLM and Dependency Configurations
-TORCH_BACKEND="cu128"
TORCH_CUDA_ARCH_LIST="9.0;10.0" # For EP Kernels
DEEPGEMM_REF=""
-CUDA_VERSION="12.8" # For DEEPGEMM
-
-# These flags are applicable when installing vLLM from source code
-EDITABLE=true
-VLLM_GIT_URL="https://github.com/vllm-project/vllm.git"
-FLASHINF_REF="v0.3.1"
+CUDA_VERSION="12.9"
+FLASHINF_REF="v0.5.3"
+# LMCache version - 0.3.9+ required for vLLM 0.11.2 compatibility
+LMCACHE_REF="0.3.10"
while [[ $# -gt 0 ]]; do
case $1 in
- --editable)
- EDITABLE=true
- shift
- ;;
- --no-editable)
- EDITABLE=false
- shift
- ;;
--vllm-ref)
VLLM_REF="$2"
shift 2
;;
- --vllm-git-url)
- VLLM_GIT_URL="$2"
- shift 2
- ;;
--max-jobs)
MAX_JOBS="$2"
shift 2
@@ -69,8 +52,8 @@ while [[ $# -gt 0 ]]; do
FLASHINF_REF="$2"
shift 2
;;
- --torch-backend)
- TORCH_BACKEND="$2"
+ --lmcache-ref)
+ LMCACHE_REF="$2"
shift 2
;;
--torch-cuda-arch-list)
@@ -82,19 +65,17 @@ while [[ $# -gt 0 ]]; do
shift 2
;;
-h|--help)
- echo "Usage: $0 [--editable|--no-editable] [--vllm-ref REF] [--max-jobs NUM] [--arch ARCH] [--deepgemm-ref REF] [--flashinf-ref REF] [--torch-backend BACKEND] [--torch-cuda-arch-list LIST] [--cuda-version VERSION]"
+ echo "Usage: $0 [--vllm-ref REF] [--max-jobs NUM] [--arch ARCH] [--deepgemm-ref REF] [--flashinf-ref REF] [--lmcache-ref REF] [--torch-cuda-arch-list LIST] [--cuda-version VERSION]"
echo "Options:"
- echo " --editable Install vllm in editable mode (default)"
- echo " --no-editable Install vllm in non-editable mode"
- echo " --vllm-ref REF Git reference to checkout (default: ${VLLM_REF})"
- echo " --max-jobs NUM Maximum number of parallel jobs (default: ${MAX_JOBS})"
- echo " --arch ARCH Architecture (amd64|arm64, default: auto-detect)"
- echo " --installation-dir DIR Directory to install vllm (default: ${INSTALLATION_DIR})"
- echo " --deepgemm-ref REF Git reference for DeepGEMM (default: ${DEEPGEMM_REF})"
- echo " --flashinf-ref REF Git reference for Flash Infer (default: ${FLASHINF_REF})"
- echo " --torch-backend BACKEND Torch backend to use (default: ${TORCH_BACKEND})"
- echo " --torch-cuda-arch-list LIST CUDA architectures to compile for (default: ${TORCH_CUDA_ARCH_LIST})"
- echo " --cuda-version VERSION CUDA version to use (default: ${CUDA_VERSION})"
+ echo " --vllm-ref REF vLLM release version (default: ${VLLM_REF})"
+ echo " --max-jobs NUM Maximum parallel jobs (default: ${MAX_JOBS})"
+ echo " --arch ARCH Architecture amd64|arm64 (default: auto-detect)"
+ echo " --installation-dir DIR Install directory (default: ${INSTALLATION_DIR})"
+ echo " --deepgemm-ref REF DeepGEMM git ref (default: ${DEEPGEMM_REF})"
+ echo " --flashinf-ref REF FlashInfer version (default: ${FLASHINF_REF})"
+ echo " --lmcache-ref REF LMCache version (default: ${LMCACHE_REF})"
+ echo " --torch-cuda-arch-list LIST CUDA architectures (default: ${TORCH_CUDA_ARCH_LIST})"
+ echo " --cuda-version VERSION CUDA version (default: ${CUDA_VERSION})"
exit 0
;;
*)
@@ -114,119 +95,43 @@ fi
export MAX_JOBS=$MAX_JOBS
export CUDA_HOME=/usr/local/cuda
+# Derive torch backend from CUDA version (e.g., "12.9" -> "cu129")
+TORCH_BACKEND="cu$(echo $CUDA_VERSION | tr -d '.')"
+
echo "=== Installing prerequisites ==="
uv pip install pip cuda-python
echo "\n=== Configuration Summary ==="
-echo " VLLM_REF=$VLLM_REF | EDITABLE=$EDITABLE | ARCH=$ARCH"
-echo " MAX_JOBS=$MAX_JOBS | TORCH_BACKEND=$TORCH_BACKEND | CUDA_VERSION=$CUDA_VERSION"
-echo " TORCH_CUDA_ARCH_LIST=$TORCH_CUDA_ARCH_LIST"
-echo " DEEPGEMM_REF=$DEEPGEMM_REF | FLASHINF_REF=$FLASHINF_REF"
-echo " INSTALLATION_DIR=$INSTALLATION_DIR | VLLM_GIT_URL=$VLLM_GIT_URL"
+echo " VLLM_REF=$VLLM_REF | ARCH=$ARCH | CUDA_VERSION=$CUDA_VERSION | TORCH_BACKEND=$TORCH_BACKEND"
+echo " FLASHINF_REF=$FLASHINF_REF | LMCACHE_REF=$LMCACHE_REF | DEEPGEMM_REF=$DEEPGEMM_REF"
+echo " TORCH_CUDA_ARCH_LIST=$TORCH_CUDA_ARCH_LIST | INSTALLATION_DIR=$INSTALLATION_DIR"
+
+echo "\n=== Installing LMCache ==="
+if [ "$ARCH" = "amd64" ]; then
+ # LMCache installation currently fails on arm64 due to CUDA dependency issues
+ # Install LMCache BEFORE vLLM so vLLM's dependencies take precedence
+ uv pip install lmcache==${LMCACHE_REF} --torch-backend=${TORCH_BACKEND}
+ echo "โ LMCache ${LMCACHE_REF} installed"
+else
+ echo "โ Skipping LMCache on ARM64 (compatibility issues)"
+fi
echo "\n=== Cloning vLLM repository ==="
-# We need to clone to install dependencies
+# Clone needed for DeepGEMM and EP kernels install scripts
cd $INSTALLATION_DIR
-git clone $VLLM_GIT_URL vllm
+git clone https://github.com/vllm-project/vllm.git vllm
cd vllm
git checkout $VLLM_REF
-# TODO leave this here in case we need to do cherry-picks in future
-# GIT_COMMITTER_NAME="Container Build" GIT_COMMITTER_EMAIL="container@buildkitsandbox.local" git cherry-pick 740f064
-
echo "\n=== Installing vLLM & FlashInfer ==="
+echo "Installing vLLM $VLLM_REF from PyPI..."
-if [[ $VLLM_REF =~ ^v ]] && { [ "$ARCH" = "amd64" ] || { [ "$ARCH" = "arm64" ] && [ "$TORCH_BACKEND" = "cu129" ]; }; }; then
- # VLLM_REF starts with 'v' and either amd64, or arm64 with cu129 backend - use PyPI install
- echo "Installing vLLM $VLLM_REF from PyPI... (ARCH=$ARCH, TORCH_BACKEND=$TORCH_BACKEND)"
-
- uv pip install vllm[flashinfer]==$VLLM_REF --torch-backend=$TORCH_BACKEND
-
-else
- # VLLM_REF does not start with 'v' or amd64 - use git checkout path
- if [ "$ARCH" = "arm64" ]; then
-
- # torch 2.8.0 doesn't have a aarch wheel for cu128, vLLM uses torch 2.8.0 nightly wheel builds to compile its aarch wheel against
- # nightly can be unstable so we will not use it here
- # for now we will use torch 2.7.1+cu128 but this requires a recompilation from source
-
- echo "Building vLLM from source for ARM64 architecture..."
-
- # Try to install specific PyTorch version first
- echo "Attempting to install pinned PyTorch nightly versions..."
- if ! uv pip install torch==2.7.1+cu128 torchaudio==2.7.1 torchvision==0.22.1 --index-url https://download.pytorch.org/whl/cu128; then
- echo "Pinned versions failed"
- exit 1
- fi
-
- # Create constraints file to pin all PyTorch-related versions
- echo "Creating constraints file to preserve PyTorch ecosystem versions..."
- TORCH_VERSION=$(python -c "import torch; print(torch.__version__)")
- TORCHAUDIO_VERSION=$(python -c "import torchaudio; print(torchaudio.__version__)")
- TORCHVISION_VERSION=$(python -c "import torchvision; print(torchvision.__version__)")
-
- rm -rf /tmp/torch_constraints.txt
- echo "torch==$TORCH_VERSION" > /tmp/torch_constraints.txt
- echo "torchaudio==$TORCHAUDIO_VERSION" >> /tmp/torch_constraints.txt
- echo "torchvision==$TORCHVISION_VERSION" >> /tmp/torch_constraints.txt
-
- echo "Pinned versions:"
- echo " - torch==$TORCH_VERSION"
- echo " - torchaudio==$TORCHAUDIO_VERSION"
- echo " - torchvision==$TORCHVISION_VERSION"
-
- python use_existing_torch.py
- uv pip install -c /tmp/torch_constraints.txt -r requirements/build.txt
-
- if [ "$EDITABLE" = "true" ]; then
- MAX_JOBS=${MAX_JOBS} uv pip install --no-build-isolation -c /tmp/torch_constraints.txt -e . -v
- else
- MAX_JOBS=${MAX_JOBS} uv pip install --no-build-isolation -c /tmp/torch_constraints.txt . -v
- fi
-
- echo "\n=== Installing FlashInfer from source ==="
- cd $INSTALLATION_DIR
- git clone https://github.com/flashinfer-ai/flashinfer.git --recursive
- cd flashinfer
- git checkout $FLASHINF_REF
-
- # Install with constraints to prevent PyTorch upgrade
- uv pip install -v --no-build-isolation -c /tmp/torch_constraints.txt .
-
- else
- echo "Building vLLM from source for AMD64 architecture..."
-
- # When updating above VLLM_REF make sure precompiled wheel file URL is correct. Run this command:
- # aws s3 ls s3://vllm-wheels/${VLLM_REF}/ --region us-west-2 --no-sign-request
- export VLLM_PRECOMPILED_WHEEL_LOCATION="https://vllm-wheels.s3.us-west-2.amazonaws.com/${VLLM_REF}/vllm-0.10.2-cp38-abi3-manylinux1_x86_64.whl"
-
- if [ "$EDITABLE" = "true" ]; then
- uv pip install -e . --torch-backend=$TORCH_BACKEND
- else
- uv pip install . --torch-backend=$TORCH_BACKEND
- fi
-
- echo "\n=== Installing FlashInfer from PyPI ==="
- uv pip install flashinfer-python==$FLASHINF_REF
-
- fi
-fi
+uv pip install vllm[flashinfer]==$VLLM_REF --torch-backend=${TORCH_BACKEND}
+uv pip install flashinfer-cubin==$FLASHINF_REF
+uv pip install flashinfer-jit-cache==$FLASHINF_REF --extra-index-url https://flashinfer.ai/whl/${TORCH_BACKEND}
echo "โ vLLM installation completed"
-echo "\n=== Installing LMCache ==="
-if [ "$ARCH" = "amd64" ]; then
- # LMCache installation currently fails on arm64 due to CUDA dependency issues:
- # OSError: CUDA_HOME environment variable is not set. Please set it to your CUDA install root.
- # TODO: Re-enable for arm64 after verifying lmcache compatibility and resolving the build issue.
-
- # Alec: Likely lmcache was compiled witha different version of torch and need to install it from source for arm64
- uv pip install lmcache==0.3.7
- echo "โ LMCache installed"
-else
- echo "โ Skipping LMCache on ARM64 (compatibility issues)"
-fi
-
echo "\n=== Installing DeepGEMM ==="
cd $INSTALLATION_DIR/vllm/tools
@@ -239,6 +144,7 @@ echo "โ DeepGEMM installation completed"
echo "\n=== Installing EP Kernels (PPLX and DeepEP) ==="
cd ep_kernels/
+# TODO we will be able to specify which pplx and deepep commit we want in future
TORCH_CUDA_ARCH_LIST="$TORCH_CUDA_ARCH_LIST" bash install_python_libraries.sh
echo "\nโ
All installations completed successfully!"
diff --git a/deploy/cloud/helm/crds/templates/nvidia.com_dynamocomponentdeployments.yaml b/deploy/cloud/helm/crds/templates/nvidia.com_dynamocomponentdeployments.yaml
index 558a5b973d..c90e3bdfe7 100644
--- a/deploy/cloud/helm/crds/templates/nvidia.com_dynamocomponentdeployments.yaml
+++ b/deploy/cloud/helm/crds/templates/nvidia.com_dynamocomponentdeployments.yaml
@@ -77,12 +77,13 @@ spec:
(such as Pod, Service, and Ingress when applicable).
type: object
autoscaling:
- description: Autoscaling config for this component (replica range, target utilization, etc.).
+ description: |-
+ Deprecated: This field is deprecated and ignored. Use DynamoGraphDeploymentScalingAdapter
+ with HPA, KEDA, or Planner for autoscaling instead. See docs/kubernetes/autoscaling.md
+ for migration guidance. This field will be removed in a future API version.
properties:
behavior:
- description: |-
- HorizontalPodAutoscalerBehavior configures the scaling behavior of the target
- in both Up and Down directions (scaleUp and scaleDown fields respectively).
+ description: 'Deprecated: This field is ignored.'
properties:
scaleDown:
description: |-
@@ -231,10 +232,13 @@ spec:
type: object
type: object
enabled:
+ description: 'Deprecated: This field is ignored.'
type: boolean
maxReplicas:
+ description: 'Deprecated: This field is ignored.'
type: integer
metrics:
+ description: 'Deprecated: This field is ignored.'
items:
description: |-
MetricSpec specifies how to scale based on a single metric
@@ -665,6 +669,7 @@ spec:
type: object
type: array
minReplicas:
+ description: 'Deprecated: This field is ignored.'
type: integer
type: object
backendFramework:
@@ -10184,8 +10189,12 @@ spec:
type: integer
type: object
replicas:
- description: Replicas is the desired number of Pods for this component when autoscaling is not used.
+ description: |-
+ Replicas is the desired number of Pods for this component.
+ When scalingAdapter is enabled (default), this field is managed by the
+ DynamoGraphDeploymentScalingAdapter and should not be modified directly.
format: int32
+ minimum: 0
type: integer
resources:
description: |-
@@ -10264,6 +10273,20 @@ spec:
type: string
type: object
type: object
+ scalingAdapter:
+ description: |-
+ ScalingAdapter configures whether this service uses the DynamoGraphDeploymentScalingAdapter.
+ When enabled (default), replicas are managed via DGDSA and external autoscalers can scale
+ the service using the Scale subresource. When disabled, replicas can be modified directly.
+ properties:
+ disable:
+ default: false
+ description: |-
+ Disable indicates whether the ScalingAdapter should be disabled for this service.
+ When false (default), a DGDSA is created and owns the replicas field.
+ When true, no DGDSA is created and replicas can be modified directly in the DGD.
+ type: boolean
+ type: object
serviceName:
description: The name of the component
type: string
diff --git a/deploy/cloud/helm/crds/templates/nvidia.com_dynamographdeployments.yaml b/deploy/cloud/helm/crds/templates/nvidia.com_dynamographdeployments.yaml
index ba2b19fef9..4db1e902b8 100644
--- a/deploy/cloud/helm/crds/templates/nvidia.com_dynamographdeployments.yaml
+++ b/deploy/cloud/helm/crds/templates/nvidia.com_dynamographdeployments.yaml
@@ -219,12 +219,13 @@ spec:
(such as Pod, Service, and Ingress when applicable).
type: object
autoscaling:
- description: Autoscaling config for this component (replica range, target utilization, etc.).
+ description: |-
+ Deprecated: This field is deprecated and ignored. Use DynamoGraphDeploymentScalingAdapter
+ with HPA, KEDA, or Planner for autoscaling instead. See docs/kubernetes/autoscaling.md
+ for migration guidance. This field will be removed in a future API version.
properties:
behavior:
- description: |-
- HorizontalPodAutoscalerBehavior configures the scaling behavior of the target
- in both Up and Down directions (scaleUp and scaleDown fields respectively).
+ description: 'Deprecated: This field is ignored.'
properties:
scaleDown:
description: |-
@@ -373,10 +374,13 @@ spec:
type: object
type: object
enabled:
+ description: 'Deprecated: This field is ignored.'
type: boolean
maxReplicas:
+ description: 'Deprecated: This field is ignored.'
type: integer
metrics:
+ description: 'Deprecated: This field is ignored.'
items:
description: |-
MetricSpec specifies how to scale based on a single metric
@@ -807,6 +811,7 @@ spec:
type: object
type: array
minReplicas:
+ description: 'Deprecated: This field is ignored.'
type: integer
type: object
componentType:
@@ -10319,8 +10324,12 @@ spec:
type: integer
type: object
replicas:
- description: Replicas is the desired number of Pods for this component when autoscaling is not used.
+ description: |-
+ Replicas is the desired number of Pods for this component.
+ When scalingAdapter is enabled (default), this field is managed by the
+ DynamoGraphDeploymentScalingAdapter and should not be modified directly.
format: int32
+ minimum: 0
type: integer
resources:
description: |-
@@ -10399,6 +10408,20 @@ spec:
type: string
type: object
type: object
+ scalingAdapter:
+ description: |-
+ ScalingAdapter configures whether this service uses the DynamoGraphDeploymentScalingAdapter.
+ When enabled (default), replicas are managed via DGDSA and external autoscalers can scale
+ the service using the Scale subresource. When disabled, replicas can be modified directly.
+ properties:
+ disable:
+ default: false
+ description: |-
+ Disable indicates whether the ScalingAdapter should be disabled for this service.
+ When false (default), a DGDSA is created and owns the replicas field.
+ When true, no DGDSA is created and replicas can be modified directly in the DGD.
+ type: boolean
+ type: object
serviceName:
description: The name of the component
type: string
diff --git a/deploy/cloud/helm/crds/templates/nvidia.com_dynamographdeploymentscalingadapters.yaml b/deploy/cloud/helm/crds/templates/nvidia.com_dynamographdeploymentscalingadapters.yaml
new file mode 100644
index 0000000000..f822bb91db
--- /dev/null
+++ b/deploy/cloud/helm/crds/templates/nvidia.com_dynamographdeploymentscalingadapters.yaml
@@ -0,0 +1,136 @@
+# SPDX-FileCopyrightText: Copyright (c) 2024-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-License-Identifier: Apache-2.0
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+---
+apiVersion: apiextensions.k8s.io/v1
+kind: CustomResourceDefinition
+metadata:
+ annotations:
+ controller-gen.kubebuilder.io/version: v0.16.4
+ helm.sh/resource-policy: keep
+ name: dynamographdeploymentscalingadapters.nvidia.com
+spec:
+ group: nvidia.com
+ names:
+ kind: DynamoGraphDeploymentScalingAdapter
+ listKind: DynamoGraphDeploymentScalingAdapterList
+ plural: dynamographdeploymentscalingadapters
+ shortNames:
+ - dgdsa
+ singular: dynamographdeploymentscalingadapter
+ scope: Namespaced
+ versions:
+ - additionalPrinterColumns:
+ - description: DynamoGraphDeployment name
+ jsonPath: .spec.dgdRef.name
+ name: DGD
+ type: string
+ - description: Service name
+ jsonPath: .spec.dgdRef.serviceName
+ name: SERVICE
+ type: string
+ - description: Current replicas
+ jsonPath: .status.replicas
+ name: REPLICAS
+ type: integer
+ - jsonPath: .metadata.creationTimestamp
+ name: AGE
+ type: date
+ name: v1alpha1
+ schema:
+ openAPIV3Schema:
+ description: |-
+ DynamoGraphDeploymentScalingAdapter provides a scaling interface for individual services
+ within a DynamoGraphDeployment. It implements the Kubernetes scale
+ subresource, enabling integration with HPA, KEDA, and custom autoscalers.
+
+ The adapter acts as an intermediary between autoscalers and the DGD,
+ ensuring that only the adapter controller modifies the DGD's service replicas.
+ This prevents conflicts when multiple autoscaling mechanisms are in play.
+ properties:
+ apiVersion:
+ description: |-
+ APIVersion defines the versioned schema of this representation of an object.
+ Servers should convert recognized schemas to the latest internal value, and
+ may reject unrecognized values.
+ More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources
+ type: string
+ kind:
+ description: |-
+ Kind is a string value representing the REST resource this object represents.
+ Servers may infer this from the endpoint the client submits requests to.
+ Cannot be updated.
+ In CamelCase.
+ More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
+ type: string
+ metadata:
+ type: object
+ spec:
+ description: DynamoGraphDeploymentScalingAdapterSpec defines the desired state of DynamoGraphDeploymentScalingAdapter
+ properties:
+ dgdRef:
+ description: DGDRef references the DynamoGraphDeployment and the specific service to scale.
+ properties:
+ name:
+ description: Name of the DynamoGraphDeployment
+ minLength: 1
+ type: string
+ serviceName:
+ description: ServiceName is the key name of the service within the DGD's spec.services map to scale
+ minLength: 1
+ type: string
+ required:
+ - name
+ - serviceName
+ type: object
+ replicas:
+ description: |-
+ Replicas is the desired number of replicas for the target service.
+ This field is modified by external autoscalers (HPA/KEDA/Planner) or manually by users.
+ format: int32
+ minimum: 0
+ type: integer
+ required:
+ - dgdRef
+ - replicas
+ type: object
+ status:
+ description: DynamoGraphDeploymentScalingAdapterStatus defines the observed state of DynamoGraphDeploymentScalingAdapter
+ properties:
+ lastScaleTime:
+ description: LastScaleTime is the last time the adapter scaled the target service.
+ format: date-time
+ type: string
+ replicas:
+ description: |-
+ Replicas is the current number of replicas for the target service.
+ This is synced from the DGD's service replicas and is required for the scale subresource.
+ format: int32
+ type: integer
+ selector:
+ description: |-
+ Selector is a label selector string for the pods managed by this adapter.
+ Required for HPA compatibility via the scale subresource.
+ type: string
+ type: object
+ type: object
+ served: true
+ storage: true
+ subresources:
+ scale:
+ labelSelectorPath: .status.selector
+ specReplicasPath: .spec.replicas
+ statusReplicasPath: .status.replicas
+ status: {}
diff --git a/deploy/cloud/helm/platform/components/operator/templates/manager-rbac.yaml b/deploy/cloud/helm/platform/components/operator/templates/manager-rbac.yaml
index 8ab42c0988..7ae1eb6c5d 100644
--- a/deploy/cloud/helm/platform/components/operator/templates/manager-rbac.yaml
+++ b/deploy/cloud/helm/platform/components/operator/templates/manager-rbac.yaml
@@ -369,6 +369,7 @@ rules:
- dynamocomponentdeployments
- dynamographdeploymentrequests
- dynamographdeployments
+ - dynamographdeploymentscalingadapters
- dynamomodels
verbs:
- create
@@ -393,6 +394,7 @@ rules:
- dynamocomponentdeployments/status
- dynamographdeploymentrequests/status
- dynamographdeployments/status
+ - dynamographdeploymentscalingadapters/status
- dynamomodels/status
verbs:
- get
diff --git a/deploy/cloud/helm/platform/components/operator/templates/planner.yaml b/deploy/cloud/helm/platform/components/operator/templates/planner.yaml
index 11f60b5a48..a893a5afdf 100644
--- a/deploy/cloud/helm/platform/components/operator/templates/planner.yaml
+++ b/deploy/cloud/helm/platform/components/operator/templates/planner.yaml
@@ -39,6 +39,9 @@ rules:
- apiGroups: ["nvidia.com"]
resources: ["dynamocomponentdeployments", "dynamographdeployments"]
verbs: ["get", "list", "create", "update", "patch"]
+- apiGroups: ["nvidia.com"]
+ resources: ["dynamographdeploymentscalingadapters/scale"]
+ verbs: ["patch"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
@@ -68,4 +71,7 @@ rules:
- apiGroups: ["nvidia.com"]
resources: ["dynamocomponentdeployments", "dynamographdeployments"]
verbs: ["get", "list", "create", "update", "patch"]
-{{- end }}
\ No newline at end of file
+- apiGroups: ["nvidia.com"]
+ resources: ["dynamographdeploymentscalingadapters/scale"]
+ verbs: ["patch"]
+{{- end }}
diff --git a/deploy/cloud/helm/platform/components/operator/templates/prometheus.yaml b/deploy/cloud/helm/platform/components/operator/templates/prometheus.yaml
index 87a05aa575..d1576b41c1 100644
--- a/deploy/cloud/helm/platform/components/operator/templates/prometheus.yaml
+++ b/deploy/cloud/helm/platform/components/operator/templates/prometheus.yaml
@@ -57,6 +57,11 @@ spec:
- interval: 5s
path: /metrics
port: system
+ relabelings:
+ - action: replace
+ sourceLabels:
+ - __meta_kubernetes_pod_label_nvidia_com_dynamo_namespace
+ targetLabel: dynamo_namespace
selector:
matchLabels:
nvidia.com/dynamo-component-type: worker
diff --git a/deploy/cloud/helm/platform/values.yaml b/deploy/cloud/helm/platform/values.yaml
index f3e78c4750..7702d76797 100644
--- a/deploy/cloud/helm/platform/values.yaml
+++ b/deploy/cloud/helm/platform/values.yaml
@@ -260,6 +260,12 @@ etcd:
# Whether to enable liveness probes (disabled to reduce startup complexity)
enabled: false
+ # Pod Disruption Budget configuration
+ # Should be enabled for HA deployments with 3+ replicas
+ pdb:
+ # Whether to create a PodDisruptionBudget (disabled for single-node deployments)
+ create: false
+
# Node tolerations for etcd pods (allows scheduling on specific nodes)
tolerations: []
diff --git a/deploy/cloud/operator/api/v1alpha1/common.go b/deploy/cloud/operator/api/v1alpha1/common.go
index 5673fd5cfd..b68dd818c0 100644
--- a/deploy/cloud/operator/api/v1alpha1/common.go
+++ b/deploy/cloud/operator/api/v1alpha1/common.go
@@ -53,12 +53,20 @@ type VolumeMount struct {
UseAsCompilationCache bool `json:"useAsCompilationCache,omitempty"`
}
+// Deprecated: This field is deprecated and ignored. Use DynamoGraphDeploymentScalingAdapter
+// with HPA, KEDA, or Planner for autoscaling instead. See docs/kubernetes/autoscaling.md
+// for migration guidance. This field will be removed in a future API version.
type Autoscaling struct {
- Enabled bool `json:"enabled,omitempty"`
- MinReplicas int `json:"minReplicas,omitempty"`
- MaxReplicas int `json:"maxReplicas,omitempty"`
- Behavior *autoscalingv2.HorizontalPodAutoscalerBehavior `json:"behavior,omitempty"`
- Metrics []autoscalingv2.MetricSpec `json:"metrics,omitempty"`
+ // Deprecated: This field is ignored.
+ Enabled bool `json:"enabled,omitempty"`
+ // Deprecated: This field is ignored.
+ MinReplicas int `json:"minReplicas,omitempty"`
+ // Deprecated: This field is ignored.
+ MaxReplicas int `json:"maxReplicas,omitempty"`
+ // Deprecated: This field is ignored.
+ Behavior *autoscalingv2.HorizontalPodAutoscalerBehavior `json:"behavior,omitempty"`
+ // Deprecated: This field is ignored.
+ Metrics []autoscalingv2.MetricSpec `json:"metrics,omitempty"`
}
type SharedMemorySpec struct {
@@ -115,3 +123,15 @@ type ExtraPodSpec struct {
*corev1.PodSpec `json:",inline"`
MainContainer *corev1.Container `json:"mainContainer,omitempty"`
}
+
+// ScalingAdapter configures whether a service uses the DynamoGraphDeploymentScalingAdapter
+// for replica management. When enabled (default), the DGDSA owns the replicas field and
+// external autoscalers (HPA, KEDA, Planner) can control scaling via the Scale subresource.
+type ScalingAdapter struct {
+ // Disable indicates whether the ScalingAdapter should be disabled for this service.
+ // When false (default), a DGDSA is created and owns the replicas field.
+ // When true, no DGDSA is created and replicas can be modified directly in the DGD.
+ // +optional
+ // +kubebuilder:default=false
+ Disable bool `json:"disable,omitempty"`
+}
diff --git a/deploy/cloud/operator/api/v1alpha1/dynamocomponentdeployment_types.go b/deploy/cloud/operator/api/v1alpha1/dynamocomponentdeployment_types.go
index 8f484057ab..8a2abb78f2 100644
--- a/deploy/cloud/operator/api/v1alpha1/dynamocomponentdeployment_types.go
+++ b/deploy/cloud/operator/api/v1alpha1/dynamocomponentdeployment_types.go
@@ -74,7 +74,9 @@ type DynamoComponentDeploymentSharedSpec struct {
// Resources requested and limits for this component, including CPU, memory,
// GPUs/devices, and any runtime-specific resources.
Resources *Resources `json:"resources,omitempty"`
- // Autoscaling config for this component (replica range, target utilization, etc.).
+ // Deprecated: This field is deprecated and ignored. Use DynamoGraphDeploymentScalingAdapter
+ // with HPA, KEDA, or Planner for autoscaling instead. See docs/kubernetes/autoscaling.md
+ // for migration guidance. This field will be removed in a future API version.
Autoscaling *Autoscaling `json:"autoscaling,omitempty"`
// Envs defines additional environment variables to inject into the component containers.
Envs []corev1.EnvVar `json:"envs,omitempty"`
@@ -108,10 +110,18 @@ type DynamoComponentDeploymentSharedSpec struct {
LivenessProbe *corev1.Probe `json:"livenessProbe,omitempty"`
// ReadinessProbe to signal when the container is ready to receive traffic.
ReadinessProbe *corev1.Probe `json:"readinessProbe,omitempty"`
- // Replicas is the desired number of Pods for this component when autoscaling is not used.
+ // Replicas is the desired number of Pods for this component.
+ // When scalingAdapter is enabled (default), this field is managed by the
+ // DynamoGraphDeploymentScalingAdapter and should not be modified directly.
+ // +kubebuilder:validation:Minimum=0
Replicas *int32 `json:"replicas,omitempty"`
// Multinode is the configuration for multinode components.
Multinode *MultinodeSpec `json:"multinode,omitempty"`
+ // ScalingAdapter configures whether this service uses the DynamoGraphDeploymentScalingAdapter.
+ // When enabled (default), replicas are managed via DGDSA and external autoscalers can scale
+ // the service using the Scale subresource. When disabled, replicas can be modified directly.
+ // +optional
+ ScalingAdapter *ScalingAdapter `json:"scalingAdapter,omitempty"`
}
type MultinodeSpec struct {
diff --git a/deploy/cloud/operator/api/v1alpha1/dynamographdeploymentscalingadapter_types.go b/deploy/cloud/operator/api/v1alpha1/dynamographdeploymentscalingadapter_types.go
new file mode 100644
index 0000000000..d4da1a0ccf
--- /dev/null
+++ b/deploy/cloud/operator/api/v1alpha1/dynamographdeploymentscalingadapter_types.go
@@ -0,0 +1,102 @@
+/*
+ * SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package v1alpha1
+
+import (
+ metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
+)
+
+// DynamoGraphDeploymentScalingAdapterSpec defines the desired state of DynamoGraphDeploymentScalingAdapter
+type DynamoGraphDeploymentScalingAdapterSpec struct {
+ // Replicas is the desired number of replicas for the target service.
+ // This field is modified by external autoscalers (HPA/KEDA/Planner) or manually by users.
+ // +kubebuilder:validation:Required
+ // +kubebuilder:validation:Minimum=0
+ Replicas int32 `json:"replicas"`
+
+ // DGDRef references the DynamoGraphDeployment and the specific service to scale.
+ // +kubebuilder:validation:Required
+ DGDRef DynamoGraphDeploymentServiceRef `json:"dgdRef"`
+}
+
+// DynamoGraphDeploymentServiceRef identifies a specific service within a DynamoGraphDeployment
+type DynamoGraphDeploymentServiceRef struct {
+ // Name of the DynamoGraphDeployment
+ // +kubebuilder:validation:Required
+ // +kubebuilder:validation:MinLength=1
+ Name string `json:"name"`
+
+ // ServiceName is the key name of the service within the DGD's spec.services map to scale
+ // +kubebuilder:validation:Required
+ // +kubebuilder:validation:MinLength=1
+ ServiceName string `json:"serviceName"`
+}
+
+// DynamoGraphDeploymentScalingAdapterStatus defines the observed state of DynamoGraphDeploymentScalingAdapter
+type DynamoGraphDeploymentScalingAdapterStatus struct {
+ // Replicas is the current number of replicas for the target service.
+ // This is synced from the DGD's service replicas and is required for the scale subresource.
+ // +optional
+ Replicas int32 `json:"replicas,omitempty"`
+
+ // Selector is a label selector string for the pods managed by this adapter.
+ // Required for HPA compatibility via the scale subresource.
+ // +optional
+ Selector string `json:"selector,omitempty"`
+
+ // LastScaleTime is the last time the adapter scaled the target service.
+ // +optional
+ LastScaleTime *metav1.Time `json:"lastScaleTime,omitempty"`
+}
+
+// +kubebuilder:object:root=true
+// +kubebuilder:subresource:status
+// +kubebuilder:subresource:scale:specpath=.spec.replicas,statuspath=.status.replicas,selectorpath=.status.selector
+// +kubebuilder:printcolumn:name="DGD",type="string",JSONPath=".spec.dgdRef.name",description="DynamoGraphDeployment name"
+// +kubebuilder:printcolumn:name="SERVICE",type="string",JSONPath=".spec.dgdRef.serviceName",description="Service name"
+// +kubebuilder:printcolumn:name="REPLICAS",type="integer",JSONPath=".status.replicas",description="Current replicas"
+// +kubebuilder:printcolumn:name="AGE",type="date",JSONPath=".metadata.creationTimestamp"
+// +kubebuilder:resource:shortName={dgdsa}
+
+// DynamoGraphDeploymentScalingAdapter provides a scaling interface for individual services
+// within a DynamoGraphDeployment. It implements the Kubernetes scale
+// subresource, enabling integration with HPA, KEDA, and custom autoscalers.
+//
+// The adapter acts as an intermediary between autoscalers and the DGD,
+// ensuring that only the adapter controller modifies the DGD's service replicas.
+// This prevents conflicts when multiple autoscaling mechanisms are in play.
+type DynamoGraphDeploymentScalingAdapter struct {
+ metav1.TypeMeta `json:",inline"`
+ metav1.ObjectMeta `json:"metadata,omitempty"`
+
+ Spec DynamoGraphDeploymentScalingAdapterSpec `json:"spec,omitempty"`
+ Status DynamoGraphDeploymentScalingAdapterStatus `json:"status,omitempty"`
+}
+
+// +kubebuilder:object:root=true
+
+// DynamoGraphDeploymentScalingAdapterList contains a list of DynamoGraphDeploymentScalingAdapter
+type DynamoGraphDeploymentScalingAdapterList struct {
+ metav1.TypeMeta `json:",inline"`
+ metav1.ListMeta `json:"metadata,omitempty"`
+ Items []DynamoGraphDeploymentScalingAdapter `json:"items"`
+}
+
+func init() {
+ SchemeBuilder.Register(&DynamoGraphDeploymentScalingAdapter{}, &DynamoGraphDeploymentScalingAdapterList{})
+}
diff --git a/deploy/cloud/operator/api/v1alpha1/zz_generated.deepcopy.go b/deploy/cloud/operator/api/v1alpha1/zz_generated.deepcopy.go
index 56d33cd498..d3ecbb44ec 100644
--- a/deploy/cloud/operator/api/v1alpha1/zz_generated.deepcopy.go
+++ b/deploy/cloud/operator/api/v1alpha1/zz_generated.deepcopy.go
@@ -371,6 +371,11 @@ func (in *DynamoComponentDeploymentSharedSpec) DeepCopyInto(out *DynamoComponent
*out = new(MultinodeSpec)
**out = **in
}
+ if in.ScalingAdapter != nil {
+ in, out := &in.ScalingAdapter, &out.ScalingAdapter
+ *out = new(ScalingAdapter)
+ **out = **in
+ }
}
// DeepCopy is an autogenerated deepcopy function, copying the receiver, creating a new DynamoComponentDeploymentSharedSpec.
@@ -599,6 +604,115 @@ func (in *DynamoGraphDeploymentRequestStatus) DeepCopy() *DynamoGraphDeploymentR
return out
}
+// DeepCopyInto is an autogenerated deepcopy function, copying the receiver, writing into out. in must be non-nil.
+func (in *DynamoGraphDeploymentScalingAdapter) DeepCopyInto(out *DynamoGraphDeploymentScalingAdapter) {
+ *out = *in
+ out.TypeMeta = in.TypeMeta
+ in.ObjectMeta.DeepCopyInto(&out.ObjectMeta)
+ out.Spec = in.Spec
+ in.Status.DeepCopyInto(&out.Status)
+}
+
+// DeepCopy is an autogenerated deepcopy function, copying the receiver, creating a new DynamoGraphDeploymentScalingAdapter.
+func (in *DynamoGraphDeploymentScalingAdapter) DeepCopy() *DynamoGraphDeploymentScalingAdapter {
+ if in == nil {
+ return nil
+ }
+ out := new(DynamoGraphDeploymentScalingAdapter)
+ in.DeepCopyInto(out)
+ return out
+}
+
+// DeepCopyObject is an autogenerated deepcopy function, copying the receiver, creating a new runtime.Object.
+func (in *DynamoGraphDeploymentScalingAdapter) DeepCopyObject() runtime.Object {
+ if c := in.DeepCopy(); c != nil {
+ return c
+ }
+ return nil
+}
+
+// DeepCopyInto is an autogenerated deepcopy function, copying the receiver, writing into out. in must be non-nil.
+func (in *DynamoGraphDeploymentScalingAdapterList) DeepCopyInto(out *DynamoGraphDeploymentScalingAdapterList) {
+ *out = *in
+ out.TypeMeta = in.TypeMeta
+ in.ListMeta.DeepCopyInto(&out.ListMeta)
+ if in.Items != nil {
+ in, out := &in.Items, &out.Items
+ *out = make([]DynamoGraphDeploymentScalingAdapter, len(*in))
+ for i := range *in {
+ (*in)[i].DeepCopyInto(&(*out)[i])
+ }
+ }
+}
+
+// DeepCopy is an autogenerated deepcopy function, copying the receiver, creating a new DynamoGraphDeploymentScalingAdapterList.
+func (in *DynamoGraphDeploymentScalingAdapterList) DeepCopy() *DynamoGraphDeploymentScalingAdapterList {
+ if in == nil {
+ return nil
+ }
+ out := new(DynamoGraphDeploymentScalingAdapterList)
+ in.DeepCopyInto(out)
+ return out
+}
+
+// DeepCopyObject is an autogenerated deepcopy function, copying the receiver, creating a new runtime.Object.
+func (in *DynamoGraphDeploymentScalingAdapterList) DeepCopyObject() runtime.Object {
+ if c := in.DeepCopy(); c != nil {
+ return c
+ }
+ return nil
+}
+
+// DeepCopyInto is an autogenerated deepcopy function, copying the receiver, writing into out. in must be non-nil.
+func (in *DynamoGraphDeploymentScalingAdapterSpec) DeepCopyInto(out *DynamoGraphDeploymentScalingAdapterSpec) {
+ *out = *in
+ out.DGDRef = in.DGDRef
+}
+
+// DeepCopy is an autogenerated deepcopy function, copying the receiver, creating a new DynamoGraphDeploymentScalingAdapterSpec.
+func (in *DynamoGraphDeploymentScalingAdapterSpec) DeepCopy() *DynamoGraphDeploymentScalingAdapterSpec {
+ if in == nil {
+ return nil
+ }
+ out := new(DynamoGraphDeploymentScalingAdapterSpec)
+ in.DeepCopyInto(out)
+ return out
+}
+
+// DeepCopyInto is an autogenerated deepcopy function, copying the receiver, writing into out. in must be non-nil.
+func (in *DynamoGraphDeploymentScalingAdapterStatus) DeepCopyInto(out *DynamoGraphDeploymentScalingAdapterStatus) {
+ *out = *in
+ if in.LastScaleTime != nil {
+ in, out := &in.LastScaleTime, &out.LastScaleTime
+ *out = (*in).DeepCopy()
+ }
+}
+
+// DeepCopy is an autogenerated deepcopy function, copying the receiver, creating a new DynamoGraphDeploymentScalingAdapterStatus.
+func (in *DynamoGraphDeploymentScalingAdapterStatus) DeepCopy() *DynamoGraphDeploymentScalingAdapterStatus {
+ if in == nil {
+ return nil
+ }
+ out := new(DynamoGraphDeploymentScalingAdapterStatus)
+ in.DeepCopyInto(out)
+ return out
+}
+
+// DeepCopyInto is an autogenerated deepcopy function, copying the receiver, writing into out. in must be non-nil.
+func (in *DynamoGraphDeploymentServiceRef) DeepCopyInto(out *DynamoGraphDeploymentServiceRef) {
+ *out = *in
+}
+
+// DeepCopy is an autogenerated deepcopy function, copying the receiver, creating a new DynamoGraphDeploymentServiceRef.
+func (in *DynamoGraphDeploymentServiceRef) DeepCopy() *DynamoGraphDeploymentServiceRef {
+ if in == nil {
+ return nil
+ }
+ out := new(DynamoGraphDeploymentServiceRef)
+ in.DeepCopyInto(out)
+ return out
+}
+
// DeepCopyInto is an autogenerated deepcopy function, copying the receiver, writing into out. in must be non-nil.
func (in *DynamoGraphDeploymentSpec) DeepCopyInto(out *DynamoGraphDeploymentSpec) {
*out = *in
@@ -1085,6 +1199,21 @@ func (in *Resources) DeepCopy() *Resources {
return out
}
+// DeepCopyInto is an autogenerated deepcopy function, copying the receiver, writing into out. in must be non-nil.
+func (in *ScalingAdapter) DeepCopyInto(out *ScalingAdapter) {
+ *out = *in
+}
+
+// DeepCopy is an autogenerated deepcopy function, copying the receiver, creating a new ScalingAdapter.
+func (in *ScalingAdapter) DeepCopy() *ScalingAdapter {
+ if in == nil {
+ return nil
+ }
+ out := new(ScalingAdapter)
+ in.DeepCopyInto(out)
+ return out
+}
+
// DeepCopyInto is an autogenerated deepcopy function, copying the receiver, writing into out. in must be non-nil.
func (in *SharedMemorySpec) DeepCopyInto(out *SharedMemorySpec) {
*out = *in
diff --git a/deploy/cloud/operator/cmd/main.go b/deploy/cloud/operator/cmd/main.go
index 4d79cfe3f0..dc1a33b262 100644
--- a/deploy/cloud/operator/cmd/main.go
+++ b/deploy/cloud/operator/cmd/main.go
@@ -578,6 +578,16 @@ func main() {
os.Exit(1)
}
+ if err = (&controller.DynamoGraphDeploymentScalingAdapterReconciler{
+ Client: mgr.GetClient(),
+ Scheme: mgr.GetScheme(),
+ Recorder: mgr.GetEventRecorderFor("dgdscalingadapter"),
+ Config: ctrlConfig,
+ }).SetupWithManager(mgr); err != nil {
+ setupLog.Error(err, "unable to create controller", "controller", "DGDScalingAdapter")
+ os.Exit(1)
+ }
+
if err = (&controller.DynamoGraphDeploymentRequestReconciler{
Client: mgr.GetClient(),
Recorder: mgr.GetEventRecorderFor("dynamographdeploymentrequest"),
diff --git a/deploy/cloud/operator/config/crd/bases/nvidia.com_dynamocomponentdeployments.yaml b/deploy/cloud/operator/config/crd/bases/nvidia.com_dynamocomponentdeployments.yaml
index 558a5b973d..c90e3bdfe7 100644
--- a/deploy/cloud/operator/config/crd/bases/nvidia.com_dynamocomponentdeployments.yaml
+++ b/deploy/cloud/operator/config/crd/bases/nvidia.com_dynamocomponentdeployments.yaml
@@ -77,12 +77,13 @@ spec:
(such as Pod, Service, and Ingress when applicable).
type: object
autoscaling:
- description: Autoscaling config for this component (replica range, target utilization, etc.).
+ description: |-
+ Deprecated: This field is deprecated and ignored. Use DynamoGraphDeploymentScalingAdapter
+ with HPA, KEDA, or Planner for autoscaling instead. See docs/kubernetes/autoscaling.md
+ for migration guidance. This field will be removed in a future API version.
properties:
behavior:
- description: |-
- HorizontalPodAutoscalerBehavior configures the scaling behavior of the target
- in both Up and Down directions (scaleUp and scaleDown fields respectively).
+ description: 'Deprecated: This field is ignored.'
properties:
scaleDown:
description: |-
@@ -231,10 +232,13 @@ spec:
type: object
type: object
enabled:
+ description: 'Deprecated: This field is ignored.'
type: boolean
maxReplicas:
+ description: 'Deprecated: This field is ignored.'
type: integer
metrics:
+ description: 'Deprecated: This field is ignored.'
items:
description: |-
MetricSpec specifies how to scale based on a single metric
@@ -665,6 +669,7 @@ spec:
type: object
type: array
minReplicas:
+ description: 'Deprecated: This field is ignored.'
type: integer
type: object
backendFramework:
@@ -10184,8 +10189,12 @@ spec:
type: integer
type: object
replicas:
- description: Replicas is the desired number of Pods for this component when autoscaling is not used.
+ description: |-
+ Replicas is the desired number of Pods for this component.
+ When scalingAdapter is enabled (default), this field is managed by the
+ DynamoGraphDeploymentScalingAdapter and should not be modified directly.
format: int32
+ minimum: 0
type: integer
resources:
description: |-
@@ -10264,6 +10273,20 @@ spec:
type: string
type: object
type: object
+ scalingAdapter:
+ description: |-
+ ScalingAdapter configures whether this service uses the DynamoGraphDeploymentScalingAdapter.
+ When enabled (default), replicas are managed via DGDSA and external autoscalers can scale
+ the service using the Scale subresource. When disabled, replicas can be modified directly.
+ properties:
+ disable:
+ default: false
+ description: |-
+ Disable indicates whether the ScalingAdapter should be disabled for this service.
+ When false (default), a DGDSA is created and owns the replicas field.
+ When true, no DGDSA is created and replicas can be modified directly in the DGD.
+ type: boolean
+ type: object
serviceName:
description: The name of the component
type: string
diff --git a/deploy/cloud/operator/config/crd/bases/nvidia.com_dynamographdeployments.yaml b/deploy/cloud/operator/config/crd/bases/nvidia.com_dynamographdeployments.yaml
index ba2b19fef9..4db1e902b8 100644
--- a/deploy/cloud/operator/config/crd/bases/nvidia.com_dynamographdeployments.yaml
+++ b/deploy/cloud/operator/config/crd/bases/nvidia.com_dynamographdeployments.yaml
@@ -219,12 +219,13 @@ spec:
(such as Pod, Service, and Ingress when applicable).
type: object
autoscaling:
- description: Autoscaling config for this component (replica range, target utilization, etc.).
+ description: |-
+ Deprecated: This field is deprecated and ignored. Use DynamoGraphDeploymentScalingAdapter
+ with HPA, KEDA, or Planner for autoscaling instead. See docs/kubernetes/autoscaling.md
+ for migration guidance. This field will be removed in a future API version.
properties:
behavior:
- description: |-
- HorizontalPodAutoscalerBehavior configures the scaling behavior of the target
- in both Up and Down directions (scaleUp and scaleDown fields respectively).
+ description: 'Deprecated: This field is ignored.'
properties:
scaleDown:
description: |-
@@ -373,10 +374,13 @@ spec:
type: object
type: object
enabled:
+ description: 'Deprecated: This field is ignored.'
type: boolean
maxReplicas:
+ description: 'Deprecated: This field is ignored.'
type: integer
metrics:
+ description: 'Deprecated: This field is ignored.'
items:
description: |-
MetricSpec specifies how to scale based on a single metric
@@ -807,6 +811,7 @@ spec:
type: object
type: array
minReplicas:
+ description: 'Deprecated: This field is ignored.'
type: integer
type: object
componentType:
@@ -10319,8 +10324,12 @@ spec:
type: integer
type: object
replicas:
- description: Replicas is the desired number of Pods for this component when autoscaling is not used.
+ description: |-
+ Replicas is the desired number of Pods for this component.
+ When scalingAdapter is enabled (default), this field is managed by the
+ DynamoGraphDeploymentScalingAdapter and should not be modified directly.
format: int32
+ minimum: 0
type: integer
resources:
description: |-
@@ -10399,6 +10408,20 @@ spec:
type: string
type: object
type: object
+ scalingAdapter:
+ description: |-
+ ScalingAdapter configures whether this service uses the DynamoGraphDeploymentScalingAdapter.
+ When enabled (default), replicas are managed via DGDSA and external autoscalers can scale
+ the service using the Scale subresource. When disabled, replicas can be modified directly.
+ properties:
+ disable:
+ default: false
+ description: |-
+ Disable indicates whether the ScalingAdapter should be disabled for this service.
+ When false (default), a DGDSA is created and owns the replicas field.
+ When true, no DGDSA is created and replicas can be modified directly in the DGD.
+ type: boolean
+ type: object
serviceName:
description: The name of the component
type: string
diff --git a/deploy/cloud/operator/config/crd/bases/nvidia.com_dynamographdeploymentscalingadapters.yaml b/deploy/cloud/operator/config/crd/bases/nvidia.com_dynamographdeploymentscalingadapters.yaml
new file mode 100644
index 0000000000..f822bb91db
--- /dev/null
+++ b/deploy/cloud/operator/config/crd/bases/nvidia.com_dynamographdeploymentscalingadapters.yaml
@@ -0,0 +1,136 @@
+# SPDX-FileCopyrightText: Copyright (c) 2024-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-License-Identifier: Apache-2.0
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+---
+apiVersion: apiextensions.k8s.io/v1
+kind: CustomResourceDefinition
+metadata:
+ annotations:
+ controller-gen.kubebuilder.io/version: v0.16.4
+ helm.sh/resource-policy: keep
+ name: dynamographdeploymentscalingadapters.nvidia.com
+spec:
+ group: nvidia.com
+ names:
+ kind: DynamoGraphDeploymentScalingAdapter
+ listKind: DynamoGraphDeploymentScalingAdapterList
+ plural: dynamographdeploymentscalingadapters
+ shortNames:
+ - dgdsa
+ singular: dynamographdeploymentscalingadapter
+ scope: Namespaced
+ versions:
+ - additionalPrinterColumns:
+ - description: DynamoGraphDeployment name
+ jsonPath: .spec.dgdRef.name
+ name: DGD
+ type: string
+ - description: Service name
+ jsonPath: .spec.dgdRef.serviceName
+ name: SERVICE
+ type: string
+ - description: Current replicas
+ jsonPath: .status.replicas
+ name: REPLICAS
+ type: integer
+ - jsonPath: .metadata.creationTimestamp
+ name: AGE
+ type: date
+ name: v1alpha1
+ schema:
+ openAPIV3Schema:
+ description: |-
+ DynamoGraphDeploymentScalingAdapter provides a scaling interface for individual services
+ within a DynamoGraphDeployment. It implements the Kubernetes scale
+ subresource, enabling integration with HPA, KEDA, and custom autoscalers.
+
+ The adapter acts as an intermediary between autoscalers and the DGD,
+ ensuring that only the adapter controller modifies the DGD's service replicas.
+ This prevents conflicts when multiple autoscaling mechanisms are in play.
+ properties:
+ apiVersion:
+ description: |-
+ APIVersion defines the versioned schema of this representation of an object.
+ Servers should convert recognized schemas to the latest internal value, and
+ may reject unrecognized values.
+ More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources
+ type: string
+ kind:
+ description: |-
+ Kind is a string value representing the REST resource this object represents.
+ Servers may infer this from the endpoint the client submits requests to.
+ Cannot be updated.
+ In CamelCase.
+ More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
+ type: string
+ metadata:
+ type: object
+ spec:
+ description: DynamoGraphDeploymentScalingAdapterSpec defines the desired state of DynamoGraphDeploymentScalingAdapter
+ properties:
+ dgdRef:
+ description: DGDRef references the DynamoGraphDeployment and the specific service to scale.
+ properties:
+ name:
+ description: Name of the DynamoGraphDeployment
+ minLength: 1
+ type: string
+ serviceName:
+ description: ServiceName is the key name of the service within the DGD's spec.services map to scale
+ minLength: 1
+ type: string
+ required:
+ - name
+ - serviceName
+ type: object
+ replicas:
+ description: |-
+ Replicas is the desired number of replicas for the target service.
+ This field is modified by external autoscalers (HPA/KEDA/Planner) or manually by users.
+ format: int32
+ minimum: 0
+ type: integer
+ required:
+ - dgdRef
+ - replicas
+ type: object
+ status:
+ description: DynamoGraphDeploymentScalingAdapterStatus defines the observed state of DynamoGraphDeploymentScalingAdapter
+ properties:
+ lastScaleTime:
+ description: LastScaleTime is the last time the adapter scaled the target service.
+ format: date-time
+ type: string
+ replicas:
+ description: |-
+ Replicas is the current number of replicas for the target service.
+ This is synced from the DGD's service replicas and is required for the scale subresource.
+ format: int32
+ type: integer
+ selector:
+ description: |-
+ Selector is a label selector string for the pods managed by this adapter.
+ Required for HPA compatibility via the scale subresource.
+ type: string
+ type: object
+ type: object
+ served: true
+ storage: true
+ subresources:
+ scale:
+ labelSelectorPath: .status.selector
+ specReplicasPath: .spec.replicas
+ statusReplicasPath: .status.replicas
+ status: {}
diff --git a/deploy/cloud/operator/config/rbac/role.yaml b/deploy/cloud/operator/config/rbac/role.yaml
index b473aa1ad7..2a3a00c6f8 100644
--- a/deploy/cloud/operator/config/rbac/role.yaml
+++ b/deploy/cloud/operator/config/rbac/role.yaml
@@ -182,6 +182,7 @@ rules:
- dynamocomponentdeployments
- dynamographdeploymentrequests
- dynamographdeployments
+ - dynamographdeploymentscalingadapters
- dynamomodels
verbs:
- create
@@ -206,6 +207,7 @@ rules:
- dynamocomponentdeployments/status
- dynamographdeploymentrequests/status
- dynamographdeployments/status
+ - dynamographdeploymentscalingadapters/status
- dynamomodels/status
verbs:
- get
diff --git a/deploy/cloud/operator/internal/consts/consts.go b/deploy/cloud/operator/internal/consts/consts.go
index 882f9f18d9..6dd3bc0712 100644
--- a/deploy/cloud/operator/internal/consts/consts.go
+++ b/deploy/cloud/operator/internal/consts/consts.go
@@ -7,8 +7,6 @@ import (
)
const (
- HPACPUDefaultAverageUtilization = 80
-
DefaultUserId = "default"
DefaultOrgId = "default"
diff --git a/deploy/cloud/operator/internal/controller/common.go b/deploy/cloud/operator/internal/controller/common.go
index 70a70fdead..e41cbe1deb 100644
--- a/deploy/cloud/operator/internal/controller/common.go
+++ b/deploy/cloud/operator/internal/controller/common.go
@@ -53,3 +53,43 @@ type dockerSecretRetriever interface {
// returns a list of secret names associated with the docker registry
GetSecrets(namespace, registry string) ([]string, error)
}
+
+// getServiceKeys returns the keys of the services map for logging purposes
+func getServiceKeys(services map[string]*v1alpha1.DynamoComponentDeploymentSharedSpec) []string {
+ keys := make([]string, 0, len(services))
+ for k := range services {
+ keys = append(keys, k)
+ }
+ return keys
+}
+
+// servicesEqual compares two services maps to detect changes in replica counts
+func servicesEqual(old, new map[string]*v1alpha1.DynamoComponentDeploymentSharedSpec) bool {
+ if len(old) != len(new) {
+ return false
+ }
+
+ for key, oldSvc := range old {
+ newSvc, exists := new[key]
+ if !exists {
+ return false
+ }
+
+ // Compare replicas
+ oldReplicas := int32(1)
+ if oldSvc.Replicas != nil {
+ oldReplicas = *oldSvc.Replicas
+ }
+
+ newReplicas := int32(1)
+ if newSvc.Replicas != nil {
+ newReplicas = *newSvc.Replicas
+ }
+
+ if oldReplicas != newReplicas {
+ return false
+ }
+ }
+
+ return true
+}
diff --git a/deploy/cloud/operator/internal/controller/dynamocomponentdeployment_controller.go b/deploy/cloud/operator/internal/controller/dynamocomponentdeployment_controller.go
index 307bf7ac05..88d92e2f42 100644
--- a/deploy/cloud/operator/internal/controller/dynamocomponentdeployment_controller.go
+++ b/deploy/cloud/operator/internal/controller/dynamocomponentdeployment_controller.go
@@ -338,21 +338,6 @@ func (r *DynamoComponentDeploymentReconciler) Reconcile(ctx context.Context, req
}
deployment = obj
-
- // create or update api-server hpa
- modified_, _, err = commonController.SyncResource(ctx, r, dynamoComponentDeployment, func(ctx context.Context) (*autoscalingv2.HorizontalPodAutoscaler, bool, error) {
- return r.generateHPA(generateResourceOption{
- dynamoComponentDeployment: dynamoComponentDeployment,
- })
- })
- if err != nil {
- return ctrl.Result{}, err
- }
-
- if modified_ {
- modified = true
- }
-
}
// create or update api-server service
@@ -1114,63 +1099,6 @@ type generateResourceOption struct {
instanceID *int
}
-func (r *DynamoComponentDeploymentReconciler) generateHPA(opt generateResourceOption) (*autoscalingv2.HorizontalPodAutoscaler, bool, error) {
- labels := r.getKubeLabels(opt.dynamoComponentDeployment)
-
- annotations := r.getKubeAnnotations(opt.dynamoComponentDeployment)
-
- kubeName := r.getKubeName(opt.dynamoComponentDeployment, false)
-
- kubeNs := opt.dynamoComponentDeployment.Namespace
-
- hpaConf := opt.dynamoComponentDeployment.Spec.Autoscaling
-
- kubeHpa := &autoscalingv2.HorizontalPodAutoscaler{
- ObjectMeta: metav1.ObjectMeta{
- Name: kubeName,
- Namespace: kubeNs,
- Labels: labels,
- Annotations: annotations,
- },
- }
-
- if hpaConf == nil || !hpaConf.Enabled {
- // if hpa is not enabled, we need to delete the hpa
- return kubeHpa, true, nil
- }
-
- minReplica := int32(hpaConf.MinReplicas)
-
- kubeHpa.Spec = autoscalingv2.HorizontalPodAutoscalerSpec{
- MinReplicas: &minReplica,
- MaxReplicas: int32(hpaConf.MaxReplicas),
- ScaleTargetRef: autoscalingv2.CrossVersionObjectReference{
- APIVersion: "apps/v1",
- Kind: "Deployment",
- Name: kubeName,
- },
- Metrics: hpaConf.Metrics,
- }
-
- if len(kubeHpa.Spec.Metrics) == 0 {
- averageUtilization := int32(commonconsts.HPACPUDefaultAverageUtilization)
- kubeHpa.Spec.Metrics = []autoscalingv2.MetricSpec{
- {
- Type: autoscalingv2.ResourceMetricSourceType,
- Resource: &autoscalingv2.ResourceMetricSource{
- Name: corev1.ResourceCPU,
- Target: autoscalingv2.MetricTarget{
- Type: autoscalingv2.UtilizationMetricType,
- AverageUtilization: &averageUtilization,
- },
- },
- },
- }
- }
-
- return kubeHpa, false, nil
-}
-
//nolint:gocyclo,nakedret
func (r *DynamoComponentDeploymentReconciler) generatePodTemplateSpec(ctx context.Context, opt generateResourceOption, role dynamo.Role) (podTemplateSpec *corev1.PodTemplateSpec, err error) {
podLabels := r.getKubeLabels(opt.dynamoComponentDeployment)
diff --git a/deploy/cloud/operator/internal/controller/dynamocomponentdeployment_controller_test.go b/deploy/cloud/operator/internal/controller/dynamocomponentdeployment_controller_test.go
index 807c0abcc0..f3ea278946 100644
--- a/deploy/cloud/operator/internal/controller/dynamocomponentdeployment_controller_test.go
+++ b/deploy/cloud/operator/internal/controller/dynamocomponentdeployment_controller_test.go
@@ -827,6 +827,7 @@ func TestDynamoComponentDeploymentReconciler_generateLeaderWorkerSet(t *testing.
Args: []string{"ray start --head --port=6379 && some dynamo command --tensor-parallel-size 4 --pipeline-parallel-size 1"},
Env: []corev1.EnvVar{
{Name: commonconsts.DynamoComponentEnvVar, Value: commonconsts.ComponentTypeWorker},
+ {Name: "DYN_HEALTH_CHECK_ENABLED", Value: "true"},
{Name: commonconsts.DynamoNamespaceEnvVar, Value: "default"},
{Name: "DYN_PARENT_DGD_K8S_NAME", Value: "test-lws-deploy"},
{Name: "DYN_PARENT_DGD_K8S_NAMESPACE", Value: "default"},
@@ -955,6 +956,7 @@ func TestDynamoComponentDeploymentReconciler_generateLeaderWorkerSet(t *testing.
Args: []string{"ray start --address=$LWS_LEADER_ADDRESS:6379 --block"},
Env: []corev1.EnvVar{
{Name: commonconsts.DynamoComponentEnvVar, Value: commonconsts.ComponentTypeWorker},
+ {Name: "DYN_HEALTH_CHECK_ENABLED", Value: "true"},
{Name: commonconsts.DynamoNamespaceEnvVar, Value: "default"},
{Name: "DYN_PARENT_DGD_K8S_NAME", Value: "test-lws-deploy"},
{Name: "DYN_PARENT_DGD_K8S_NAMESPACE", Value: "default"},
diff --git a/deploy/cloud/operator/internal/controller/dynamographdeployment_controller.go b/deploy/cloud/operator/internal/controller/dynamographdeployment_controller.go
index 22dcdb5490..823818ac1e 100644
--- a/deploy/cloud/operator/internal/controller/dynamographdeployment_controller.go
+++ b/deploy/cloud/operator/internal/controller/dynamographdeployment_controller.go
@@ -86,6 +86,7 @@ type DynamoGraphDeploymentReconciler struct {
// +kubebuilder:rbac:groups=nvidia.com,resources=dynamographdeployments,verbs=get;list;watch;create;update;patch;delete
// +kubebuilder:rbac:groups=nvidia.com,resources=dynamographdeployments/status,verbs=get;update;patch
// +kubebuilder:rbac:groups=nvidia.com,resources=dynamographdeployments/finalizers,verbs=update
+// +kubebuilder:rbac:groups=nvidia.com,resources=dynamographdeploymentscalingadapters,verbs=get;list;watch;create;update;patch;delete
// +kubebuilder:rbac:groups=grove.io,resources=podcliquesets,verbs=get;list;watch;create;update;patch;delete
// +kubebuilder:rbac:groups=grove.io,resources=podcliques/scale,verbs=get;update;patch
// +kubebuilder:rbac:groups=grove.io,resources=podcliquescalinggroups/scale,verbs=get;update;patch
@@ -225,6 +226,13 @@ func (r *DynamoGraphDeploymentReconciler) reconcileResources(ctx context.Context
return "", "", "", fmt.Errorf("failed to reconcile top-level PVCs: %w", err)
}
+ // Reconcile DynamoGraphDeploymentScalingAdapters for each service
+ err = r.reconcileScalingAdapters(ctx, dynamoDeployment)
+ if err != nil {
+ logger.Error(err, "Failed to reconcile scaling adapters")
+ return "", "", "", fmt.Errorf("failed to reconcile scaling adapters: %w", err)
+ }
+
// Reconcile the SA, Role and RoleBinding if k8s discovery is enabled
err = r.reconcileK8sDiscoveryResources(ctx, dynamoDeployment)
if err != nil {
@@ -607,6 +615,89 @@ func (r *DynamoGraphDeploymentReconciler) reconcilePVCs(ctx context.Context, dyn
return nil
}
+// reconcileScalingAdapters ensures a DynamoGraphDeploymentScalingAdapter exists for each service in the DGD
+// that has scaling adapter enabled (default). Services with scalingAdapter.disable=true will not have a DGDSA.
+// This enables pluggable autoscaling via HPA, KEDA, or Planner.
+func (r *DynamoGraphDeploymentReconciler) reconcileScalingAdapters(ctx context.Context, dynamoDeployment *nvidiacomv1alpha1.DynamoGraphDeployment) error {
+ logger := log.FromContext(ctx)
+
+ // Process each service - SyncResource handles create, update, and delete via toDelete flag
+ for serviceName, component := range dynamoDeployment.Spec.Services {
+ // Check if scaling adapter is disabled for this service
+ scalingAdapterDisabled := component.ScalingAdapter != nil && component.ScalingAdapter.Disable
+
+ // Get current replicas (default to 1 if not set)
+ currentReplicas := int32(1)
+ if component.Replicas != nil {
+ currentReplicas = *component.Replicas
+ }
+
+ // Use SyncResource to handle creation/updates/deletion
+ // When toDelete=true, SyncResource will delete the existing resource if it exists
+ _, _, err := commonController.SyncResource(ctx, r, dynamoDeployment, func(ctx context.Context) (*nvidiacomv1alpha1.DynamoGraphDeploymentScalingAdapter, bool, error) {
+ adapterName := generateAdapterName(dynamoDeployment.Name, serviceName)
+ adapter := &nvidiacomv1alpha1.DynamoGraphDeploymentScalingAdapter{
+ ObjectMeta: metav1.ObjectMeta{
+ Name: adapterName,
+ Namespace: dynamoDeployment.Namespace,
+ Labels: map[string]string{
+ consts.KubeLabelDynamoGraphDeploymentName: dynamoDeployment.Name,
+ consts.KubeLabelDynamoComponent: serviceName,
+ },
+ },
+ Spec: nvidiacomv1alpha1.DynamoGraphDeploymentScalingAdapterSpec{
+ Replicas: currentReplicas,
+ DGDRef: nvidiacomv1alpha1.DynamoGraphDeploymentServiceRef{
+ Name: dynamoDeployment.Name,
+ ServiceName: serviceName,
+ },
+ },
+ }
+ // Return toDelete=true if scaling adapter is disabled
+ return adapter, scalingAdapterDisabled, nil
+ })
+
+ if err != nil {
+ logger.Error(err, "Failed to sync DynamoGraphDeploymentScalingAdapter", "service", serviceName)
+ return err
+ }
+ }
+
+ // Clean up adapters for services that were removed from DGD entirely
+ adapterList := &nvidiacomv1alpha1.DynamoGraphDeploymentScalingAdapterList{}
+ if err := r.List(ctx, adapterList,
+ client.InNamespace(dynamoDeployment.Namespace),
+ client.MatchingLabels{consts.KubeLabelDynamoGraphDeploymentName: dynamoDeployment.Name},
+ ); err != nil {
+ logger.Error(err, "Failed to list DynamoGraphDeploymentScalingAdapters")
+ return err
+ }
+
+ for i := range adapterList.Items {
+ adapter := &adapterList.Items[i]
+ serviceName := adapter.Spec.DGDRef.ServiceName
+
+ // Delete adapter if service no longer exists in DGD
+ if _, exists := dynamoDeployment.Spec.Services[serviceName]; !exists {
+ logger.Info("Deleting orphaned DynamoGraphDeploymentScalingAdapter", "adapter", adapter.Name, "service", serviceName)
+ if err := r.Delete(ctx, adapter); err != nil && !errors.IsNotFound(err) {
+ logger.Error(err, "Failed to delete orphaned adapter", "adapter", adapter.Name)
+ return err
+ }
+ r.Recorder.Eventf(dynamoDeployment, corev1.EventTypeNormal, "AdapterDeleted",
+ "Deleted orphaned scaling adapter %s for removed service %s", adapter.Name, serviceName)
+ }
+ }
+
+ return nil
+}
+
+// generateAdapterName creates a consistent name for a DynamoGraphDeploymentScalingAdapter
+// Service names are lowercased to comply with Kubernetes DNS subdomain naming requirements
+func generateAdapterName(dgdName, serviceName string) string {
+ return fmt.Sprintf("%s-%s", dgdName, strings.ToLower(serviceName))
+}
+
func (r *DynamoGraphDeploymentReconciler) FinalizeResource(ctx context.Context, dynamoDeployment *nvidiacomv1alpha1.DynamoGraphDeployment) error {
// for now doing nothing
return nil
@@ -626,6 +717,13 @@ func (r *DynamoGraphDeploymentReconciler) SetupWithManager(mgr ctrl.Manager) err
UpdateFunc: func(de event.UpdateEvent) bool { return true },
GenericFunc: func(ge event.GenericEvent) bool { return true },
})).
+ Owns(&nvidiacomv1alpha1.DynamoGraphDeploymentScalingAdapter{}, builder.WithPredicates(predicate.Funcs{
+ // ignore creation cause we don't want to be called again after we create the adapter
+ CreateFunc: func(ce event.CreateEvent) bool { return false },
+ DeleteFunc: func(de event.DeleteEvent) bool { return true },
+ UpdateFunc: func(de event.UpdateEvent) bool { return false }, // Adapter updates are handled by adapter controller
+ GenericFunc: func(ge event.GenericEvent) bool { return false },
+ })).
Owns(&corev1.PersistentVolumeClaim{}, builder.WithPredicates(predicate.Funcs{
// ignore creation cause we don't want to be called again after we create the PVC
CreateFunc: func(ce event.CreateEvent) bool { return false },
diff --git a/deploy/cloud/operator/internal/controller/dynamographdeployment_controller_test.go b/deploy/cloud/operator/internal/controller/dynamographdeployment_controller_test.go
new file mode 100644
index 0000000000..a217fd403c
--- /dev/null
+++ b/deploy/cloud/operator/internal/controller/dynamographdeployment_controller_test.go
@@ -0,0 +1,321 @@
+/*
+ * SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package controller
+
+import (
+ "context"
+ "testing"
+
+ "github.com/ai-dynamo/dynamo/deploy/cloud/operator/api/v1alpha1"
+ "github.com/ai-dynamo/dynamo/deploy/cloud/operator/internal/consts"
+ metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
+ "k8s.io/apimachinery/pkg/types"
+ "k8s.io/client-go/kubernetes/scheme"
+ "k8s.io/client-go/tools/record"
+ "k8s.io/utils/ptr"
+ "sigs.k8s.io/controller-runtime/pkg/client"
+ "sigs.k8s.io/controller-runtime/pkg/client/fake"
+)
+
+func TestDynamoGraphDeploymentReconciler_reconcileScalingAdapters(t *testing.T) {
+ // Register custom types with the scheme
+ if err := v1alpha1.AddToScheme(scheme.Scheme); err != nil {
+ t.Fatalf("Failed to add v1alpha1 to scheme: %v", err)
+ }
+
+ tests := []struct {
+ name string
+ dgd *v1alpha1.DynamoGraphDeployment
+ existingAdapters []v1alpha1.DynamoGraphDeploymentScalingAdapter
+ expectedAdapterCount int
+ expectedAdapters map[string]int32 // map of adapter name to expected replicas
+ expectDeleted []string // adapter names that should be deleted
+ }{
+ {
+ name: "creates adapters for all services",
+ dgd: &v1alpha1.DynamoGraphDeployment{
+ ObjectMeta: metav1.ObjectMeta{
+ Name: "test-dgd",
+ Namespace: "default",
+ },
+ Spec: v1alpha1.DynamoGraphDeploymentSpec{
+ Services: map[string]*v1alpha1.DynamoComponentDeploymentSharedSpec{
+ "Frontend": {
+ Replicas: ptr.To(int32(2)),
+ },
+ "decode": {
+ Replicas: ptr.To(int32(3)),
+ },
+ },
+ },
+ },
+ expectedAdapterCount: 2,
+ expectedAdapters: map[string]int32{
+ "test-dgd-frontend": 2,
+ "test-dgd-decode": 3,
+ },
+ },
+ {
+ name: "uses default replicas when not specified",
+ dgd: &v1alpha1.DynamoGraphDeployment{
+ ObjectMeta: metav1.ObjectMeta{
+ Name: "test-dgd",
+ Namespace: "default",
+ },
+ Spec: v1alpha1.DynamoGraphDeploymentSpec{
+ Services: map[string]*v1alpha1.DynamoComponentDeploymentSharedSpec{
+ "worker": {},
+ },
+ },
+ },
+ expectedAdapterCount: 1,
+ expectedAdapters: map[string]int32{
+ "test-dgd-worker": 1, // default replicas
+ },
+ },
+ {
+ name: "skips adapter creation when disabled",
+ dgd: &v1alpha1.DynamoGraphDeployment{
+ ObjectMeta: metav1.ObjectMeta{
+ Name: "test-dgd",
+ Namespace: "default",
+ },
+ Spec: v1alpha1.DynamoGraphDeploymentSpec{
+ Services: map[string]*v1alpha1.DynamoComponentDeploymentSharedSpec{
+ "Frontend": {
+ Replicas: ptr.To(int32(2)),
+ },
+ "decode": {
+ Replicas: ptr.To(int32(3)),
+ ScalingAdapter: &v1alpha1.ScalingAdapter{
+ Disable: true,
+ },
+ },
+ },
+ },
+ },
+ expectedAdapterCount: 1,
+ expectedAdapters: map[string]int32{
+ "test-dgd-frontend": 2,
+ },
+ },
+ {
+ name: "deletes adapter when service is removed",
+ dgd: &v1alpha1.DynamoGraphDeployment{
+ ObjectMeta: metav1.ObjectMeta{
+ Name: "test-dgd",
+ Namespace: "default",
+ UID: "test-uid",
+ },
+ Spec: v1alpha1.DynamoGraphDeploymentSpec{
+ Services: map[string]*v1alpha1.DynamoComponentDeploymentSharedSpec{
+ "Frontend": {
+ Replicas: ptr.To(int32(2)),
+ },
+ },
+ },
+ },
+ existingAdapters: []v1alpha1.DynamoGraphDeploymentScalingAdapter{
+ {
+ ObjectMeta: metav1.ObjectMeta{
+ Name: "test-dgd-frontend",
+ Namespace: "default",
+ Labels: map[string]string{
+ consts.KubeLabelDynamoGraphDeploymentName: "test-dgd",
+ },
+ OwnerReferences: []metav1.OwnerReference{
+ {
+ APIVersion: "nvidia.com/v1alpha1",
+ Kind: "DynamoGraphDeployment",
+ Name: "test-dgd",
+ UID: "test-uid",
+ },
+ },
+ },
+ Spec: v1alpha1.DynamoGraphDeploymentScalingAdapterSpec{
+ Replicas: 2,
+ DGDRef: v1alpha1.DynamoGraphDeploymentServiceRef{
+ Name: "test-dgd",
+ ServiceName: "Frontend",
+ },
+ },
+ },
+ {
+ ObjectMeta: metav1.ObjectMeta{
+ Name: "test-dgd-removed",
+ Namespace: "default",
+ Labels: map[string]string{
+ consts.KubeLabelDynamoGraphDeploymentName: "test-dgd",
+ },
+ OwnerReferences: []metav1.OwnerReference{
+ {
+ APIVersion: "nvidia.com/v1alpha1",
+ Kind: "DynamoGraphDeployment",
+ Name: "test-dgd",
+ UID: "test-uid",
+ },
+ },
+ },
+ Spec: v1alpha1.DynamoGraphDeploymentScalingAdapterSpec{
+ Replicas: 1,
+ DGDRef: v1alpha1.DynamoGraphDeploymentServiceRef{
+ Name: "test-dgd",
+ ServiceName: "removed",
+ },
+ },
+ },
+ },
+ expectedAdapterCount: 1,
+ expectedAdapters: map[string]int32{
+ "test-dgd-frontend": 2,
+ },
+ expectDeleted: []string{"test-dgd-removed"},
+ },
+ {
+ name: "deletes adapter when scalingAdapter.disable is set to true",
+ dgd: &v1alpha1.DynamoGraphDeployment{
+ ObjectMeta: metav1.ObjectMeta{
+ Name: "test-dgd",
+ Namespace: "default",
+ UID: "test-uid",
+ },
+ Spec: v1alpha1.DynamoGraphDeploymentSpec{
+ Services: map[string]*v1alpha1.DynamoComponentDeploymentSharedSpec{
+ "Frontend": {
+ Replicas: ptr.To(int32(2)),
+ ScalingAdapter: &v1alpha1.ScalingAdapter{
+ Disable: true,
+ },
+ },
+ },
+ },
+ },
+ existingAdapters: []v1alpha1.DynamoGraphDeploymentScalingAdapter{
+ {
+ ObjectMeta: metav1.ObjectMeta{
+ Name: "test-dgd-frontend",
+ Namespace: "default",
+ Labels: map[string]string{
+ consts.KubeLabelDynamoGraphDeploymentName: "test-dgd",
+ },
+ OwnerReferences: []metav1.OwnerReference{
+ {
+ APIVersion: "nvidia.com/v1alpha1",
+ Kind: "DynamoGraphDeployment",
+ Name: "test-dgd",
+ UID: "test-uid",
+ },
+ },
+ },
+ Spec: v1alpha1.DynamoGraphDeploymentScalingAdapterSpec{
+ Replicas: 2,
+ DGDRef: v1alpha1.DynamoGraphDeploymentServiceRef{
+ Name: "test-dgd",
+ ServiceName: "Frontend",
+ },
+ },
+ },
+ },
+ expectedAdapterCount: 0,
+ expectedAdapters: map[string]int32{},
+ expectDeleted: []string{"test-dgd-frontend"},
+ },
+ {
+ name: "adapter name uses lowercase service name",
+ dgd: &v1alpha1.DynamoGraphDeployment{
+ ObjectMeta: metav1.ObjectMeta{
+ Name: "my-dgd",
+ Namespace: "default",
+ },
+ Spec: v1alpha1.DynamoGraphDeploymentSpec{
+ Services: map[string]*v1alpha1.DynamoComponentDeploymentSharedSpec{
+ "MyService": {
+ Replicas: ptr.To(int32(1)),
+ },
+ },
+ },
+ },
+ expectedAdapterCount: 1,
+ expectedAdapters: map[string]int32{
+ "my-dgd-myservice": 1, // lowercase
+ },
+ },
+ }
+
+ for _, tt := range tests {
+ t.Run(tt.name, func(t *testing.T) {
+ // Build initial objects
+ var initObjs []client.Object
+ initObjs = append(initObjs, tt.dgd)
+ for i := range tt.existingAdapters {
+ initObjs = append(initObjs, &tt.existingAdapters[i])
+ }
+
+ // Create fake client
+ fakeClient := fake.NewClientBuilder().
+ WithScheme(scheme.Scheme).
+ WithObjects(initObjs...).
+ Build()
+
+ // Create reconciler
+ r := &DynamoGraphDeploymentReconciler{
+ Client: fakeClient,
+ Recorder: record.NewFakeRecorder(10),
+ }
+
+ // Run reconcileScalingAdapters
+ ctx := context.Background()
+ err := r.reconcileScalingAdapters(ctx, tt.dgd)
+ if err != nil {
+ t.Fatalf("reconcileScalingAdapters() error = %v", err)
+ }
+
+ // Verify adapters
+ adapterList := &v1alpha1.DynamoGraphDeploymentScalingAdapterList{}
+ if err := fakeClient.List(ctx, adapterList, client.InNamespace("default")); err != nil {
+ t.Fatalf("Failed to list adapters: %v", err)
+ }
+
+ if len(adapterList.Items) != tt.expectedAdapterCount {
+ t.Errorf("Expected %d adapters, got %d", tt.expectedAdapterCount, len(adapterList.Items))
+ }
+
+ // Check expected adapters exist with correct replicas
+ for name, expectedReplicas := range tt.expectedAdapters {
+ adapter := &v1alpha1.DynamoGraphDeploymentScalingAdapter{}
+ err := fakeClient.Get(ctx, types.NamespacedName{Name: name, Namespace: "default"}, adapter)
+ if err != nil {
+ t.Errorf("Expected adapter %s to exist, but got error: %v", name, err)
+ continue
+ }
+ if adapter.Spec.Replicas != expectedReplicas {
+ t.Errorf("Adapter %s has replicas=%d, expected %d", name, adapter.Spec.Replicas, expectedReplicas)
+ }
+ }
+
+ // Check that deleted adapters don't exist
+ for _, name := range tt.expectDeleted {
+ adapter := &v1alpha1.DynamoGraphDeploymentScalingAdapter{}
+ err := fakeClient.Get(ctx, types.NamespacedName{Name: name, Namespace: "default"}, adapter)
+ if err == nil {
+ t.Errorf("Expected adapter %s to be deleted, but it still exists", name)
+ }
+ }
+ })
+ }
+}
diff --git a/deploy/cloud/operator/internal/controller/dynamographdeploymentscalingadapter_controller.go b/deploy/cloud/operator/internal/controller/dynamographdeploymentscalingadapter_controller.go
new file mode 100644
index 0000000000..edaa4323ae
--- /dev/null
+++ b/deploy/cloud/operator/internal/controller/dynamographdeploymentscalingadapter_controller.go
@@ -0,0 +1,213 @@
+/*
+ * SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package controller
+
+import (
+ "context"
+ "fmt"
+
+ corev1 "k8s.io/api/core/v1"
+ "k8s.io/apimachinery/pkg/api/errors"
+ metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
+ "k8s.io/apimachinery/pkg/runtime"
+ "k8s.io/apimachinery/pkg/types"
+ "k8s.io/client-go/tools/record"
+ ctrl "sigs.k8s.io/controller-runtime"
+ "sigs.k8s.io/controller-runtime/pkg/builder"
+ "sigs.k8s.io/controller-runtime/pkg/client"
+ "sigs.k8s.io/controller-runtime/pkg/event"
+ "sigs.k8s.io/controller-runtime/pkg/handler"
+ "sigs.k8s.io/controller-runtime/pkg/log"
+ "sigs.k8s.io/controller-runtime/pkg/predicate"
+ "sigs.k8s.io/controller-runtime/pkg/reconcile"
+
+ nvidiacomv1alpha1 "github.com/ai-dynamo/dynamo/deploy/cloud/operator/api/v1alpha1"
+ "github.com/ai-dynamo/dynamo/deploy/cloud/operator/internal/consts"
+ commonController "github.com/ai-dynamo/dynamo/deploy/cloud/operator/internal/controller_common"
+)
+
+// DynamoGraphDeploymentScalingAdapterReconciler reconciles a DynamoGraphDeploymentScalingAdapter object
+type DynamoGraphDeploymentScalingAdapterReconciler struct {
+ client.Client
+ Scheme *runtime.Scheme
+ Recorder record.EventRecorder
+ Config commonController.Config
+}
+
+// +kubebuilder:rbac:groups=nvidia.com,resources=dynamographdeploymentscalingadapters,verbs=get;list;watch;create;update;patch;delete
+// +kubebuilder:rbac:groups=nvidia.com,resources=dynamographdeploymentscalingadapters/status,verbs=get;update;patch
+// +kubebuilder:rbac:groups=nvidia.com,resources=dynamographdeployments,verbs=get;list;watch;update;patch
+
+// Reconcile implements the reconciliation loop for DynamoGraphDeploymentScalingAdapter
+func (r *DynamoGraphDeploymentScalingAdapterReconciler) Reconcile(ctx context.Context, req ctrl.Request) (ctrl.Result, error) {
+ logger := log.FromContext(ctx)
+
+ // 1. Fetch the DynamoGraphDeploymentScalingAdapter
+ adapter := &nvidiacomv1alpha1.DynamoGraphDeploymentScalingAdapter{}
+ if err := r.Get(ctx, req.NamespacedName, adapter); err != nil {
+ return ctrl.Result{}, client.IgnoreNotFound(err)
+ }
+
+ // Skip reconciliation if being deleted
+ if !adapter.GetDeletionTimestamp().IsZero() {
+ logger.V(1).Info("Adapter is being deleted, skipping reconciliation")
+ return ctrl.Result{}, nil
+ }
+
+ // 2. Fetch the referenced DGD
+ dgd := &nvidiacomv1alpha1.DynamoGraphDeployment{}
+ dgdKey := types.NamespacedName{
+ Name: adapter.Spec.DGDRef.Name,
+ Namespace: adapter.Namespace,
+ }
+ if err := r.Get(ctx, dgdKey, dgd); err != nil {
+ if errors.IsNotFound(err) {
+ logger.Error(err, "Referenced DGD not found", "dgd", dgdKey)
+ // DGD doesn't exist, can't proceed
+ return ctrl.Result{}, err
+ }
+ return ctrl.Result{}, err
+ }
+
+ // 3. Find the target service in DGD's spec.services map
+ component, exists := dgd.Spec.Services[adapter.Spec.DGDRef.ServiceName]
+ if !exists || component == nil {
+ logger.Error(nil, "Service not found in DGD",
+ "service", adapter.Spec.DGDRef.ServiceName,
+ "dgd", dgd.Name,
+ "availableServices", getServiceKeys(dgd.Spec.Services))
+ return ctrl.Result{}, fmt.Errorf("service %s not found in DGD", adapter.Spec.DGDRef.ServiceName)
+ }
+
+ // Get current replicas from DGD (default to 1 if not set)
+ currentReplicas := int32(1)
+ if component.Replicas != nil {
+ currentReplicas = *component.Replicas
+ }
+
+ // 4. Update DGD if replicas changed (DGDSA is the source of truth)
+ if currentReplicas != adapter.Spec.Replicas {
+ // Update the service's replicas in DGD
+ component.Replicas = &adapter.Spec.Replicas
+ dgd.Spec.Services[adapter.Spec.DGDRef.ServiceName] = component
+
+ if err := r.Update(ctx, dgd); err != nil {
+ logger.Error(err, "Failed to update DGD")
+ r.Recorder.Eventf(adapter, corev1.EventTypeWarning, "UpdateFailed",
+ "Failed to update DGD %s: %v", dgd.Name, err)
+ return ctrl.Result{}, err
+ }
+
+ logger.Info("Scaled service",
+ "dgd", dgd.Name,
+ "service", adapter.Spec.DGDRef.ServiceName,
+ "from", currentReplicas,
+ "to", adapter.Spec.Replicas)
+
+ r.Recorder.Eventf(adapter, corev1.EventTypeNormal, "Scaled",
+ "Scaled service %s from %d to %d replicas", adapter.Spec.DGDRef.ServiceName, currentReplicas, adapter.Spec.Replicas)
+
+ // Record scaling event
+ now := metav1.Now()
+ adapter.Status.LastScaleTime = &now
+ }
+
+ // 5. Update adapter status
+ adapter.Status.Replicas = adapter.Spec.Replicas
+ adapter.Status.Selector = r.buildPodSelector(dgd, adapter.Spec.DGDRef.ServiceName)
+
+ if err := r.Status().Update(ctx, adapter); err != nil {
+ logger.Error(err, "Failed to update adapter status")
+ return ctrl.Result{}, err
+ }
+
+ return ctrl.Result{}, nil
+}
+
+// buildPodSelector constructs a label selector for the pods managed by this service
+func (r *DynamoGraphDeploymentScalingAdapterReconciler) buildPodSelector(dgd *nvidiacomv1alpha1.DynamoGraphDeployment, serviceName string) string {
+ // Pods are labeled with:
+ // - nvidia.com/dynamo-graph-deployment-name = dgd.Name
+ // - nvidia.com/dynamo-component = serviceName (the key from spec.services map)
+ return fmt.Sprintf("%s=%s,%s=%s",
+ consts.KubeLabelDynamoGraphDeploymentName, dgd.Name,
+ consts.KubeLabelDynamoComponent, serviceName)
+}
+
+// SetupWithManager sets up the controller with the Manager
+func (r *DynamoGraphDeploymentScalingAdapterReconciler) SetupWithManager(mgr ctrl.Manager) error {
+ return ctrl.NewControllerManagedBy(mgr).
+ For(&nvidiacomv1alpha1.DynamoGraphDeploymentScalingAdapter{}, builder.WithPredicates(
+ predicate.GenerationChangedPredicate{},
+ )).
+ Named("dgdscalingadapter").
+ // Watch DGDs to sync status when DGD service replicas change
+ Watches(
+ &nvidiacomv1alpha1.DynamoGraphDeployment{},
+ handler.EnqueueRequestsFromMapFunc(r.findAdaptersForDGD),
+ builder.WithPredicates(predicate.Funcs{
+ CreateFunc: func(ce event.CreateEvent) bool { return false },
+ DeleteFunc: func(de event.DeleteEvent) bool { return true },
+ UpdateFunc: func(ue event.UpdateEvent) bool {
+ // Only trigger on spec changes (not status)
+ oldDGD, okOld := ue.ObjectOld.(*nvidiacomv1alpha1.DynamoGraphDeployment)
+ newDGD, okNew := ue.ObjectNew.(*nvidiacomv1alpha1.DynamoGraphDeployment)
+ if !okOld || !okNew {
+ return false
+ }
+ // Trigger if services map changed
+ return !servicesEqual(oldDGD.Spec.Services, newDGD.Spec.Services)
+ },
+ GenericFunc: func(ge event.GenericEvent) bool { return false },
+ }),
+ ).
+ WithEventFilter(commonController.EphemeralDeploymentEventFilter(r.Config)).
+ Complete(r)
+}
+
+// findAdaptersForDGD maps DGD changes to adapter reconcile requests
+// Uses label selector to efficiently query only adapters for this specific DGD
+func (r *DynamoGraphDeploymentScalingAdapterReconciler) findAdaptersForDGD(ctx context.Context, obj client.Object) []reconcile.Request {
+ dgd, ok := obj.(*nvidiacomv1alpha1.DynamoGraphDeployment)
+ if !ok {
+ return nil
+ }
+
+ // Use label selector to filter at API level (more efficient than in-memory filtering)
+ adapterList := &nvidiacomv1alpha1.DynamoGraphDeploymentScalingAdapterList{}
+ if err := r.List(ctx, adapterList,
+ client.InNamespace(dgd.Namespace),
+ client.MatchingLabels{consts.KubeLabelDynamoGraphDeploymentName: dgd.Name},
+ ); err != nil {
+ log.FromContext(ctx).Error(err, "Failed to list adapters for DGD", "dgd", dgd.Name)
+ return nil
+ }
+
+ // All returned adapters are guaranteed to belong to this DGD
+ requests := make([]reconcile.Request, 0, len(adapterList.Items))
+ for i := range adapterList.Items {
+ requests = append(requests, reconcile.Request{
+ NamespacedName: types.NamespacedName{
+ Name: adapterList.Items[i].Name,
+ Namespace: adapterList.Items[i].Namespace,
+ },
+ })
+ }
+
+ return requests
+}
diff --git a/deploy/cloud/operator/internal/controller/dynamographdeploymentscalingadapter_controller_test.go b/deploy/cloud/operator/internal/controller/dynamographdeploymentscalingadapter_controller_test.go
new file mode 100644
index 0000000000..33c6b9f5e8
--- /dev/null
+++ b/deploy/cloud/operator/internal/controller/dynamographdeploymentscalingadapter_controller_test.go
@@ -0,0 +1,512 @@
+/*
+ * SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package controller
+
+import (
+ "context"
+ "testing"
+
+ "github.com/ai-dynamo/dynamo/deploy/cloud/operator/api/v1alpha1"
+ "github.com/ai-dynamo/dynamo/deploy/cloud/operator/internal/consts"
+ metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
+ "k8s.io/apimachinery/pkg/types"
+ "k8s.io/client-go/kubernetes/scheme"
+ "k8s.io/client-go/tools/record"
+ "k8s.io/utils/ptr"
+ ctrl "sigs.k8s.io/controller-runtime"
+ "sigs.k8s.io/controller-runtime/pkg/client"
+ "sigs.k8s.io/controller-runtime/pkg/client/fake"
+)
+
+func TestDynamoGraphDeploymentScalingAdapterReconciler_Reconcile(t *testing.T) {
+ // Register custom types with the scheme
+ if err := v1alpha1.AddToScheme(scheme.Scheme); err != nil {
+ t.Fatalf("Failed to add v1alpha1 to scheme: %v", err)
+ }
+
+ tests := []struct {
+ name string
+ adapter *v1alpha1.DynamoGraphDeploymentScalingAdapter
+ dgd *v1alpha1.DynamoGraphDeployment
+ expectedDGDReplicas int32
+ expectedStatusReplicas int32
+ expectError bool
+ expectRequeue bool
+ }{
+ {
+ name: "updates DGD replicas when DGDSA spec differs",
+ adapter: &v1alpha1.DynamoGraphDeploymentScalingAdapter{
+ ObjectMeta: metav1.ObjectMeta{
+ Name: "test-dgd-frontend",
+ Namespace: "default",
+ },
+ Spec: v1alpha1.DynamoGraphDeploymentScalingAdapterSpec{
+ Replicas: 5,
+ DGDRef: v1alpha1.DynamoGraphDeploymentServiceRef{
+ Name: "test-dgd",
+ ServiceName: "Frontend",
+ },
+ },
+ },
+ dgd: &v1alpha1.DynamoGraphDeployment{
+ ObjectMeta: metav1.ObjectMeta{
+ Name: "test-dgd",
+ Namespace: "default",
+ },
+ Spec: v1alpha1.DynamoGraphDeploymentSpec{
+ Services: map[string]*v1alpha1.DynamoComponentDeploymentSharedSpec{
+ "Frontend": {
+ Replicas: ptr.To(int32(2)),
+ },
+ },
+ },
+ },
+ expectedDGDReplicas: 5,
+ expectedStatusReplicas: 5,
+ expectError: false,
+ },
+ {
+ name: "no update when replicas already match",
+ adapter: &v1alpha1.DynamoGraphDeploymentScalingAdapter{
+ ObjectMeta: metav1.ObjectMeta{
+ Name: "test-dgd-frontend",
+ Namespace: "default",
+ },
+ Spec: v1alpha1.DynamoGraphDeploymentScalingAdapterSpec{
+ Replicas: 3,
+ DGDRef: v1alpha1.DynamoGraphDeploymentServiceRef{
+ Name: "test-dgd",
+ ServiceName: "Frontend",
+ },
+ },
+ },
+ dgd: &v1alpha1.DynamoGraphDeployment{
+ ObjectMeta: metav1.ObjectMeta{
+ Name: "test-dgd",
+ Namespace: "default",
+ },
+ Spec: v1alpha1.DynamoGraphDeploymentSpec{
+ Services: map[string]*v1alpha1.DynamoComponentDeploymentSharedSpec{
+ "Frontend": {
+ Replicas: ptr.To(int32(3)),
+ },
+ },
+ },
+ },
+ expectedDGDReplicas: 3,
+ expectedStatusReplicas: 3,
+ expectError: false,
+ },
+ {
+ name: "uses default replicas (1) when DGD service has no replicas set",
+ adapter: &v1alpha1.DynamoGraphDeploymentScalingAdapter{
+ ObjectMeta: metav1.ObjectMeta{
+ Name: "test-dgd-worker",
+ Namespace: "default",
+ },
+ Spec: v1alpha1.DynamoGraphDeploymentScalingAdapterSpec{
+ Replicas: 4,
+ DGDRef: v1alpha1.DynamoGraphDeploymentServiceRef{
+ Name: "test-dgd",
+ ServiceName: "worker",
+ },
+ },
+ },
+ dgd: &v1alpha1.DynamoGraphDeployment{
+ ObjectMeta: metav1.ObjectMeta{
+ Name: "test-dgd",
+ Namespace: "default",
+ },
+ Spec: v1alpha1.DynamoGraphDeploymentSpec{
+ Services: map[string]*v1alpha1.DynamoComponentDeploymentSharedSpec{
+ "worker": {}, // no replicas set
+ },
+ },
+ },
+ expectedDGDReplicas: 4,
+ expectedStatusReplicas: 4,
+ expectError: false,
+ },
+ {
+ name: "error when service not found in DGD",
+ adapter: &v1alpha1.DynamoGraphDeploymentScalingAdapter{
+ ObjectMeta: metav1.ObjectMeta{
+ Name: "test-dgd-missing",
+ Namespace: "default",
+ },
+ Spec: v1alpha1.DynamoGraphDeploymentScalingAdapterSpec{
+ Replicas: 2,
+ DGDRef: v1alpha1.DynamoGraphDeploymentServiceRef{
+ Name: "test-dgd",
+ ServiceName: "nonexistent",
+ },
+ },
+ },
+ dgd: &v1alpha1.DynamoGraphDeployment{
+ ObjectMeta: metav1.ObjectMeta{
+ Name: "test-dgd",
+ Namespace: "default",
+ },
+ Spec: v1alpha1.DynamoGraphDeploymentSpec{
+ Services: map[string]*v1alpha1.DynamoComponentDeploymentSharedSpec{
+ "Frontend": {
+ Replicas: ptr.To(int32(1)),
+ },
+ },
+ },
+ },
+ expectError: true,
+ },
+ }
+
+ for _, tt := range tests {
+ t.Run(tt.name, func(t *testing.T) {
+ // Build initial objects
+ var initObjs []client.Object
+ initObjs = append(initObjs, tt.adapter, tt.dgd)
+
+ // Create fake client with status subresource support
+ fakeClient := fake.NewClientBuilder().
+ WithScheme(scheme.Scheme).
+ WithObjects(initObjs...).
+ WithStatusSubresource(&v1alpha1.DynamoGraphDeploymentScalingAdapter{}).
+ Build()
+
+ // Create reconciler
+ r := &DynamoGraphDeploymentScalingAdapterReconciler{
+ Client: fakeClient,
+ Scheme: scheme.Scheme,
+ Recorder: record.NewFakeRecorder(10),
+ }
+
+ // Run Reconcile
+ ctx := context.Background()
+ req := ctrl.Request{
+ NamespacedName: types.NamespacedName{
+ Name: tt.adapter.Name,
+ Namespace: tt.adapter.Namespace,
+ },
+ }
+
+ result, err := r.Reconcile(ctx, req)
+
+ // Check error expectation
+ if tt.expectError && err == nil {
+ t.Errorf("Expected error, but got none")
+ }
+ if !tt.expectError && err != nil {
+ t.Errorf("Unexpected error: %v", err)
+ }
+
+ // Skip further checks if error was expected
+ if tt.expectError {
+ return
+ }
+
+ // Check requeue
+ if tt.expectRequeue && result.RequeueAfter == 0 {
+ t.Errorf("Expected requeue, but got none")
+ }
+
+ // Verify DGD replicas were updated
+ updatedDGD := &v1alpha1.DynamoGraphDeployment{}
+ if err := fakeClient.Get(ctx, types.NamespacedName{Name: tt.dgd.Name, Namespace: tt.dgd.Namespace}, updatedDGD); err != nil {
+ t.Fatalf("Failed to get updated DGD: %v", err)
+ }
+
+ service, exists := updatedDGD.Spec.Services[tt.adapter.Spec.DGDRef.ServiceName]
+ if !exists {
+ t.Fatalf("Service %s not found in updated DGD", tt.adapter.Spec.DGDRef.ServiceName)
+ }
+
+ actualReplicas := int32(1)
+ if service.Replicas != nil {
+ actualReplicas = *service.Replicas
+ }
+
+ if actualReplicas != tt.expectedDGDReplicas {
+ t.Errorf("DGD service replicas = %d, expected %d", actualReplicas, tt.expectedDGDReplicas)
+ }
+
+ // Verify adapter status was updated
+ updatedAdapter := &v1alpha1.DynamoGraphDeploymentScalingAdapter{}
+ if err := fakeClient.Get(ctx, types.NamespacedName{Name: tt.adapter.Name, Namespace: tt.adapter.Namespace}, updatedAdapter); err != nil {
+ t.Fatalf("Failed to get updated adapter: %v", err)
+ }
+
+ if updatedAdapter.Status.Replicas != tt.expectedStatusReplicas {
+ t.Errorf("Adapter status.replicas = %d, expected %d", updatedAdapter.Status.Replicas, tt.expectedStatusReplicas)
+ }
+
+ // Verify selector is set
+ if updatedAdapter.Status.Selector == "" {
+ t.Errorf("Adapter status.selector is empty, expected non-empty")
+ }
+ })
+ }
+}
+
+func TestDynamoGraphDeploymentScalingAdapterReconciler_Reconcile_NotFound(t *testing.T) {
+ // Register custom types with the scheme
+ if err := v1alpha1.AddToScheme(scheme.Scheme); err != nil {
+ t.Fatalf("Failed to add v1alpha1 to scheme: %v", err)
+ }
+
+ // Create fake client with no objects
+ fakeClient := fake.NewClientBuilder().
+ WithScheme(scheme.Scheme).
+ Build()
+
+ r := &DynamoGraphDeploymentScalingAdapterReconciler{
+ Client: fakeClient,
+ Scheme: scheme.Scheme,
+ Recorder: record.NewFakeRecorder(10),
+ }
+
+ ctx := context.Background()
+ req := ctrl.Request{
+ NamespacedName: types.NamespacedName{
+ Name: "nonexistent",
+ Namespace: "default",
+ },
+ }
+
+ // Should return no error when adapter not found (client.IgnoreNotFound)
+ result, err := r.Reconcile(ctx, req)
+ if err != nil {
+ t.Errorf("Expected no error for not found adapter, got: %v", err)
+ }
+ if result.RequeueAfter != 0 {
+ t.Errorf("Expected no requeueAfter for not found adapter, got: %v", result.RequeueAfter)
+ }
+}
+
+func TestDynamoGraphDeploymentScalingAdapterReconciler_Reconcile_DGDNotFound(t *testing.T) {
+ // Register custom types with the scheme
+ if err := v1alpha1.AddToScheme(scheme.Scheme); err != nil {
+ t.Fatalf("Failed to add v1alpha1 to scheme: %v", err)
+ }
+
+ adapter := &v1alpha1.DynamoGraphDeploymentScalingAdapter{
+ ObjectMeta: metav1.ObjectMeta{
+ Name: "test-dgd-frontend",
+ Namespace: "default",
+ },
+ Spec: v1alpha1.DynamoGraphDeploymentScalingAdapterSpec{
+ Replicas: 5,
+ DGDRef: v1alpha1.DynamoGraphDeploymentServiceRef{
+ Name: "nonexistent-dgd",
+ ServiceName: "Frontend",
+ },
+ },
+ }
+
+ fakeClient := fake.NewClientBuilder().
+ WithScheme(scheme.Scheme).
+ WithObjects(adapter).
+ Build()
+
+ r := &DynamoGraphDeploymentScalingAdapterReconciler{
+ Client: fakeClient,
+ Scheme: scheme.Scheme,
+ Recorder: record.NewFakeRecorder(10),
+ }
+
+ ctx := context.Background()
+ req := ctrl.Request{
+ NamespacedName: types.NamespacedName{
+ Name: adapter.Name,
+ Namespace: adapter.Namespace,
+ },
+ }
+
+ // Should return error when DGD not found
+ _, err := r.Reconcile(ctx, req)
+ if err == nil {
+ t.Errorf("Expected error when DGD not found, got none")
+ }
+}
+
+func TestDynamoGraphDeploymentScalingAdapterReconciler_Reconcile_BeingDeleted(t *testing.T) {
+ // Register custom types with the scheme
+ if err := v1alpha1.AddToScheme(scheme.Scheme); err != nil {
+ t.Fatalf("Failed to add v1alpha1 to scheme: %v", err)
+ }
+
+ now := metav1.Now()
+ adapter := &v1alpha1.DynamoGraphDeploymentScalingAdapter{
+ ObjectMeta: metav1.ObjectMeta{
+ Name: "test-dgd-frontend",
+ Namespace: "default",
+ DeletionTimestamp: &now,
+ Finalizers: []string{"test-finalizer"}, // Required for deletion timestamp to be set
+ },
+ Spec: v1alpha1.DynamoGraphDeploymentScalingAdapterSpec{
+ Replicas: 5,
+ DGDRef: v1alpha1.DynamoGraphDeploymentServiceRef{
+ Name: "test-dgd",
+ ServiceName: "Frontend",
+ },
+ },
+ }
+
+ dgd := &v1alpha1.DynamoGraphDeployment{
+ ObjectMeta: metav1.ObjectMeta{
+ Name: "test-dgd",
+ Namespace: "default",
+ },
+ Spec: v1alpha1.DynamoGraphDeploymentSpec{
+ Services: map[string]*v1alpha1.DynamoComponentDeploymentSharedSpec{
+ "Frontend": {
+ Replicas: ptr.To(int32(2)),
+ },
+ },
+ },
+ }
+
+ fakeClient := fake.NewClientBuilder().
+ WithScheme(scheme.Scheme).
+ WithObjects(adapter, dgd).
+ Build()
+
+ r := &DynamoGraphDeploymentScalingAdapterReconciler{
+ Client: fakeClient,
+ Scheme: scheme.Scheme,
+ Recorder: record.NewFakeRecorder(10),
+ }
+
+ ctx := context.Background()
+ req := ctrl.Request{
+ NamespacedName: types.NamespacedName{
+ Name: adapter.Name,
+ Namespace: adapter.Namespace,
+ },
+ }
+
+ // Should return no error and skip reconciliation
+ result, err := r.Reconcile(ctx, req)
+ if err != nil {
+ t.Errorf("Expected no error for deleting adapter, got: %v", err)
+ }
+ if result.RequeueAfter != 0 {
+ t.Errorf("Expected no requeueAfter for deleting adapter, got: %v", result.RequeueAfter)
+ }
+
+ // DGD replicas should NOT be updated (still 2)
+ updatedDGD := &v1alpha1.DynamoGraphDeployment{}
+ if err := fakeClient.Get(ctx, types.NamespacedName{Name: dgd.Name, Namespace: dgd.Namespace}, updatedDGD); err != nil {
+ t.Fatalf("Failed to get DGD: %v", err)
+ }
+
+ if *updatedDGD.Spec.Services["Frontend"].Replicas != 2 {
+ t.Errorf("DGD replicas should remain unchanged, got %d", *updatedDGD.Spec.Services["Frontend"].Replicas)
+ }
+}
+
+func TestDynamoGraphDeploymentScalingAdapterReconciler_findAdaptersForDGD(t *testing.T) {
+ // Register custom types with the scheme
+ if err := v1alpha1.AddToScheme(scheme.Scheme); err != nil {
+ t.Fatalf("Failed to add v1alpha1 to scheme: %v", err)
+ }
+
+ dgd := &v1alpha1.DynamoGraphDeployment{
+ ObjectMeta: metav1.ObjectMeta{
+ Name: "test-dgd",
+ Namespace: "default",
+ },
+ }
+
+ // Adapters belonging to test-dgd
+ adapter1 := &v1alpha1.DynamoGraphDeploymentScalingAdapter{
+ ObjectMeta: metav1.ObjectMeta{
+ Name: "test-dgd-frontend",
+ Namespace: "default",
+ Labels: map[string]string{
+ consts.KubeLabelDynamoGraphDeploymentName: "test-dgd",
+ },
+ },
+ Spec: v1alpha1.DynamoGraphDeploymentScalingAdapterSpec{
+ DGDRef: v1alpha1.DynamoGraphDeploymentServiceRef{
+ Name: "test-dgd",
+ ServiceName: "Frontend",
+ },
+ },
+ }
+
+ adapter2 := &v1alpha1.DynamoGraphDeploymentScalingAdapter{
+ ObjectMeta: metav1.ObjectMeta{
+ Name: "test-dgd-decode",
+ Namespace: "default",
+ Labels: map[string]string{
+ consts.KubeLabelDynamoGraphDeploymentName: "test-dgd",
+ },
+ },
+ Spec: v1alpha1.DynamoGraphDeploymentScalingAdapterSpec{
+ DGDRef: v1alpha1.DynamoGraphDeploymentServiceRef{
+ Name: "test-dgd",
+ ServiceName: "decode",
+ },
+ },
+ }
+
+ // Adapter belonging to different DGD
+ adapterOther := &v1alpha1.DynamoGraphDeploymentScalingAdapter{
+ ObjectMeta: metav1.ObjectMeta{
+ Name: "other-dgd-frontend",
+ Namespace: "default",
+ Labels: map[string]string{
+ consts.KubeLabelDynamoGraphDeploymentName: "other-dgd",
+ },
+ },
+ Spec: v1alpha1.DynamoGraphDeploymentScalingAdapterSpec{
+ DGDRef: v1alpha1.DynamoGraphDeploymentServiceRef{
+ Name: "other-dgd",
+ ServiceName: "Frontend",
+ },
+ },
+ }
+
+ fakeClient := fake.NewClientBuilder().
+ WithScheme(scheme.Scheme).
+ WithObjects(adapter1, adapter2, adapterOther).
+ Build()
+
+ r := &DynamoGraphDeploymentScalingAdapterReconciler{
+ Client: fakeClient,
+ }
+
+ ctx := context.Background()
+ requests := r.findAdaptersForDGD(ctx, dgd)
+
+ // Should return 2 requests (for test-dgd adapters only)
+ if len(requests) != 2 {
+ t.Errorf("findAdaptersForDGD() returned %d requests, expected 2", len(requests))
+ }
+
+ // Verify correct adapters are returned
+ expectedNames := map[string]bool{
+ "test-dgd-frontend": true,
+ "test-dgd-decode": true,
+ }
+
+ for _, req := range requests {
+ if !expectedNames[req.Name] {
+ t.Errorf("Unexpected adapter in results: %s", req.Name)
+ }
+ }
+}
diff --git a/deploy/cloud/operator/internal/controller_common/pod.go b/deploy/cloud/operator/internal/controller_common/pod.go
deleted file mode 100644
index 48415b4451..0000000000
--- a/deploy/cloud/operator/internal/controller_common/pod.go
+++ /dev/null
@@ -1,294 +0,0 @@
-package controller_common
-
-import (
- "sort"
-
- corev1 "k8s.io/api/core/v1"
-)
-
-// CanonicalizePodSpec sorts the pod spec in a way that is deterministic and easy to reason about.
-//
-//nolint:gocyclo
-func CanonicalizePodSpec(podSpec *corev1.PodSpec) *corev1.PodSpec {
- // Helper function to get EnvFromSource sort key
- envFromKey := func(e corev1.EnvFromSource) string {
- if e.ConfigMapRef != nil {
- return "cm:" + e.ConfigMapRef.Name + ":" + e.Prefix
- }
- if e.SecretRef != nil {
- return "sec:" + e.SecretRef.Name + ":" + e.Prefix
- }
- return "other:" + e.Prefix
- }
-
- // Helper function to sort container-like fields (works for both Container and EphemeralContainer)
- sortContainerFields := func(env []corev1.EnvVar, envFrom []corev1.EnvFromSource, ports []corev1.ContainerPort, volumeMounts []corev1.VolumeMount, securityContext *corev1.SecurityContext) {
- // Sort env vars by name
- if len(env) > 1 {
- sort.Slice(env, func(i, j int) bool { return env[i].Name < env[j].Name })
- }
-
- // Sort envFrom by referenced source and prefix
- if len(envFrom) > 1 {
- sort.Slice(envFrom, func(i, j int) bool {
- return envFromKey(envFrom[i]) < envFromKey(envFrom[j])
- })
- }
-
- // Sort ports by name then port number
- if len(ports) > 1 {
- sort.Slice(ports, func(i, j int) bool {
- if ports[i].Name == ports[j].Name {
- return ports[i].ContainerPort < ports[j].ContainerPort
- }
- return ports[i].Name < ports[j].Name
- })
- }
-
- // Sort volume mounts by name then mount path
- if len(volumeMounts) > 1 {
- sort.Slice(volumeMounts, func(i, j int) bool {
- if volumeMounts[i].Name == volumeMounts[j].Name {
- return volumeMounts[i].MountPath < volumeMounts[j].MountPath
- }
- return volumeMounts[i].Name < volumeMounts[j].Name
- })
- }
-
- // Sort security context capability lists
- if securityContext != nil && securityContext.Capabilities != nil {
- if caps := securityContext.Capabilities.Add; len(caps) > 1 {
- sort.Slice(caps, func(i, j int) bool { return string(caps[i]) < string(caps[j]) })
- }
- if caps := securityContext.Capabilities.Drop; len(caps) > 1 {
- sort.Slice(caps, func(i, j int) bool { return string(caps[i]) < string(caps[j]) })
- }
- }
- }
-
- // Sort regular containers
- for i := range podSpec.Containers {
- c := &podSpec.Containers[i]
- sortContainerFields(c.Env, c.EnvFrom, c.Ports, c.VolumeMounts, c.SecurityContext)
- }
- if len(podSpec.Containers) > 1 {
- sort.Slice(podSpec.Containers, func(i, j int) bool {
- return podSpec.Containers[i].Name < podSpec.Containers[j].Name
- })
- }
-
- // Sort init containers
- for i := range podSpec.InitContainers {
- c := &podSpec.InitContainers[i]
- sortContainerFields(c.Env, c.EnvFrom, c.Ports, c.VolumeMounts, c.SecurityContext)
- }
- if len(podSpec.InitContainers) > 1 {
- sort.Slice(podSpec.InitContainers, func(i, j int) bool {
- return podSpec.InitContainers[i].Name < podSpec.InitContainers[j].Name
- })
- }
-
- // Sort ephemeral containers
- for i := range podSpec.EphemeralContainers {
- ec := &podSpec.EphemeralContainers[i]
- sortContainerFields(ec.Env, ec.EnvFrom, ec.Ports, ec.VolumeMounts, ec.SecurityContext)
- }
- if len(podSpec.EphemeralContainers) > 1 {
- sort.Slice(podSpec.EphemeralContainers, func(i, j int) bool {
- return podSpec.EphemeralContainers[i].Name < podSpec.EphemeralContainers[j].Name
- })
- }
-
- // Sort image pull secrets
- if len(podSpec.ImagePullSecrets) > 1 {
- uniqueSecrets := ensureUniqueImagePullSecrets(podSpec.ImagePullSecrets)
- sort.Slice(uniqueSecrets, func(i, j int) bool {
- return uniqueSecrets[i].Name < uniqueSecrets[j].Name
- })
- podSpec.ImagePullSecrets = uniqueSecrets
- }
-
- // Sort volumes and their nested items
- sortKeyToPathItems := func(items []corev1.KeyToPath) {
- if len(items) > 1 {
- sort.Slice(items, func(i, j int) bool {
- if items[i].Key == items[j].Key {
- return items[i].Path < items[j].Path
- }
- return items[i].Key < items[j].Key
- })
- }
- }
-
- for i := range podSpec.Volumes {
- v := &podSpec.Volumes[i]
-
- // ConfigMap items
- if v.ConfigMap != nil {
- sortKeyToPathItems(v.ConfigMap.Items)
- }
-
- // Secret items
- if v.Secret != nil {
- sortKeyToPathItems(v.Secret.Items)
- }
-
- // DownwardAPI items
- if v.DownwardAPI != nil && len(v.DownwardAPI.Items) > 1 {
- sort.Slice(v.DownwardAPI.Items, func(i, j int) bool {
- return v.DownwardAPI.Items[i].Path < v.DownwardAPI.Items[j].Path
- })
- }
-
- // Projected sources
- if v.Projected != nil {
- // Sort projected sources
- if len(v.Projected.Sources) > 1 {
- sort.Slice(v.Projected.Sources, func(i, j int) bool {
- getProjectionKey := func(p corev1.VolumeProjection) string {
- if p.ConfigMap != nil {
- return "cm:" + p.ConfigMap.Name
- }
- if p.Secret != nil {
- return "sec:" + p.Secret.Name
- }
- if p.DownwardAPI != nil {
- return "downward:"
- }
- if p.ServiceAccountToken != nil {
- return "sat:" + p.ServiceAccountToken.Audience
- }
- return "z:other"
- }
- return getProjectionKey(v.Projected.Sources[i]) < getProjectionKey(v.Projected.Sources[j])
- })
- }
-
- // Sort nested items for each projection
- for j := range v.Projected.Sources {
- p := &v.Projected.Sources[j]
- if p.ConfigMap != nil {
- sortKeyToPathItems(p.ConfigMap.Items)
- }
- if p.Secret != nil {
- sortKeyToPathItems(p.Secret.Items)
- }
- if p.DownwardAPI != nil && len(p.DownwardAPI.Items) > 1 {
- sort.Slice(p.DownwardAPI.Items, func(i, j int) bool {
- return p.DownwardAPI.Items[i].Path < p.DownwardAPI.Items[j].Path
- })
- }
- }
- }
- }
-
- // Sort volumes by name
- if len(podSpec.Volumes) > 1 {
- sort.Slice(podSpec.Volumes, func(i, j int) bool {
- return podSpec.Volumes[i].Name < podSpec.Volumes[j].Name
- })
- }
-
- // Sort tolerations
- if len(podSpec.Tolerations) > 1 {
- sort.Slice(podSpec.Tolerations, func(i, j int) bool {
- a, b := podSpec.Tolerations[i], podSpec.Tolerations[j]
-
- if a.Key != b.Key {
- return a.Key < b.Key
- }
- if string(a.Operator) != string(b.Operator) {
- return string(a.Operator) < string(b.Operator)
- }
- if a.Value != b.Value {
- return a.Value < b.Value
- }
- if string(a.Effect) != string(b.Effect) {
- return string(a.Effect) < string(b.Effect)
- }
-
- // Handle TolerationSeconds (could be nil)
- aSec, bSec := int64(0), int64(0)
- if a.TolerationSeconds != nil {
- aSec = *a.TolerationSeconds
- }
- if b.TolerationSeconds != nil {
- bSec = *b.TolerationSeconds
- }
- return aSec < bSec
- })
- }
-
- // Sort topology spread constraints
- if len(podSpec.TopologySpreadConstraints) > 1 {
- sort.Slice(podSpec.TopologySpreadConstraints, func(i, j int) bool {
- a, b := podSpec.TopologySpreadConstraints[i], podSpec.TopologySpreadConstraints[j]
- if a.TopologyKey != b.TopologyKey {
- return a.TopologyKey < b.TopologyKey
- }
- if string(a.WhenUnsatisfiable) != string(b.WhenUnsatisfiable) {
- return string(a.WhenUnsatisfiable) < string(b.WhenUnsatisfiable)
- }
- return a.MaxSkew < b.MaxSkew
- })
- }
-
- // Sort host aliases
- if len(podSpec.HostAliases) > 1 {
- // First sort hostnames within each alias
- for i := range podSpec.HostAliases {
- if len(podSpec.HostAliases[i].Hostnames) > 1 {
- sort.Strings(podSpec.HostAliases[i].Hostnames)
- }
- }
- // Then sort aliases by IP
- sort.Slice(podSpec.HostAliases, func(i, j int) bool {
- return podSpec.HostAliases[i].IP < podSpec.HostAliases[j].IP
- })
- }
-
- // Sort DNS config
- if podSpec.DNSConfig != nil {
- // Sort DNS options
- if len(podSpec.DNSConfig.Options) > 1 {
- sort.Slice(podSpec.DNSConfig.Options, func(i, j int) bool {
- if podSpec.DNSConfig.Options[i].Name == podSpec.DNSConfig.Options[j].Name {
- vi, vj := "", ""
- if podSpec.DNSConfig.Options[i].Value != nil {
- vi = *podSpec.DNSConfig.Options[i].Value
- }
- if podSpec.DNSConfig.Options[j].Value != nil {
- vj = *podSpec.DNSConfig.Options[j].Value
- }
- return vi < vj
- }
- return podSpec.DNSConfig.Options[i].Name < podSpec.DNSConfig.Options[j].Name
- })
- }
-
- // Sort nameservers and search domains
- if len(podSpec.DNSConfig.Nameservers) > 1 {
- sort.Strings(podSpec.DNSConfig.Nameservers)
- }
- if len(podSpec.DNSConfig.Searches) > 1 {
- sort.Strings(podSpec.DNSConfig.Searches)
- }
- }
-
- return podSpec
-}
-
-func ensureUniqueImagePullSecrets(secrets []corev1.LocalObjectReference) []corev1.LocalObjectReference {
- if len(secrets) == 0 {
- return nil
- }
- uniqueSecrets := make(map[string]corev1.LocalObjectReference)
- for _, secret := range secrets {
- uniqueSecrets[secret.Name] = secret
- }
- uniqueSecretsList := make([]corev1.LocalObjectReference, 0, len(uniqueSecrets))
- for secretName := range uniqueSecrets {
- uniqueSecretsList = append(uniqueSecretsList, corev1.LocalObjectReference{Name: secretName})
- }
- return uniqueSecretsList
-}
diff --git a/deploy/cloud/operator/internal/controller_common/pod_test.go b/deploy/cloud/operator/internal/controller_common/pod_test.go
deleted file mode 100644
index 94a646cf67..0000000000
--- a/deploy/cloud/operator/internal/controller_common/pod_test.go
+++ /dev/null
@@ -1,891 +0,0 @@
-package controller_common
-
-import (
- "testing"
-
- "github.com/stretchr/testify/assert"
- corev1 "k8s.io/api/core/v1"
-)
-
-func TestCanonicalizePodSpec(t *testing.T) {
- tests := []struct {
- name string
- input *corev1.PodSpec
- expected *corev1.PodSpec
- }{
- {
- name: "sorts containers by name",
- input: &corev1.PodSpec{
- Containers: []corev1.Container{
- {Name: "zebra"},
- {Name: "alpha"},
- {Name: "beta"},
- },
- },
- expected: &corev1.PodSpec{
- Containers: []corev1.Container{
- {Name: "alpha"},
- {Name: "beta"},
- {Name: "zebra"},
- },
- },
- },
- {
- name: "sorts init containers by name",
- input: &corev1.PodSpec{
- InitContainers: []corev1.Container{
- {Name: "init-zebra"},
- {Name: "init-alpha"},
- },
- },
- expected: &corev1.PodSpec{
- InitContainers: []corev1.Container{
- {Name: "init-alpha"},
- {Name: "init-zebra"},
- },
- },
- },
- {
- name: "sorts ephemeral containers by name",
- input: &corev1.PodSpec{
- EphemeralContainers: []corev1.EphemeralContainer{
- {EphemeralContainerCommon: corev1.EphemeralContainerCommon{Name: "debug-zebra"}},
- {EphemeralContainerCommon: corev1.EphemeralContainerCommon{Name: "debug-alpha"}},
- },
- },
- expected: &corev1.PodSpec{
- EphemeralContainers: []corev1.EphemeralContainer{
- {EphemeralContainerCommon: corev1.EphemeralContainerCommon{Name: "debug-alpha"}},
- {EphemeralContainerCommon: corev1.EphemeralContainerCommon{Name: "debug-zebra"}},
- },
- },
- },
- {
- name: "sorts environment variables by name",
- input: &corev1.PodSpec{
- Containers: []corev1.Container{
- {
- Name: "test",
- Env: []corev1.EnvVar{
- {Name: "ZOO", Value: "zebra"},
- {Name: "ALPHA", Value: "apple"},
- {Name: "BETA", Value: "banana"},
- },
- },
- },
- },
- expected: &corev1.PodSpec{
- Containers: []corev1.Container{
- {
- Name: "test",
- Env: []corev1.EnvVar{
- {Name: "ALPHA", Value: "apple"},
- {Name: "BETA", Value: "banana"},
- {Name: "ZOO", Value: "zebra"},
- },
- },
- },
- },
- },
- {
- name: "sorts envFrom by source type and name",
- input: &corev1.PodSpec{
- Containers: []corev1.Container{
- {
- Name: "test",
- EnvFrom: []corev1.EnvFromSource{
- {SecretRef: &corev1.SecretEnvSource{LocalObjectReference: corev1.LocalObjectReference{Name: "secret-z"}}},
- {ConfigMapRef: &corev1.ConfigMapEnvSource{LocalObjectReference: corev1.LocalObjectReference{Name: "config-a"}}},
- {SecretRef: &corev1.SecretEnvSource{LocalObjectReference: corev1.LocalObjectReference{Name: "secret-a"}}},
- {ConfigMapRef: &corev1.ConfigMapEnvSource{LocalObjectReference: corev1.LocalObjectReference{Name: "config-z"}}},
- },
- },
- },
- },
- expected: &corev1.PodSpec{
- Containers: []corev1.Container{
- {
- Name: "test",
- EnvFrom: []corev1.EnvFromSource{
- {ConfigMapRef: &corev1.ConfigMapEnvSource{LocalObjectReference: corev1.LocalObjectReference{Name: "config-a"}}},
- {ConfigMapRef: &corev1.ConfigMapEnvSource{LocalObjectReference: corev1.LocalObjectReference{Name: "config-z"}}},
- {SecretRef: &corev1.SecretEnvSource{LocalObjectReference: corev1.LocalObjectReference{Name: "secret-a"}}},
- {SecretRef: &corev1.SecretEnvSource{LocalObjectReference: corev1.LocalObjectReference{Name: "secret-z"}}},
- },
- },
- },
- },
- },
- {
- name: "sorts container ports by name then port number",
- input: &corev1.PodSpec{
- Containers: []corev1.Container{
- {
- Name: "test",
- Ports: []corev1.ContainerPort{
- {Name: "http", ContainerPort: 8080},
- {Name: "grpc", ContainerPort: 9090},
- {Name: "grpc", ContainerPort: 8080},
- {Name: "debug", ContainerPort: 8080},
- },
- },
- },
- },
- expected: &corev1.PodSpec{
- Containers: []corev1.Container{
- {
- Name: "test",
- Ports: []corev1.ContainerPort{
- {Name: "debug", ContainerPort: 8080},
- {Name: "grpc", ContainerPort: 8080},
- {Name: "grpc", ContainerPort: 9090},
- {Name: "http", ContainerPort: 8080},
- },
- },
- },
- },
- },
- {
- name: "sorts volume mounts by name then mount path",
- input: &corev1.PodSpec{
- Containers: []corev1.Container{
- {
- Name: "test",
- VolumeMounts: []corev1.VolumeMount{
- {Name: "vol1", MountPath: "/data2"},
- {Name: "vol2", MountPath: "/data1"},
- {Name: "vol1", MountPath: "/data1"},
- },
- },
- },
- },
- expected: &corev1.PodSpec{
- Containers: []corev1.Container{
- {
- Name: "test",
- VolumeMounts: []corev1.VolumeMount{
- {Name: "vol1", MountPath: "/data1"},
- {Name: "vol1", MountPath: "/data2"},
- {Name: "vol2", MountPath: "/data1"},
- },
- },
- },
- },
- },
- {
- name: "sorts security context capabilities",
- input: &corev1.PodSpec{
- Containers: []corev1.Container{
- {
- Name: "test",
- SecurityContext: &corev1.SecurityContext{
- Capabilities: &corev1.Capabilities{
- Add: []corev1.Capability{"SYS_ADMIN", "NET_ADMIN", "CHOWN"},
- Drop: []corev1.Capability{"ALL", "SETUID", "KILL"},
- },
- },
- },
- },
- },
- expected: &corev1.PodSpec{
- Containers: []corev1.Container{
- {
- Name: "test",
- SecurityContext: &corev1.SecurityContext{
- Capabilities: &corev1.Capabilities{
- Add: []corev1.Capability{"CHOWN", "NET_ADMIN", "SYS_ADMIN"},
- Drop: []corev1.Capability{"ALL", "KILL", "SETUID"},
- },
- },
- },
- },
- },
- },
- {
- name: "sorts image pull secrets by name",
- input: &corev1.PodSpec{
- ImagePullSecrets: []corev1.LocalObjectReference{
- {Name: "registry-z"},
- {Name: "registry-a"},
- {Name: "registry-b"},
- {Name: "registry-a"},
- },
- },
- expected: &corev1.PodSpec{
- ImagePullSecrets: []corev1.LocalObjectReference{
- {Name: "registry-a"},
- {Name: "registry-b"},
- {Name: "registry-z"},
- },
- },
- },
- {
- name: "sorts nil image pull secrets",
- input: &corev1.PodSpec{
- ImagePullSecrets: nil,
- },
- expected: &corev1.PodSpec{
- ImagePullSecrets: nil,
- },
- },
- {
- name: "sorts volumes by name",
- input: &corev1.PodSpec{
- Volumes: []corev1.Volume{
- {Name: "vol-z"},
- {Name: "vol-a"},
- {Name: "vol-b"},
- },
- },
- expected: &corev1.PodSpec{
- Volumes: []corev1.Volume{
- {Name: "vol-a"},
- {Name: "vol-b"},
- {Name: "vol-z"},
- },
- },
- },
- {
- name: "sorts configmap volume items by key then path",
- input: &corev1.PodSpec{
- Volumes: []corev1.Volume{
- {
- Name: "config",
- VolumeSource: corev1.VolumeSource{
- ConfigMap: &corev1.ConfigMapVolumeSource{
- Items: []corev1.KeyToPath{
- {Key: "app.conf", Path: "config/app.conf"},
- {Key: "db.conf", Path: "config/db.conf"},
- {Key: "app.conf", Path: "backup/app.conf"},
- },
- },
- },
- },
- },
- },
- expected: &corev1.PodSpec{
- Volumes: []corev1.Volume{
- {
- Name: "config",
- VolumeSource: corev1.VolumeSource{
- ConfigMap: &corev1.ConfigMapVolumeSource{
- Items: []corev1.KeyToPath{
- {Key: "app.conf", Path: "backup/app.conf"},
- {Key: "app.conf", Path: "config/app.conf"},
- {Key: "db.conf", Path: "config/db.conf"},
- },
- },
- },
- },
- },
- },
- },
- {
- name: "sorts secret volume items by key then path",
- input: &corev1.PodSpec{
- Volumes: []corev1.Volume{
- {
- Name: "secret",
- VolumeSource: corev1.VolumeSource{
- Secret: &corev1.SecretVolumeSource{
- Items: []corev1.KeyToPath{
- {Key: "tls.key", Path: "tls/server.key"},
- {Key: "tls.crt", Path: "tls/server.crt"},
- {Key: "tls.key", Path: "backup/server.key"},
- },
- },
- },
- },
- },
- },
- expected: &corev1.PodSpec{
- Volumes: []corev1.Volume{
- {
- Name: "secret",
- VolumeSource: corev1.VolumeSource{
- Secret: &corev1.SecretVolumeSource{
- Items: []corev1.KeyToPath{
- {Key: "tls.crt", Path: "tls/server.crt"},
- {Key: "tls.key", Path: "backup/server.key"},
- {Key: "tls.key", Path: "tls/server.key"},
- },
- },
- },
- },
- },
- },
- },
- {
- name: "sorts downward API items by path",
- input: &corev1.PodSpec{
- Volumes: []corev1.Volume{
- {
- Name: "downward",
- VolumeSource: corev1.VolumeSource{
- DownwardAPI: &corev1.DownwardAPIVolumeSource{
- Items: []corev1.DownwardAPIVolumeFile{
- {Path: "metadata/name"},
- {Path: "metadata/annotations"},
- {Path: "limits/cpu"},
- },
- },
- },
- },
- },
- },
- expected: &corev1.PodSpec{
- Volumes: []corev1.Volume{
- {
- Name: "downward",
- VolumeSource: corev1.VolumeSource{
- DownwardAPI: &corev1.DownwardAPIVolumeSource{
- Items: []corev1.DownwardAPIVolumeFile{
- {Path: "limits/cpu"},
- {Path: "metadata/annotations"},
- {Path: "metadata/name"},
- },
- },
- },
- },
- },
- },
- },
- {
- name: "sorts projected volume sources and their items",
- input: &corev1.PodSpec{
- Volumes: []corev1.Volume{
- {
- Name: "projected",
- VolumeSource: corev1.VolumeSource{
- Projected: &corev1.ProjectedVolumeSource{
- Sources: []corev1.VolumeProjection{
- {
- Secret: &corev1.SecretProjection{
- LocalObjectReference: corev1.LocalObjectReference{Name: "secret-z"},
- Items: []corev1.KeyToPath{
- {Key: "password", Path: "auth/password"},
- {Key: "username", Path: "auth/username"},
- },
- },
- },
- {
- ConfigMap: &corev1.ConfigMapProjection{
- LocalObjectReference: corev1.LocalObjectReference{Name: "config-a"},
- Items: []corev1.KeyToPath{
- {Key: "db.conf", Path: "config/db.conf"},
- {Key: "app.conf", Path: "config/app.conf"},
- },
- },
- },
- {
- DownwardAPI: &corev1.DownwardAPIProjection{
- Items: []corev1.DownwardAPIVolumeFile{
- {Path: "metadata/name"},
- {Path: "limits/cpu"},
- },
- },
- },
- {
- ServiceAccountToken: &corev1.ServiceAccountTokenProjection{
- Audience: "api.example.com",
- Path: "tokens/api",
- },
- },
- },
- },
- },
- },
- },
- },
- expected: &corev1.PodSpec{
- Volumes: []corev1.Volume{
- {
- Name: "projected",
- VolumeSource: corev1.VolumeSource{
- Projected: &corev1.ProjectedVolumeSource{
- Sources: []corev1.VolumeProjection{
- {
- ConfigMap: &corev1.ConfigMapProjection{
- LocalObjectReference: corev1.LocalObjectReference{Name: "config-a"},
- Items: []corev1.KeyToPath{
- {Key: "app.conf", Path: "config/app.conf"},
- {Key: "db.conf", Path: "config/db.conf"},
- },
- },
- },
- {
- DownwardAPI: &corev1.DownwardAPIProjection{
- Items: []corev1.DownwardAPIVolumeFile{
- {Path: "limits/cpu"},
- {Path: "metadata/name"},
- },
- },
- },
- {
- ServiceAccountToken: &corev1.ServiceAccountTokenProjection{
- Audience: "api.example.com",
- Path: "tokens/api",
- },
- },
- {
- Secret: &corev1.SecretProjection{
- LocalObjectReference: corev1.LocalObjectReference{Name: "secret-z"},
- Items: []corev1.KeyToPath{
- {Key: "password", Path: "auth/password"},
- {Key: "username", Path: "auth/username"},
- },
- },
- },
- },
- },
- },
- },
- },
- },
- },
- {
- name: "sorts tolerations by key, operator, value, effect, seconds",
- input: &corev1.PodSpec{
- Tolerations: []corev1.Toleration{
- {
- Key: "node-type",
- Operator: corev1.TolerationOpEqual,
- Value: "gpu",
- Effect: corev1.TaintEffectNoSchedule,
- },
- {
- Key: "node-role",
- Operator: corev1.TolerationOpEqual,
- Value: "master",
- Effect: corev1.TaintEffectNoSchedule,
- },
- {
- Key: "node-role",
- Operator: corev1.TolerationOpExists,
- Effect: corev1.TaintEffectNoSchedule,
- },
- },
- },
- expected: &corev1.PodSpec{
- Tolerations: []corev1.Toleration{
- {
- Key: "node-role",
- Operator: corev1.TolerationOpEqual,
- Value: "master",
- Effect: corev1.TaintEffectNoSchedule,
- },
- {
- Key: "node-role",
- Operator: corev1.TolerationOpExists,
- Effect: corev1.TaintEffectNoSchedule,
- },
- {
- Key: "node-type",
- Operator: corev1.TolerationOpEqual,
- Value: "gpu",
- Effect: corev1.TaintEffectNoSchedule,
- },
- },
- },
- },
- {
- name: "sorts topology spread constraints by topology key, when unsatisfiable, max skew",
- input: &corev1.PodSpec{
- TopologySpreadConstraints: []corev1.TopologySpreadConstraint{
- {
- TopologyKey: "kubernetes.io/zone",
- WhenUnsatisfiable: corev1.DoNotSchedule,
- MaxSkew: 2,
- },
- {
- TopologyKey: "kubernetes.io/hostname",
- WhenUnsatisfiable: corev1.DoNotSchedule,
- MaxSkew: 1,
- },
- {
- TopologyKey: "kubernetes.io/hostname",
- WhenUnsatisfiable: corev1.ScheduleAnyway,
- MaxSkew: 1,
- },
- },
- },
- expected: &corev1.PodSpec{
- TopologySpreadConstraints: []corev1.TopologySpreadConstraint{
- {
- TopologyKey: "kubernetes.io/hostname",
- WhenUnsatisfiable: corev1.DoNotSchedule,
- MaxSkew: 1,
- },
- {
- TopologyKey: "kubernetes.io/hostname",
- WhenUnsatisfiable: corev1.ScheduleAnyway,
- MaxSkew: 1,
- },
- {
- TopologyKey: "kubernetes.io/zone",
- WhenUnsatisfiable: corev1.DoNotSchedule,
- MaxSkew: 2,
- },
- },
- },
- },
- {
- name: "sorts host aliases by IP and hostnames within each alias",
- input: &corev1.PodSpec{
- HostAliases: []corev1.HostAlias{
- {
- IP: "192.168.1.2",
- Hostnames: []string{"web2.example.com", "api2.example.com"},
- },
- {
- IP: "192.168.1.1",
- Hostnames: []string{"web1.example.com", "api1.example.com", "admin1.example.com"},
- },
- },
- },
- expected: &corev1.PodSpec{
- HostAliases: []corev1.HostAlias{
- {
- IP: "192.168.1.1",
- Hostnames: []string{"admin1.example.com", "api1.example.com", "web1.example.com"},
- },
- {
- IP: "192.168.1.2",
- Hostnames: []string{"api2.example.com", "web2.example.com"},
- },
- },
- },
- },
- {
- name: "sorts DNS config options, nameservers, and searches",
- input: &corev1.PodSpec{
- DNSConfig: &corev1.PodDNSConfig{
- Options: []corev1.PodDNSConfigOption{
- {Name: "timeout", Value: func() *string { s := "5"; return &s }()},
- {Name: "attempts", Value: func() *string { s := "3"; return &s }()},
- {Name: "ndots", Value: func() *string { s := "2"; return &s }()},
- },
- Nameservers: []string{"8.8.8.8", "1.1.1.1", "8.8.4.4"},
- Searches: []string{"example.com", "cluster.local", "app.local"},
- },
- },
- expected: &corev1.PodSpec{
- DNSConfig: &corev1.PodDNSConfig{
- Options: []corev1.PodDNSConfigOption{
- {Name: "attempts", Value: func() *string { s := "3"; return &s }()},
- {Name: "ndots", Value: func() *string { s := "2"; return &s }()},
- {Name: "timeout", Value: func() *string { s := "5"; return &s }()},
- },
- Nameservers: []string{"1.1.1.1", "8.8.4.4", "8.8.8.8"},
- Searches: []string{"app.local", "cluster.local", "example.com"},
- },
- },
- },
- {
- name: "handles nil pointer values gracefully",
- input: &corev1.PodSpec{
- Containers: []corev1.Container{
- {
- Name: "test",
- SecurityContext: &corev1.SecurityContext{
- Capabilities: nil,
- },
- },
- },
- DNSConfig: &corev1.PodDNSConfig{
- Options: []corev1.PodDNSConfigOption{
- {Name: "timeout", Value: nil},
- {Name: "attempts", Value: func() *string { s := "3"; return &s }()},
- },
- },
- Tolerations: []corev1.Toleration{
- {
- Key: "test",
- TolerationSeconds: nil,
- },
- {
- Key: "test2",
- TolerationSeconds: func() *int64 { s := int64(300); return &s }(),
- },
- },
- },
- expected: &corev1.PodSpec{
- Containers: []corev1.Container{
- {
- Name: "test",
- SecurityContext: &corev1.SecurityContext{
- Capabilities: nil,
- },
- },
- },
- DNSConfig: &corev1.PodDNSConfig{
- Options: []corev1.PodDNSConfigOption{
- {Name: "attempts", Value: func() *string { s := "3"; return &s }()},
- {Name: "timeout", Value: nil},
- },
- },
- Tolerations: []corev1.Toleration{
- {
- Key: "test",
- TolerationSeconds: nil,
- },
- {
- Key: "test2",
- TolerationSeconds: func() *int64 { s := int64(300); return &s }(),
- },
- },
- },
- },
- {
- name: "returns original podspec when already sorted",
- input: &corev1.PodSpec{
- Containers: []corev1.Container{
- {
- Name: "alpha",
- Env: []corev1.EnvVar{
- {Name: "A", Value: "1"},
- {Name: "B", Value: "2"},
- },
- },
- {Name: "beta"},
- },
- ImagePullSecrets: []corev1.LocalObjectReference{
- {Name: "secret-a"},
- {Name: "secret-b"},
- },
- },
- expected: &corev1.PodSpec{
- Containers: []corev1.Container{
- {
- Name: "alpha",
- Env: []corev1.EnvVar{
- {Name: "A", Value: "1"},
- {Name: "B", Value: "2"},
- },
- },
- {Name: "beta"},
- },
- ImagePullSecrets: []corev1.LocalObjectReference{
- {Name: "secret-a"},
- {Name: "secret-b"},
- },
- },
- },
- {
- name: "handles empty slices gracefully",
- input: &corev1.PodSpec{
- Containers: []corev1.Container{},
- InitContainers: []corev1.Container{},
- ImagePullSecrets: []corev1.LocalObjectReference{},
- Volumes: []corev1.Volume{},
- Tolerations: []corev1.Toleration{},
- },
- expected: &corev1.PodSpec{
- Containers: []corev1.Container{},
- InitContainers: []corev1.Container{},
- ImagePullSecrets: []corev1.LocalObjectReference{},
- Volumes: []corev1.Volume{},
- Tolerations: []corev1.Toleration{},
- },
- },
- }
-
- for _, tt := range tests {
- t.Run(tt.name, func(t *testing.T) {
- result := CanonicalizePodSpec(tt.input)
-
- // Verify the function returns the same instance
- assert.Same(t, tt.input, result, "function should return the same PodSpec instance")
-
- // Verify the sorting is correct
- assert.Equal(t, tt.expected, result, "PodSpec should be sorted correctly")
- })
- }
-}
-
-func TestCanonicalizePodSpec_Idempotent(t *testing.T) {
- // Create a complex, unsorted PodSpec
- podSpec := &corev1.PodSpec{
- Containers: []corev1.Container{
- {
- Name: "zebra",
- Env: []corev1.EnvVar{
- {Name: "Z_VAR", Value: "z"},
- {Name: "A_VAR", Value: "a"},
- },
- Ports: []corev1.ContainerPort{
- {Name: "http", ContainerPort: 8080},
- {Name: "grpc", ContainerPort: 9090},
- },
- VolumeMounts: []corev1.VolumeMount{
- {Name: "vol2", MountPath: "/data2"},
- {Name: "vol1", MountPath: "/data1"},
- },
- },
- {Name: "alpha"},
- },
- InitContainers: []corev1.Container{
- {Name: "init-zebra"},
- {Name: "init-alpha"},
- },
- ImagePullSecrets: []corev1.LocalObjectReference{
- {Name: "secret-z"},
- {Name: "secret-a"},
- },
- Volumes: []corev1.Volume{
- {Name: "vol-z"},
- {Name: "vol-a"},
- },
- Tolerations: []corev1.Toleration{
- {Key: "node-z"},
- {Key: "node-a"},
- },
- }
-
- // First canonicalization
- result1 := CanonicalizePodSpec(podSpec)
-
- // Second canonicalization on the same object
- result2 := CanonicalizePodSpec(result1)
-
- // Should be identical after second canonicalization
- assert.Equal(t, result1, result2, "CanonicalizePodSpec should be idempotent")
-
- // Verify containers are sorted
- assert.Equal(t, "alpha", result2.Containers[0].Name)
- assert.Equal(t, "zebra", result2.Containers[1].Name)
-
- // Verify env vars within containers are sorted
- assert.Equal(t, "A_VAR", result2.Containers[1].Env[0].Name)
- assert.Equal(t, "Z_VAR", result2.Containers[1].Env[1].Name)
-
- // Verify ports are sorted
- assert.Equal(t, "grpc", result2.Containers[1].Ports[0].Name)
- assert.Equal(t, "http", result2.Containers[1].Ports[1].Name)
-
- // Verify volume mounts are sorted
- assert.Equal(t, "vol1", result2.Containers[1].VolumeMounts[0].Name)
- assert.Equal(t, "vol2", result2.Containers[1].VolumeMounts[1].Name)
-}
-
-func TestCanonicalizePodSpec_EnvFromSortPriority(t *testing.T) {
- podSpec := &corev1.PodSpec{
- Containers: []corev1.Container{
- {
- Name: "test",
- EnvFrom: []corev1.EnvFromSource{
- {SecretRef: &corev1.SecretEnvSource{LocalObjectReference: corev1.LocalObjectReference{Name: "secret-b"}}},
- {ConfigMapRef: &corev1.ConfigMapEnvSource{LocalObjectReference: corev1.LocalObjectReference{Name: "config-b"}}},
- {SecretRef: &corev1.SecretEnvSource{LocalObjectReference: corev1.LocalObjectReference{Name: "secret-a"}}},
- {ConfigMapRef: &corev1.ConfigMapEnvSource{LocalObjectReference: corev1.LocalObjectReference{Name: "config-a"}}},
- // Test duplicate names for secondary sort
- {ConfigMapRef: &corev1.ConfigMapEnvSource{LocalObjectReference: corev1.LocalObjectReference{Name: "config-a"}}},
- {SecretRef: &corev1.SecretEnvSource{LocalObjectReference: corev1.LocalObjectReference{Name: "secret-a"}}},
- },
- },
- },
- }
-
- result := CanonicalizePodSpec(podSpec)
-
- // ConfigMaps should come before Secrets (cm: < sec:)
- // Within each type, sorted by name
- expected := []string{
- "cm:config-a:", // ConfigMap config-a
- "cm:config-a:", // ConfigMap config-a (duplicate)
- "cm:config-b:", // ConfigMap config-b
- "sec:secret-a:", // Secret secret-a
- "sec:secret-a:", // Secret secret-a (duplicate)
- "sec:secret-b:", // Secret secret-b
- }
-
- envFromKey := func(e corev1.EnvFromSource) string {
- if e.ConfigMapRef != nil {
- return "cm:" + e.ConfigMapRef.Name + ":"
- }
- if e.SecretRef != nil {
- return "sec:" + e.SecretRef.Name + ":"
- }
- return "other:"
- }
-
- for i, envFrom := range result.Containers[0].EnvFrom {
- assert.Equal(t, expected[i], envFromKey(envFrom), "EnvFrom at index %d should match expected sort order", i)
- }
-}
-
-func TestCanonicalizePodSpec_TolerationSecondsHandling(t *testing.T) {
- sec300 := int64(300)
- sec600 := int64(600)
-
- podSpec := &corev1.PodSpec{
- Tolerations: []corev1.Toleration{
- {Key: "key1", TolerationSeconds: &sec600},
- {Key: "key1", TolerationSeconds: nil},
- {Key: "key1", TolerationSeconds: &sec300},
- },
- }
-
- result := CanonicalizePodSpec(podSpec)
-
- // Should be sorted by TolerationSeconds: nil (0) < 300 < 600
- assert.Nil(t, result.Tolerations[0].TolerationSeconds)
- assert.Equal(t, int64(300), *result.Tolerations[1].TolerationSeconds)
- assert.Equal(t, int64(600), *result.Tolerations[2].TolerationSeconds)
-}
-
-func TestCanonicalizePodSpec_ProjectedVolumeSourcePriority(t *testing.T) {
- podSpec := &corev1.PodSpec{
- Volumes: []corev1.Volume{
- {
- Name: "projected",
- VolumeSource: corev1.VolumeSource{
- Projected: &corev1.ProjectedVolumeSource{
- Sources: []corev1.VolumeProjection{
- {Secret: &corev1.SecretProjection{LocalObjectReference: corev1.LocalObjectReference{Name: "secret-a"}}},
- {ServiceAccountToken: &corev1.ServiceAccountTokenProjection{Audience: "zz.example.com"}},
- {DownwardAPI: &corev1.DownwardAPIProjection{}},
- {ConfigMap: &corev1.ConfigMapProjection{LocalObjectReference: corev1.LocalObjectReference{Name: "config-z"}}},
- {ServiceAccountToken: &corev1.ServiceAccountTokenProjection{Audience: "aa.example.com"}},
- {ConfigMap: &corev1.ConfigMapProjection{LocalObjectReference: corev1.LocalObjectReference{Name: "config-a"}}},
- },
- },
- },
- },
- },
- }
-
- result := CanonicalizePodSpec(podSpec)
-
- // Expected sort order: cm: < downward: < sat: < sec:
- // Within same type, sorted by name/audience
- getProjectionKey := func(p corev1.VolumeProjection) string {
- if p.ConfigMap != nil {
- return "cm:" + p.ConfigMap.Name
- }
- if p.Secret != nil {
- return "sec:" + p.Secret.Name
- }
- if p.DownwardAPI != nil {
- return "downward:"
- }
- if p.ServiceAccountToken != nil {
- return "sat:" + p.ServiceAccountToken.Audience
- }
- return "z:other"
- }
-
- expected := []string{
- "cm:config-a",
- "cm:config-z",
- "downward:",
- "sat:aa.example.com",
- "sat:zz.example.com",
- "sec:secret-a",
- }
-
- sources := result.Volumes[0].VolumeSource.Projected.Sources
- for i, source := range sources {
- assert.Equal(t, expected[i], getProjectionKey(source), "Projected source at index %d should match expected sort order", i)
- }
-}
diff --git a/deploy/cloud/operator/internal/controller_common/podgangset.go b/deploy/cloud/operator/internal/controller_common/podgangset.go
deleted file mode 100644
index 871fa502df..0000000000
--- a/deploy/cloud/operator/internal/controller_common/podgangset.go
+++ /dev/null
@@ -1,19 +0,0 @@
-package controller_common
-
-import (
- "sort"
-
- grovev1alpha1 "github.com/NVIDIA/grove/operator/api/core/v1alpha1"
-)
-
-func CanonicalizePodCliqueSet(gangSet *grovev1alpha1.PodCliqueSet) *grovev1alpha1.PodCliqueSet {
- // sort cliques by name
- sort.Slice(gangSet.Spec.Template.Cliques, func(i, j int) bool {
- return gangSet.Spec.Template.Cliques[i].Name < gangSet.Spec.Template.Cliques[j].Name
- })
- // sort scaling groups by name
- sort.Slice(gangSet.Spec.Template.PodCliqueScalingGroupConfigs, func(i, j int) bool {
- return gangSet.Spec.Template.PodCliqueScalingGroupConfigs[i].Name < gangSet.Spec.Template.PodCliqueScalingGroupConfigs[j].Name
- })
- return gangSet
-}
diff --git a/deploy/cloud/operator/internal/controller_common/resource.go b/deploy/cloud/operator/internal/controller_common/resource.go
index 66f5bffac7..4088958c02 100644
--- a/deploy/cloud/operator/internal/controller_common/resource.go
+++ b/deploy/cloud/operator/internal/controller_common/resource.go
@@ -496,6 +496,24 @@ func getGPUResourceName(resourceItem *v1alpha1.ResourceItem) corev1.ResourceName
return corev1.ResourceName(consts.KubeResourceGPUNvidia)
}
+// AppendUniqueImagePullSecrets appends secrets to existing, skipping any that already exist by name.
+func AppendUniqueImagePullSecrets(existing, additional []corev1.LocalObjectReference) []corev1.LocalObjectReference {
+ if len(additional) == 0 {
+ return existing
+ }
+ seen := make(map[string]bool, len(existing))
+ for _, s := range existing {
+ seen[s.Name] = true
+ }
+ for _, s := range additional {
+ if !seen[s.Name] {
+ existing = append(existing, s)
+ seen[s.Name] = true
+ }
+ }
+ return existing
+}
+
type Resource struct {
client.Object
isReady func() (bool, string)
diff --git a/deploy/cloud/operator/internal/controller_common/resource_test.go b/deploy/cloud/operator/internal/controller_common/resource_test.go
index 98b7cd9ad9..d3f4e86bb9 100644
--- a/deploy/cloud/operator/internal/controller_common/resource_test.go
+++ b/deploy/cloud/operator/internal/controller_common/resource_test.go
@@ -532,3 +532,75 @@ func TestGetResourcesConfig(t *testing.T) {
})
}
}
+
+func TestAppendUniqueImagePullSecrets(t *testing.T) {
+ tests := []struct {
+ name string
+ existing []corev1.LocalObjectReference
+ additional []corev1.LocalObjectReference
+ expected []corev1.LocalObjectReference
+ }{
+ {
+ name: "empty existing, empty additional",
+ existing: []corev1.LocalObjectReference{},
+ additional: []corev1.LocalObjectReference{},
+ expected: []corev1.LocalObjectReference{},
+ },
+ {
+ name: "empty existing, some additional",
+ existing: []corev1.LocalObjectReference{},
+ additional: []corev1.LocalObjectReference{{Name: "secret-a"}, {Name: "secret-b"}},
+ expected: []corev1.LocalObjectReference{{Name: "secret-a"}, {Name: "secret-b"}},
+ },
+ {
+ name: "some existing, empty additional",
+ existing: []corev1.LocalObjectReference{{Name: "secret-a"}},
+ additional: []corev1.LocalObjectReference{},
+ expected: []corev1.LocalObjectReference{{Name: "secret-a"}},
+ },
+ {
+ name: "no duplicates",
+ existing: []corev1.LocalObjectReference{{Name: "secret-a"}},
+ additional: []corev1.LocalObjectReference{{Name: "secret-b"}, {Name: "secret-c"}},
+ expected: []corev1.LocalObjectReference{{Name: "secret-a"}, {Name: "secret-b"}, {Name: "secret-c"}},
+ },
+ {
+ name: "all duplicates",
+ existing: []corev1.LocalObjectReference{{Name: "secret-a"}, {Name: "secret-b"}},
+ additional: []corev1.LocalObjectReference{{Name: "secret-a"}, {Name: "secret-b"}},
+ expected: []corev1.LocalObjectReference{{Name: "secret-a"}, {Name: "secret-b"}},
+ },
+ {
+ name: "some duplicates",
+ existing: []corev1.LocalObjectReference{{Name: "secret-a"}, {Name: "secret-b"}},
+ additional: []corev1.LocalObjectReference{{Name: "secret-b"}, {Name: "secret-c"}},
+ expected: []corev1.LocalObjectReference{{Name: "secret-a"}, {Name: "secret-b"}, {Name: "secret-c"}},
+ },
+ {
+ name: "duplicates within additional",
+ existing: []corev1.LocalObjectReference{{Name: "secret-a"}},
+ additional: []corev1.LocalObjectReference{{Name: "secret-b"}, {Name: "secret-b"}, {Name: "secret-c"}},
+ expected: []corev1.LocalObjectReference{{Name: "secret-a"}, {Name: "secret-b"}, {Name: "secret-c"}},
+ },
+ {
+ name: "nil existing",
+ existing: nil,
+ additional: []corev1.LocalObjectReference{{Name: "secret-a"}},
+ expected: []corev1.LocalObjectReference{{Name: "secret-a"}},
+ },
+ {
+ name: "nil additional",
+ existing: []corev1.LocalObjectReference{{Name: "secret-a"}},
+ additional: nil,
+ expected: []corev1.LocalObjectReference{{Name: "secret-a"}},
+ },
+ }
+
+ for _, tt := range tests {
+ t.Run(tt.name, func(t *testing.T) {
+ g := gomega.NewGomegaWithT(t)
+ result := AppendUniqueImagePullSecrets(tt.existing, tt.additional)
+ g.Expect(result).To(gomega.Equal(tt.expected))
+ })
+ }
+}
diff --git a/deploy/cloud/operator/internal/dynamo/component_worker.go b/deploy/cloud/operator/internal/dynamo/component_worker.go
index f0ad70eba0..a80ae8e256 100644
--- a/deploy/cloud/operator/internal/dynamo/component_worker.go
+++ b/deploy/cloud/operator/internal/dynamo/component_worker.go
@@ -86,6 +86,10 @@ func (w *WorkerDefaults) GetBaseContainer(context ComponentContext) (corev1.Cont
Name: "DYN_SYSTEM_PORT",
Value: fmt.Sprintf("%d", commonconsts.DynamoSystemPort),
},
+ {
+ Name: "DYN_HEALTH_CHECK_ENABLED",
+ Value: "true",
+ },
}...)
return container, nil
diff --git a/deploy/cloud/operator/internal/dynamo/graph.go b/deploy/cloud/operator/internal/dynamo/graph.go
index 706dcec234..2feaa90d6f 100644
--- a/deploy/cloud/operator/internal/dynamo/graph.go
+++ b/deploy/cloud/operator/internal/dynamo/graph.go
@@ -903,10 +903,10 @@ func GenerateBasePodSpec(
podSpec.Containers = append(podSpec.Containers, container)
podSpec.Volumes = append(podSpec.Volumes, volumes...)
- podSpec.ImagePullSecrets = append(podSpec.ImagePullSecrets, imagePullSecrets...)
+ podSpec.ImagePullSecrets = controller_common.AppendUniqueImagePullSecrets(podSpec.ImagePullSecrets, imagePullSecrets)
backend.UpdatePodSpec(&podSpec, numberOfNodes, role, component, serviceName)
- return controller_common.CanonicalizePodSpec(&podSpec), nil
+ return &podSpec, nil
}
func setMetricsLabels(labels map[string]string, dynamoGraphDeployment *v1alpha1.DynamoGraphDeployment) {
@@ -1034,7 +1034,7 @@ func GenerateGrovePodCliqueSet(
PodSpec: *podSpec,
},
}
- labels, err := generateLabels(component, dynamoDeployment, r.Name)
+ labels, err := generateLabels(component, dynamoDeployment, serviceName)
if err != nil {
return nil, fmt.Errorf("failed to generate labels: %w", err)
}
@@ -1068,13 +1068,14 @@ func GenerateGrovePodCliqueSet(
gangSet.Spec.Template.PodCliqueScalingGroupConfigs = scalingGroups
}
- return controller_common.CanonicalizePodCliqueSet(gangSet), nil
+ return gangSet, nil
}
func generateLabels(component *v1alpha1.DynamoComponentDeploymentSharedSpec, dynamoDeployment *v1alpha1.DynamoGraphDeployment, componentName string) (map[string]string, error) {
labels := make(map[string]string)
labels[commonconsts.KubeLabelDynamoSelector] = GetDynamoComponentName(dynamoDeployment, componentName)
labels[commonconsts.KubeLabelDynamoGraphDeploymentName] = dynamoDeployment.Name
+ labels[commonconsts.KubeLabelDynamoComponent] = componentName
if component.DynamoNamespace != nil {
labels[commonconsts.KubeLabelDynamoNamespace] = *component.DynamoNamespace
}
diff --git a/deploy/cloud/operator/internal/dynamo/graph_test.go b/deploy/cloud/operator/internal/dynamo/graph_test.go
index d93a60459b..9218ba88ec 100644
--- a/deploy/cloud/operator/internal/dynamo/graph_test.go
+++ b/deploy/cloud/operator/internal/dynamo/graph_test.go
@@ -121,7 +121,6 @@ func TestGenerateDynamoComponentsDeployments(t *testing.T) {
commonconsts.KubeLabelDynamoNamespace: "default-test-dynamographdeployment",
commonconsts.KubeLabelDynamoGraphDeploymentName: "test-dynamographdeployment",
},
- Autoscaling: nil,
},
},
},
@@ -153,7 +152,6 @@ func TestGenerateDynamoComponentsDeployments(t *testing.T) {
Custom: map[string]string{},
},
},
- Autoscaling: nil,
},
},
},
@@ -229,7 +227,6 @@ func TestGenerateDynamoComponentsDeployments(t *testing.T) {
commonconsts.KubeLabelDynamoNamespace: "default-test-dynamographdeployment",
commonconsts.KubeLabelDynamoGraphDeploymentName: "test-dynamographdeployment",
},
- Autoscaling: nil,
},
},
},
@@ -261,7 +258,6 @@ func TestGenerateDynamoComponentsDeployments(t *testing.T) {
Custom: map[string]string{},
},
},
- Autoscaling: nil,
},
},
},
@@ -341,7 +337,6 @@ func TestGenerateDynamoComponentsDeployments(t *testing.T) {
commonconsts.KubeLabelDynamoNamespace: "default-test-dynamographdeployment",
commonconsts.KubeLabelDynamoGraphDeploymentName: "test-dynamographdeployment",
},
- Autoscaling: nil,
Ingress: &v1alpha1.IngressSpec{
Enabled: true,
Host: "test-dynamographdeployment",
@@ -377,7 +372,6 @@ func TestGenerateDynamoComponentsDeployments(t *testing.T) {
Custom: map[string]string{},
},
},
- Autoscaling: nil,
},
},
},
@@ -465,7 +459,6 @@ func TestGenerateDynamoComponentsDeployments(t *testing.T) {
commonconsts.KubeLabelDynamoNamespace: "default-test-dynamographdeployment",
commonconsts.KubeLabelDynamoGraphDeploymentName: "test-dynamographdeployment",
},
- Autoscaling: nil,
Envs: []corev1.EnvVar{
{
Name: "DYN_DEPLOYMENT_CONFIG",
@@ -503,7 +496,6 @@ func TestGenerateDynamoComponentsDeployments(t *testing.T) {
Custom: map[string]string{},
},
},
- Autoscaling: nil,
Envs: []corev1.EnvVar{
{
Name: "DYN_DEPLOYMENT_CONFIG",
@@ -599,7 +591,6 @@ func TestGenerateDynamoComponentsDeployments(t *testing.T) {
commonconsts.KubeLabelDynamoNamespace: "default-test-dynamographdeployment",
commonconsts.KubeLabelDynamoGraphDeploymentName: "test-dynamographdeployment",
},
- Autoscaling: nil,
ExtraPodSpec: &v1alpha1.ExtraPodSpec{
MainContainer: &corev1.Container{
Command: []string{"sh", "-c"},
@@ -644,7 +635,6 @@ func TestGenerateDynamoComponentsDeployments(t *testing.T) {
Custom: map[string]string{},
},
},
- Autoscaling: nil,
Envs: []corev1.EnvVar{
{
Name: "TEST_ENV",
@@ -1307,6 +1297,7 @@ func TestGenerateGrovePodCliqueSet(t *testing.T) {
Name: "frontend",
Labels: map[string]string{
commonconsts.KubeLabelDynamoSelector: "test-dynamo-graph-deployment-frontend",
+ commonconsts.KubeLabelDynamoComponent: "Frontend",
commonconsts.KubeLabelMetricsEnabled: commonconsts.KubeLabelValueTrue,
commonconsts.KubeLabelDynamoComponentType: commonconsts.ComponentTypeFrontend,
commonconsts.KubeLabelDynamoSubComponentType: "test-sub-component",
@@ -1483,6 +1474,7 @@ func TestGenerateGrovePodCliqueSet(t *testing.T) {
Labels: map[string]string{
commonconsts.KubeLabelMetricsEnabled: commonconsts.KubeLabelValueTrue,
commonconsts.KubeLabelDynamoSelector: "test-dynamo-graph-deployment-planner",
+ commonconsts.KubeLabelDynamoComponent: "Planner",
commonconsts.KubeLabelDynamoGraphDeploymentName: "test-dynamo-graph-deployment",
commonconsts.KubeLabelDynamoComponentType: commonconsts.ComponentTypePlanner,
commonconsts.KubeLabelDynamoNamespace: "test-namespace-test-dynamo-graph-deployment",
@@ -1884,8 +1876,9 @@ func TestGenerateGrovePodCliqueSet(t *testing.T) {
commonconsts.KubeLabelDynamoComponentType: commonconsts.ComponentTypeWorker,
commonconsts.KubeLabelDynamoSubComponentType: "test-sub-component",
commonconsts.KubeLabelMetricsEnabled: commonconsts.KubeLabelValueTrue,
- commonconsts.KubeLabelDynamoSelector: "test-dynamo-graph-deployment-worker-ldr",
+ commonconsts.KubeLabelDynamoSelector: "test-dynamo-graph-deployment-worker",
commonconsts.KubeLabelDynamoGraphDeploymentName: "test-dynamo-graph-deployment",
+ commonconsts.KubeLabelDynamoComponent: "worker",
commonconsts.KubeLabelDynamoNamespace: "test-namespace-test-dynamo-graph-deployment",
"nvidia.com/label1": "label1",
"nvidia.com/label2": "label2",
@@ -1970,6 +1963,10 @@ func TestGenerateGrovePodCliqueSet(t *testing.T) {
Name: commonconsts.DynamoComponentEnvVar,
Value: commonconsts.ComponentTypeWorker,
},
+ {
+ Name: "DYN_HEALTH_CHECK_ENABLED",
+ Value: "true",
+ },
{
Name: "DYN_PARENT_DGD_K8S_NAME",
Value: "test-dynamo-graph-deployment",
@@ -2059,8 +2056,9 @@ func TestGenerateGrovePodCliqueSet(t *testing.T) {
commonconsts.KubeLabelDynamoComponentType: commonconsts.ComponentTypeWorker,
commonconsts.KubeLabelDynamoSubComponentType: "test-sub-component",
commonconsts.KubeLabelMetricsEnabled: commonconsts.KubeLabelValueTrue,
- commonconsts.KubeLabelDynamoSelector: "test-dynamo-graph-deployment-worker-wkr",
+ commonconsts.KubeLabelDynamoSelector: "test-dynamo-graph-deployment-worker",
commonconsts.KubeLabelDynamoGraphDeploymentName: "test-dynamo-graph-deployment",
+ commonconsts.KubeLabelDynamoComponent: "worker",
commonconsts.KubeLabelDynamoNamespace: "test-namespace-test-dynamo-graph-deployment",
"nvidia.com/label1": "label1",
"nvidia.com/label2": "label2",
@@ -2146,6 +2144,10 @@ func TestGenerateGrovePodCliqueSet(t *testing.T) {
Name: commonconsts.DynamoComponentEnvVar,
Value: commonconsts.ComponentTypeWorker,
},
+ {
+ Name: "DYN_HEALTH_CHECK_ENABLED",
+ Value: "true",
+ },
{
Name: "DYN_PARENT_DGD_K8S_NAME",
Value: "test-dynamo-graph-deployment",
@@ -2200,6 +2202,7 @@ func TestGenerateGrovePodCliqueSet(t *testing.T) {
commonconsts.KubeLabelDynamoSelector: "test-dynamo-graph-deployment-frontend",
commonconsts.KubeLabelDynamoComponentType: commonconsts.ComponentTypeFrontend,
commonconsts.KubeLabelDynamoGraphDeploymentName: "test-dynamo-graph-deployment",
+ commonconsts.KubeLabelDynamoComponent: "Frontend",
commonconsts.KubeLabelDynamoNamespace: "test-namespace-test-dynamo-graph-deployment",
},
Annotations: map[string]string{},
@@ -2358,6 +2361,7 @@ func TestGenerateGrovePodCliqueSet(t *testing.T) {
Name: "planner",
Labels: map[string]string{
commonconsts.KubeLabelDynamoSelector: "test-dynamo-graph-deployment-planner",
+ commonconsts.KubeLabelDynamoComponent: "Planner",
commonconsts.KubeLabelMetricsEnabled: commonconsts.KubeLabelValueTrue,
commonconsts.KubeLabelDynamoGraphDeploymentName: "test-dynamo-graph-deployment",
commonconsts.KubeLabelDynamoComponentType: commonconsts.ComponentTypePlanner,
@@ -2779,7 +2783,8 @@ func TestGenerateGrovePodCliqueSet(t *testing.T) {
{
Name: "worker-ldr",
Labels: map[string]string{
- commonconsts.KubeLabelDynamoSelector: "test-dynamo-graph-deployment-worker-ldr",
+ commonconsts.KubeLabelDynamoSelector: "test-dynamo-graph-deployment-worker",
+ commonconsts.KubeLabelDynamoComponent: "worker",
commonconsts.KubeLabelMetricsEnabled: commonconsts.KubeLabelValueTrue,
commonconsts.KubeLabelDynamoComponentType: commonconsts.ComponentTypeWorker,
commonconsts.KubeLabelDynamoGraphDeploymentName: "test-dynamo-graph-deployment",
@@ -2867,6 +2872,10 @@ func TestGenerateGrovePodCliqueSet(t *testing.T) {
Name: commonconsts.DynamoComponentEnvVar,
Value: commonconsts.ComponentTypeWorker,
},
+ {
+ Name: "DYN_HEALTH_CHECK_ENABLED",
+ Value: "true",
+ },
{
Name: "DYN_PARENT_DGD_K8S_NAME",
Value: "test-dynamo-graph-deployment",
@@ -2943,7 +2952,8 @@ func TestGenerateGrovePodCliqueSet(t *testing.T) {
Labels: map[string]string{
commonconsts.KubeLabelDynamoComponentType: commonconsts.ComponentTypeWorker,
commonconsts.KubeLabelMetricsEnabled: commonconsts.KubeLabelValueTrue,
- commonconsts.KubeLabelDynamoSelector: "test-dynamo-graph-deployment-worker-wkr",
+ commonconsts.KubeLabelDynamoSelector: "test-dynamo-graph-deployment-worker",
+ commonconsts.KubeLabelDynamoComponent: "worker",
commonconsts.KubeLabelDynamoGraphDeploymentName: "test-dynamo-graph-deployment",
commonconsts.KubeLabelDynamoNamespace: "test-namespace-test-dynamo-graph-deployment",
"nvidia.com/label1": "label1",
@@ -3030,6 +3040,10 @@ func TestGenerateGrovePodCliqueSet(t *testing.T) {
Name: commonconsts.DynamoComponentEnvVar,
Value: commonconsts.ComponentTypeWorker,
},
+ {
+ Name: "DYN_HEALTH_CHECK_ENABLED",
+ Value: "true",
+ },
{
Name: "DYN_PARENT_DGD_K8S_NAME",
Value: "test-dynamo-graph-deployment",
@@ -3084,6 +3098,7 @@ func TestGenerateGrovePodCliqueSet(t *testing.T) {
commonconsts.KubeLabelMetricsEnabled: commonconsts.KubeLabelValueTrue,
commonconsts.KubeLabelDynamoSelector: "test-dynamo-graph-deployment-frontend",
commonconsts.KubeLabelDynamoGraphDeploymentName: "test-dynamo-graph-deployment",
+ commonconsts.KubeLabelDynamoComponent: "Frontend",
commonconsts.KubeLabelDynamoNamespace: "test-namespace-test-dynamo-graph-deployment",
},
Annotations: map[string]string{},
@@ -3243,6 +3258,7 @@ func TestGenerateGrovePodCliqueSet(t *testing.T) {
Labels: map[string]string{
commonconsts.KubeLabelMetricsEnabled: commonconsts.KubeLabelValueTrue,
commonconsts.KubeLabelDynamoSelector: "test-dynamo-graph-deployment-planner",
+ commonconsts.KubeLabelDynamoComponent: "Planner",
commonconsts.KubeLabelDynamoGraphDeploymentName: "test-dynamo-graph-deployment",
commonconsts.KubeLabelDynamoComponentType: commonconsts.ComponentTypePlanner,
commonconsts.KubeLabelDynamoNamespace: "test-namespace-test-dynamo-graph-deployment",
@@ -4989,6 +5005,7 @@ func TestGenerateBasePodSpec_Worker(t *testing.T) {
{Name: "ANOTHER_COMPONENTENV", Value: "true"},
{Name: "ANOTHER_CONTAINER_ENV", Value: "true"},
{Name: commonconsts.DynamoComponentEnvVar, Value: "worker"},
+ {Name: "DYN_HEALTH_CHECK_ENABLED", Value: "true"},
{Name: commonconsts.DynamoNamespaceEnvVar, Value: ""},
{Name: "DYN_PARENT_DGD_K8S_NAME", Value: "test-deployment"},
{Name: "DYN_PARENT_DGD_K8S_NAMESPACE", Value: "default"},
diff --git a/deploy/cloud/operator/internal/webhook/common.go b/deploy/cloud/operator/internal/webhook/common.go
index 6333738739..c18edd98f4 100644
--- a/deploy/cloud/operator/internal/webhook/common.go
+++ b/deploy/cloud/operator/internal/webhook/common.go
@@ -19,7 +19,9 @@ package webhook
import (
"context"
+ "strings"
+ authenticationv1 "k8s.io/api/authentication/v1"
"k8s.io/apimachinery/pkg/runtime"
"sigs.k8s.io/controller-runtime/pkg/client"
logf "sigs.k8s.io/controller-runtime/pkg/log"
@@ -118,3 +120,54 @@ func (v *LeaseAwareValidator) shouldSkipValidation(obj runtime.Object) bool {
return false
}
+
+// DGDReplicasModifierSuffixes defines suffixes for service accounts that are authorized
+// to modify DGD replicas when scaling adapter is enabled.
+// Service accounts matching any of these suffixes are allowed regardless of namespace.
+var DGDReplicasModifierSuffixes = []string{
+ // Dynamo operator controller manager (handles DGDSA reconciliation)
+ // Example: "dynamo-platform-dynamo-operator-controller-manager"
+ "-dynamo-operator-controller-manager",
+
+ // Planner service account (manages DGD replicas for autoscaling)
+ // Example: "planner-serviceaccount"
+ "planner-serviceaccount",
+}
+
+// CanModifyDGDReplicas checks if the request comes from a service account authorized
+// to modify DGD replicas when scaling adapter is enabled.
+// Service accounts are identified by username format: system:serviceaccount::
+//
+// Authorized service accounts (by suffix):
+// - *-dynamo-operator-controller-manager (for DGDSA reconciliation)
+// - *planner-serviceaccount (for Planner autoscaling)
+func CanModifyDGDReplicas(userInfo authenticationv1.UserInfo) bool {
+ username := userInfo.Username
+
+ // Service accounts have username format: system:serviceaccount::
+ if !strings.HasPrefix(username, "system:serviceaccount:") {
+ return false
+ }
+
+ // Parse: system:serviceaccount::
+ parts := strings.Split(username, ":")
+ if len(parts) != 4 {
+ return false
+ }
+
+ namespace := parts[2]
+ saName := parts[3]
+
+ // Check against authorized suffixes
+ for _, suffix := range DGDReplicasModifierSuffixes {
+ if strings.HasSuffix(saName, suffix) {
+ webhookCommonLog.V(1).Info("allowing DGD replicas modification",
+ "serviceAccount", saName,
+ "namespace", namespace,
+ "matchedSuffix", suffix)
+ return true
+ }
+ }
+
+ return false
+}
diff --git a/deploy/cloud/operator/internal/webhook/validation/dynamocomponentdeployment.go b/deploy/cloud/operator/internal/webhook/validation/dynamocomponentdeployment.go
index c77303fde2..c0e0628834 100644
--- a/deploy/cloud/operator/internal/webhook/validation/dynamocomponentdeployment.go
+++ b/deploy/cloud/operator/internal/webhook/validation/dynamocomponentdeployment.go
@@ -42,13 +42,10 @@ func NewDynamoComponentDeploymentValidator(deployment *nvidiacomv1alpha1.DynamoC
func (v *DynamoComponentDeploymentValidator) Validate() (admission.Warnings, error) {
// Validate shared spec fields using SharedSpecValidator
sharedValidator := NewSharedSpecValidator(&v.deployment.Spec.DynamoComponentDeploymentSharedSpec, "spec")
- if err := sharedValidator.Validate(); err != nil {
- return nil, err
- }
// DCD-specific validation would go here (currently none)
- return nil, nil
+ return sharedValidator.Validate()
}
// ValidateUpdate performs stateful validation comparing old and new DynamoComponentDeployment.
diff --git a/deploy/cloud/operator/internal/webhook/validation/dynamocomponentdeployment_test.go b/deploy/cloud/operator/internal/webhook/validation/dynamocomponentdeployment_test.go
index 0324856dfd..f38240c8ee 100644
--- a/deploy/cloud/operator/internal/webhook/validation/dynamocomponentdeployment_test.go
+++ b/deploy/cloud/operator/internal/webhook/validation/dynamocomponentdeployment_test.go
@@ -47,11 +47,6 @@ func TestDynamoComponentDeploymentValidator_Validate(t *testing.T) {
Spec: nvidiacomv1alpha1.DynamoComponentDeploymentSpec{
DynamoComponentDeploymentSharedSpec: nvidiacomv1alpha1.DynamoComponentDeploymentSharedSpec{
Replicas: &validReplicas,
- Autoscaling: &nvidiacomv1alpha1.Autoscaling{
- Enabled: true,
- MinReplicas: 1,
- MaxReplicas: 10,
- },
},
BackendFramework: "sglang",
},
@@ -74,26 +69,6 @@ func TestDynamoComponentDeploymentValidator_Validate(t *testing.T) {
wantErr: true,
errMsg: "spec.replicas must be non-negative",
},
- {
- name: "invalid autoscaling",
- deployment: &nvidiacomv1alpha1.DynamoComponentDeployment{
- ObjectMeta: metav1.ObjectMeta{
- Name: "test-deployment",
- Namespace: "default",
- },
- Spec: nvidiacomv1alpha1.DynamoComponentDeploymentSpec{
- DynamoComponentDeploymentSharedSpec: nvidiacomv1alpha1.DynamoComponentDeploymentSharedSpec{
- Autoscaling: &nvidiacomv1alpha1.Autoscaling{
- Enabled: true,
- MinReplicas: 5,
- MaxReplicas: 3,
- },
- },
- },
- },
- wantErr: true,
- errMsg: "spec.autoscaling.maxReplicas must be > minReplicas",
- },
{
name: "invalid ingress",
deployment: &nvidiacomv1alpha1.DynamoComponentDeployment{
diff --git a/deploy/cloud/operator/internal/webhook/validation/dynamographdeployment.go b/deploy/cloud/operator/internal/webhook/validation/dynamographdeployment.go
index e6bf9e3893..00a1668806 100644
--- a/deploy/cloud/operator/internal/webhook/validation/dynamographdeployment.go
+++ b/deploy/cloud/operator/internal/webhook/validation/dynamographdeployment.go
@@ -22,6 +22,8 @@ import (
"fmt"
nvidiacomv1alpha1 "github.com/ai-dynamo/dynamo/deploy/cloud/operator/api/v1alpha1"
+ internalwebhook "github.com/ai-dynamo/dynamo/deploy/cloud/operator/internal/webhook"
+ authenticationv1 "k8s.io/api/authentication/v1"
"sigs.k8s.io/controller-runtime/pkg/webhook/admission"
)
@@ -51,30 +53,106 @@ func (v *DynamoGraphDeploymentValidator) Validate() (admission.Warnings, error)
return nil, err
}
+ var allWarnings admission.Warnings
+
// Validate each service
for serviceName, service := range v.deployment.Spec.Services {
- if err := v.validateService(serviceName, service); err != nil {
+ warnings, err := v.validateService(serviceName, service)
+ if err != nil {
return nil, err
}
+ allWarnings = append(allWarnings, warnings...)
}
- return nil, nil
+ return allWarnings, nil
}
// ValidateUpdate performs stateful validation comparing old and new DynamoGraphDeployment.
+// userInfo is used for identity-based validation (replica protection).
+// If userInfo is nil, replica changes for DGDSA-enabled services are rejected (fail closed).
// Returns warnings and error.
-func (v *DynamoGraphDeploymentValidator) ValidateUpdate(old *nvidiacomv1alpha1.DynamoGraphDeployment) (admission.Warnings, error) {
- // Validate that BackendFramework is not changed (immutable)
+func (v *DynamoGraphDeploymentValidator) ValidateUpdate(old *nvidiacomv1alpha1.DynamoGraphDeployment, userInfo *authenticationv1.UserInfo) (admission.Warnings, error) {
+ var warnings admission.Warnings
+
+ // Validate immutable fields
+ if err := v.validateImmutableFields(old, &warnings); err != nil {
+ return warnings, err
+ }
+
+ // Validate replicas changes for services with scaling adapter enabled
+ // Pass userInfo (may be nil - will fail closed for DGDSA-enabled services)
+ if err := v.validateReplicasChanges(old, userInfo); err != nil {
+ return warnings, err
+ }
+
+ return warnings, nil
+}
+
+// validateImmutableFields checks that immutable fields have not been changed.
+// Appends warnings to the provided slice.
+func (v *DynamoGraphDeploymentValidator) validateImmutableFields(old *nvidiacomv1alpha1.DynamoGraphDeployment, warnings *admission.Warnings) error {
if v.deployment.Spec.BackendFramework != old.Spec.BackendFramework {
- warning := "Changing spec.backendFramework may cause unexpected behavior"
- return admission.Warnings{warning}, fmt.Errorf("spec.backendFramework is immutable and cannot be changed after creation")
+ *warnings = append(*warnings, "Changing spec.backendFramework may cause unexpected behavior")
+ return fmt.Errorf("spec.backendFramework is immutable and cannot be changed after creation")
}
+ return nil
+}
- return nil, nil
+// validateReplicasChanges checks if replicas were changed for services with scaling adapter enabled.
+// Only authorized service accounts (operator controller, planner) can modify these fields.
+// If userInfo is nil, all replica changes for DGDSA-enabled services are rejected (fail closed).
+func (v *DynamoGraphDeploymentValidator) validateReplicasChanges(old *nvidiacomv1alpha1.DynamoGraphDeployment, userInfo *authenticationv1.UserInfo) error {
+ // If the request comes from an authorized service account, allow the change
+ if userInfo != nil && internalwebhook.CanModifyDGDReplicas(*userInfo) {
+ return nil
+ }
+
+ var errs []error
+
+ for serviceName, newService := range v.deployment.Spec.Services {
+ // Check if scaling adapter is enabled for this service (enabled by default)
+ scalingAdapterEnabled := true
+ if newService.ScalingAdapter != nil && newService.ScalingAdapter.Disable {
+ scalingAdapterEnabled = false
+ }
+
+ if !scalingAdapterEnabled {
+ // Scaling adapter is disabled, users can modify replicas directly
+ continue
+ }
+
+ // Get old service (if exists)
+ oldService, exists := old.Spec.Services[serviceName]
+ if !exists {
+ // New service, no comparison needed
+ continue
+ }
+
+ // Check if replicas changed
+ oldReplicas := int32(1) // default
+ if oldService.Replicas != nil {
+ oldReplicas = *oldService.Replicas
+ }
+
+ newReplicas := int32(1) // default
+ if newService.Replicas != nil {
+ newReplicas = *newService.Replicas
+ }
+
+ if oldReplicas != newReplicas {
+ errs = append(errs, fmt.Errorf(
+ "spec.services[%s].replicas cannot be modified directly when scaling adapter is enabled; "+
+ "scale or update the related DynamoGraphDeploymentScalingAdapter instead",
+ serviceName))
+ }
+ }
+
+ return errors.Join(errs...)
}
// validateService validates a single service configuration using SharedSpecValidator.
-func (v *DynamoGraphDeploymentValidator) validateService(serviceName string, service *nvidiacomv1alpha1.DynamoComponentDeploymentSharedSpec) error {
+// Returns warnings and error.
+func (v *DynamoGraphDeploymentValidator) validateService(serviceName string, service *nvidiacomv1alpha1.DynamoComponentDeploymentSharedSpec) (admission.Warnings, error) {
// Use SharedSpecValidator to validate service spec (which is a DynamoComponentDeploymentSharedSpec)
fieldPath := fmt.Sprintf("spec.services[%s]", serviceName)
sharedValidator := NewSharedSpecValidator(service, fieldPath)
diff --git a/deploy/cloud/operator/internal/webhook/validation/dynamographdeployment_handler.go b/deploy/cloud/operator/internal/webhook/validation/dynamographdeployment_handler.go
index 074a4c5cc2..e98bd03442 100644
--- a/deploy/cloud/operator/internal/webhook/validation/dynamographdeployment_handler.go
+++ b/deploy/cloud/operator/internal/webhook/validation/dynamographdeployment_handler.go
@@ -23,6 +23,7 @@ import (
nvidiacomv1alpha1 "github.com/ai-dynamo/dynamo/deploy/cloud/operator/api/v1alpha1"
internalwebhook "github.com/ai-dynamo/dynamo/deploy/cloud/operator/internal/webhook"
+ authenticationv1 "k8s.io/api/authentication/v1"
"k8s.io/apimachinery/pkg/runtime"
"sigs.k8s.io/controller-runtime/pkg/log"
"sigs.k8s.io/controller-runtime/pkg/manager"
@@ -91,9 +92,24 @@ func (h *DynamoGraphDeploymentHandler) ValidateUpdate(ctx context.Context, oldOb
return warnings, err
}
- // Validate stateful rules (immutability)
- updateWarnings, err := validator.ValidateUpdate(oldDeployment)
+ // Get user info from admission request context for identity-based validation
+ var userInfo *authenticationv1.UserInfo
+ req, err := admission.RequestFromContext(ctx)
if err != nil {
+ logger.Error(err, "failed to get admission request from context, replica changes for DGDSA-enabled services will be rejected")
+ // userInfo remains nil - validateReplicasChanges will fail closed
+ } else {
+ userInfo = &req.UserInfo
+ }
+
+ // Validate stateful rules (immutability + replicas protection)
+ updateWarnings, err := validator.ValidateUpdate(oldDeployment, userInfo)
+ if err != nil {
+ username := ""
+ if userInfo != nil {
+ username = userInfo.Username
+ }
+ logger.Info("validation failed", "error", err.Error(), "user", username)
return updateWarnings, err
}
diff --git a/deploy/cloud/operator/internal/webhook/validation/dynamographdeployment_test.go b/deploy/cloud/operator/internal/webhook/validation/dynamographdeployment_test.go
index 75c18dd33f..71228327b6 100644
--- a/deploy/cloud/operator/internal/webhook/validation/dynamographdeployment_test.go
+++ b/deploy/cloud/operator/internal/webhook/validation/dynamographdeployment_test.go
@@ -93,28 +93,6 @@ func TestDynamoGraphDeploymentValidator_Validate(t *testing.T) {
wantErr: true,
errMsg: "spec.services[main].replicas must be non-negative",
},
- {
- name: "service with invalid autoscaling",
- deployment: &nvidiacomv1alpha1.DynamoGraphDeployment{
- ObjectMeta: metav1.ObjectMeta{
- Name: "test-graph",
- Namespace: "default",
- },
- Spec: nvidiacomv1alpha1.DynamoGraphDeploymentSpec{
- Services: map[string]*nvidiacomv1alpha1.DynamoComponentDeploymentSharedSpec{
- "prefill": {
- Autoscaling: &nvidiacomv1alpha1.Autoscaling{
- Enabled: true,
- MinReplicas: 10,
- MaxReplicas: 5,
- },
- },
- },
- },
- },
- wantErr: true,
- errMsg: "spec.services[prefill].autoscaling.maxReplicas must be > minReplicas",
- },
{
name: "service with invalid ingress",
deployment: &nvidiacomv1alpha1.DynamoGraphDeployment{
@@ -441,7 +419,8 @@ func TestDynamoGraphDeploymentValidator_ValidateUpdate(t *testing.T) {
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
validator := NewDynamoGraphDeploymentValidator(tt.newDeployment)
- warnings, err := validator.ValidateUpdate(tt.oldDeployment)
+ // Pass nil userInfo - these tests don't modify replicas, so it's safe
+ warnings, err := validator.ValidateUpdate(tt.oldDeployment, nil)
if (err != nil) != tt.wantErr {
t.Errorf("DynamoGraphDeploymentValidator.ValidateUpdate() error = %v, wantErr %v", err, tt.wantErr)
diff --git a/deploy/cloud/operator/internal/webhook/validation/shared.go b/deploy/cloud/operator/internal/webhook/validation/shared.go
index 5348193f3f..30edb0500d 100644
--- a/deploy/cloud/operator/internal/webhook/validation/shared.go
+++ b/deploy/cloud/operator/internal/webhook/validation/shared.go
@@ -21,6 +21,7 @@ import (
"fmt"
nvidiacomv1alpha1 "github.com/ai-dynamo/dynamo/deploy/cloud/operator/api/v1alpha1"
+ "sigs.k8s.io/controller-runtime/pkg/webhook/admission"
)
// SharedSpecValidator validates DynamoComponentDeploymentSharedSpec fields.
@@ -41,61 +42,45 @@ func NewSharedSpecValidator(spec *nvidiacomv1alpha1.DynamoComponentDeploymentSha
}
// Validate performs validation on the shared spec fields.
-// Returns an error if validation fails.
-func (v *SharedSpecValidator) Validate() error {
+// Returns warnings (e.g., deprecation notices) and error if validation fails.
+func (v *SharedSpecValidator) Validate() (admission.Warnings, error) {
// Validate replicas if specified
if v.spec.Replicas != nil && *v.spec.Replicas < 0 {
- return fmt.Errorf("%s.replicas must be non-negative", v.fieldPath)
- }
-
- // Validate autoscaling configuration if specified
- if v.spec.Autoscaling != nil {
- if err := v.validateAutoscaling(); err != nil {
- return err
- }
+ return nil, fmt.Errorf("%s.replicas must be non-negative", v.fieldPath)
}
// Validate ingress configuration if enabled
if v.spec.Ingress != nil && v.spec.Ingress.Enabled {
if err := v.validateIngress(); err != nil {
- return err
+ return nil, err
}
}
// Validate volume mounts
if err := v.validateVolumeMounts(); err != nil {
- return err
+ return nil, err
}
// Validate shared memory
if v.spec.SharedMemory != nil {
if err := v.validateSharedMemory(); err != nil {
- return err
+ return nil, err
}
}
- return nil
-}
-
-// validateAutoscaling validates the autoscaling configuration.
-func (v *SharedSpecValidator) validateAutoscaling() error {
- autoscaling := v.spec.Autoscaling
-
- if !autoscaling.Enabled {
- return nil
- }
-
- // Validate minReplicas
- if autoscaling.MinReplicas < 1 {
- return fmt.Errorf("%s.autoscaling.minReplicas must be >= 1", v.fieldPath)
- }
+ // Collect warnings (e.g., deprecation notices)
+ var warnings admission.Warnings
- // Validate maxReplicas
- if autoscaling.MaxReplicas <= autoscaling.MinReplicas {
- return fmt.Errorf("%s.autoscaling.maxReplicas must be > minReplicas", v.fieldPath)
+ // Check for deprecated autoscaling field
+ //nolint:staticcheck // SA1019: Intentionally checking deprecated field to warn users
+ if v.spec.Autoscaling != nil {
+ warnings = append(warnings, fmt.Sprintf(
+ "%s.autoscaling is deprecated and ignored. Use DynamoGraphDeploymentScalingAdapter "+
+ "with HPA, KEDA, or Planner for autoscaling instead. See docs/kubernetes/autoscaling.md",
+ v.fieldPath))
}
- return nil
+ return warnings, nil
}
// validateIngress validates the ingress configuration.
diff --git a/deploy/cloud/operator/internal/webhook/validation/shared_test.go b/deploy/cloud/operator/internal/webhook/validation/shared_test.go
index 472bb7d990..b7a2687cbd 100644
--- a/deploy/cloud/operator/internal/webhook/validation/shared_test.go
+++ b/deploy/cloud/operator/internal/webhook/validation/shared_test.go
@@ -41,11 +41,6 @@ func TestSharedSpecValidator_Validate(t *testing.T) {
name: "valid spec with all fields",
spec: &nvidiacomv1alpha1.DynamoComponentDeploymentSharedSpec{
Replicas: &validReplicas,
- Autoscaling: &nvidiacomv1alpha1.Autoscaling{
- Enabled: true,
- MinReplicas: 1,
- MaxReplicas: 10,
- },
Ingress: &nvidiacomv1alpha1.IngressSpec{
Enabled: true,
Host: "example.com",
@@ -77,44 +72,6 @@ func TestSharedSpecValidator_Validate(t *testing.T) {
wantErr: true,
errMsg: "spec.replicas must be non-negative",
},
- {
- name: "autoscaling minReplicas too low",
- spec: &nvidiacomv1alpha1.DynamoComponentDeploymentSharedSpec{
- Autoscaling: &nvidiacomv1alpha1.Autoscaling{
- Enabled: true,
- MinReplicas: 0,
- MaxReplicas: 10,
- },
- },
- fieldPath: "spec",
- wantErr: true,
- errMsg: "spec.autoscaling.minReplicas must be >= 1",
- },
- {
- name: "autoscaling maxReplicas less than minReplicas",
- spec: &nvidiacomv1alpha1.DynamoComponentDeploymentSharedSpec{
- Autoscaling: &nvidiacomv1alpha1.Autoscaling{
- Enabled: true,
- MinReplicas: 5,
- MaxReplicas: 3,
- },
- },
- fieldPath: "spec",
- wantErr: true,
- errMsg: "spec.autoscaling.maxReplicas must be > minReplicas",
- },
- {
- name: "autoscaling disabled - no validation",
- spec: &nvidiacomv1alpha1.DynamoComponentDeploymentSharedSpec{
- Autoscaling: &nvidiacomv1alpha1.Autoscaling{
- Enabled: false,
- MinReplicas: 0,
- MaxReplicas: 0,
- },
- },
- fieldPath: "spec",
- wantErr: false,
- },
{
name: "ingress enabled without host",
spec: &nvidiacomv1alpha1.DynamoComponentDeploymentSharedSpec{
@@ -227,7 +184,7 @@ func TestSharedSpecValidator_Validate(t *testing.T) {
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
validator := NewSharedSpecValidator(tt.spec, tt.fieldPath)
- err := validator.Validate()
+ _, err := validator.Validate()
if (err != nil) != tt.wantErr {
t.Errorf("SharedSpecValidator.Validate() error = %v, wantErr %v", err, tt.wantErr)
@@ -240,3 +197,53 @@ func TestSharedSpecValidator_Validate(t *testing.T) {
})
}
}
+
+func TestSharedSpecValidator_Validate_Warnings(t *testing.T) {
+ validReplicas := int32(3)
+
+ tests := []struct {
+ name string
+ spec *nvidiacomv1alpha1.DynamoComponentDeploymentSharedSpec
+ fieldPath string
+ wantWarnings int
+ }{
+ {
+ name: "no warnings for spec without autoscaling",
+ spec: &nvidiacomv1alpha1.DynamoComponentDeploymentSharedSpec{
+ Replicas: &validReplicas,
+ },
+ fieldPath: "spec",
+ wantWarnings: 0,
+ },
+ {
+ name: "warning for deprecated autoscaling field enabled",
+ spec: &nvidiacomv1alpha1.DynamoComponentDeploymentSharedSpec{
+ Replicas: &validReplicas,
+ //nolint:staticcheck // SA1019: Intentionally testing deprecated field
+ Autoscaling: &nvidiacomv1alpha1.Autoscaling{
+ Enabled: true,
+ MinReplicas: 1,
+ MaxReplicas: 10,
+ },
+ },
+ fieldPath: "spec",
+ wantWarnings: 1,
+ },
+ }
+
+ for _, tt := range tests {
+ t.Run(tt.name, func(t *testing.T) {
+ validator := NewSharedSpecValidator(tt.spec, tt.fieldPath)
+ warnings, err := validator.Validate()
+
+ if err != nil {
+ t.Errorf("SharedSpecValidator.Validate() unexpected error = %v", err)
+ return
+ }
+
+ if len(warnings) != tt.wantWarnings {
+ t.Errorf("SharedSpecValidator.Validate() warnings count = %d, want %d", len(warnings), tt.wantWarnings)
+ }
+ })
+ }
+}
diff --git a/deploy/observability/k8s/grafana-planner-dashboard-configmap.yaml b/deploy/observability/k8s/grafana-planner-dashboard-configmap.yaml
new file mode 100644
index 0000000000..c536514332
--- /dev/null
+++ b/deploy/observability/k8s/grafana-planner-dashboard-configmap.yaml
@@ -0,0 +1,1525 @@
+# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-License-Identifier: Apache-2.0
+
+apiVersion: v1
+kind: ConfigMap
+metadata:
+ name: grafana-planner-dashboard
+ namespace: monitoring
+ labels:
+ grafana_dashboard: "1"
+data:
+ planner-dashboard.json: |-
+ {
+ "annotations": {
+ "list": [
+ {
+ "builtIn": 1,
+ "datasource": {
+ "type": "grafana",
+ "uid": "-- Grafana --"
+ },
+ "enable": true,
+ "hide": true,
+ "iconColor": "rgba(0, 211, 255, 1)",
+ "name": "Annotations & Alerts",
+ "type": "dashboard"
+ }
+ ]
+ },
+ "description": "Dynamo Planner metrics dashboard - Worker counts, observed/predicted metrics, and correction factors",
+ "editable": true,
+ "fiscalYearStartMonth": 0,
+ "graphTooltip": 1,
+ "id": null,
+ "links": [],
+ "panels": [
+ {
+ "collapsed": false,
+ "gridPos": {
+ "h": 1,
+ "w": 24,
+ "x": 0,
+ "y": 0
+ },
+ "id": 100,
+ "panels": [],
+ "title": "๐ฅ๏ธ Worker Counts & GPU Usage",
+ "type": "row"
+ },
+ {
+ "datasource": {
+ "type": "prometheus",
+ "uid": "${datasource}"
+ },
+ "description": "Current number of prefill workers",
+ "fieldConfig": {
+ "defaults": {
+ "color": {
+ "mode": "thresholds"
+ },
+ "mappings": [],
+ "thresholds": {
+ "mode": "absolute",
+ "steps": [
+ {
+ "color": "#6E40AA",
+ "value": null
+ }
+ ]
+ },
+ "unit": "none"
+ },
+ "overrides": []
+ },
+ "gridPos": {
+ "h": 5,
+ "w": 4,
+ "x": 0,
+ "y": 1
+ },
+ "id": 1,
+ "options": {
+ "colorMode": "value",
+ "graphMode": "area",
+ "justifyMode": "auto",
+ "orientation": "auto",
+ "reduceOptions": {
+ "calcs": ["lastNotNull"],
+ "fields": "",
+ "values": false
+ },
+ "showPercentChange": false,
+ "textMode": "auto",
+ "wideLayout": true
+ },
+ "pluginVersion": "12.0.1",
+ "targets": [
+ {
+ "editorMode": "code",
+ "expr": "planner:num_p_workers{namespace=~\"$namespace\"}",
+ "legendFormat": "Prefill Workers",
+ "range": true,
+ "refId": "A"
+ }
+ ],
+ "title": "Prefill Workers",
+ "type": "stat"
+ },
+ {
+ "datasource": {
+ "type": "prometheus",
+ "uid": "${datasource}"
+ },
+ "description": "Current number of decode workers",
+ "fieldConfig": {
+ "defaults": {
+ "color": {
+ "mode": "thresholds"
+ },
+ "mappings": [],
+ "thresholds": {
+ "mode": "absolute",
+ "steps": [
+ {
+ "color": "#1FA8C9",
+ "value": null
+ }
+ ]
+ },
+ "unit": "none"
+ },
+ "overrides": []
+ },
+ "gridPos": {
+ "h": 5,
+ "w": 4,
+ "x": 4,
+ "y": 1
+ },
+ "id": 2,
+ "options": {
+ "colorMode": "value",
+ "graphMode": "area",
+ "justifyMode": "auto",
+ "orientation": "auto",
+ "reduceOptions": {
+ "calcs": ["lastNotNull"],
+ "fields": "",
+ "values": false
+ },
+ "showPercentChange": false,
+ "textMode": "auto",
+ "wideLayout": true
+ },
+ "pluginVersion": "12.0.1",
+ "targets": [
+ {
+ "editorMode": "code",
+ "expr": "planner:num_d_workers{namespace=~\"$namespace\"}",
+ "legendFormat": "Decode Workers",
+ "range": true,
+ "refId": "A"
+ }
+ ],
+ "title": "Decode Workers",
+ "type": "stat"
+ },
+ {
+ "datasource": {
+ "type": "prometheus",
+ "uid": "${datasource}"
+ },
+ "description": "Cumulative GPU hours used since planner start",
+ "fieldConfig": {
+ "defaults": {
+ "color": {
+ "mode": "thresholds"
+ },
+ "decimals": 2,
+ "mappings": [],
+ "thresholds": {
+ "mode": "absolute",
+ "steps": [
+ {
+ "color": "#76B900",
+ "value": null
+ }
+ ]
+ },
+ "unit": "h"
+ },
+ "overrides": []
+ },
+ "gridPos": {
+ "h": 5,
+ "w": 4,
+ "x": 8,
+ "y": 1
+ },
+ "id": 3,
+ "options": {
+ "colorMode": "value",
+ "graphMode": "area",
+ "justifyMode": "auto",
+ "orientation": "auto",
+ "reduceOptions": {
+ "calcs": ["lastNotNull"],
+ "fields": "",
+ "values": false
+ },
+ "showPercentChange": false,
+ "textMode": "auto",
+ "wideLayout": true
+ },
+ "pluginVersion": "12.0.1",
+ "targets": [
+ {
+ "editorMode": "code",
+ "expr": "planner:gpu_hours{namespace=~\"$namespace\"}",
+ "legendFormat": "GPU Hours",
+ "range": true,
+ "refId": "A"
+ }
+ ],
+ "title": "Cumulative GPU Hours",
+ "type": "stat"
+ },
+ {
+ "datasource": {
+ "type": "prometheus",
+ "uid": "${datasource}"
+ },
+ "description": "Worker count history over time",
+ "fieldConfig": {
+ "defaults": {
+ "color": {
+ "mode": "palette-classic"
+ },
+ "custom": {
+ "axisBorderShow": false,
+ "axisCenteredZero": false,
+ "axisColorMode": "text",
+ "axisLabel": "Workers",
+ "axisPlacement": "auto",
+ "barAlignment": 0,
+ "barWidthFactor": 0.6,
+ "drawStyle": "line",
+ "fillOpacity": 20,
+ "gradientMode": "opacity",
+ "hideFrom": {
+ "legend": false,
+ "tooltip": false,
+ "viz": false
+ },
+ "insertNulls": false,
+ "lineInterpolation": "stepAfter",
+ "lineWidth": 2,
+ "pointSize": 5,
+ "scaleDistribution": {
+ "type": "linear"
+ },
+ "showPoints": "never",
+ "spanNulls": false,
+ "stacking": {
+ "group": "A",
+ "mode": "none"
+ },
+ "thresholdsStyle": {
+ "mode": "off"
+ }
+ },
+ "decimals": 0,
+ "mappings": [],
+ "thresholds": {
+ "mode": "absolute",
+ "steps": [
+ {
+ "color": "green",
+ "value": null
+ }
+ ]
+ },
+ "unit": "none"
+ },
+ "overrides": [
+ {
+ "matcher": {
+ "id": "byName",
+ "options": "Prefill Workers"
+ },
+ "properties": [
+ {
+ "id": "color",
+ "value": {
+ "fixedColor": "#6E40AA",
+ "mode": "fixed"
+ }
+ }
+ ]
+ },
+ {
+ "matcher": {
+ "id": "byName",
+ "options": "Decode Workers"
+ },
+ "properties": [
+ {
+ "id": "color",
+ "value": {
+ "fixedColor": "#1FA8C9",
+ "mode": "fixed"
+ }
+ }
+ ]
+ }
+ ]
+ },
+ "gridPos": {
+ "h": 5,
+ "w": 12,
+ "x": 12,
+ "y": 1
+ },
+ "id": 4,
+ "options": {
+ "legend": {
+ "calcs": ["lastNotNull", "mean"],
+ "displayMode": "table",
+ "placement": "right",
+ "showLegend": true
+ },
+ "tooltip": {
+ "hideZeros": false,
+ "mode": "multi",
+ "sort": "none"
+ }
+ },
+ "pluginVersion": "12.0.1",
+ "targets": [
+ {
+ "editorMode": "code",
+ "expr": "planner:num_p_workers{namespace=~\"$namespace\"}",
+ "legendFormat": "Prefill Workers",
+ "range": true,
+ "refId": "A"
+ },
+ {
+ "editorMode": "code",
+ "expr": "planner:num_d_workers{namespace=~\"$namespace\"}",
+ "legendFormat": "Decode Workers",
+ "range": true,
+ "refId": "B"
+ }
+ ],
+ "title": "Worker Count History",
+ "type": "timeseries"
+ },
+ {
+ "collapsed": false,
+ "gridPos": {
+ "h": 1,
+ "w": 24,
+ "x": 0,
+ "y": 6
+ },
+ "id": 101,
+ "panels": [],
+ "title": "๐ Observed Metrics",
+ "type": "row"
+ },
+ {
+ "datasource": {
+ "type": "prometheus",
+ "uid": "${datasource}"
+ },
+ "description": "Observed time to first token and inter-token latency",
+ "fieldConfig": {
+ "defaults": {
+ "color": {
+ "mode": "palette-classic"
+ },
+ "custom": {
+ "axisBorderShow": false,
+ "axisCenteredZero": false,
+ "axisColorMode": "text",
+ "axisLabel": "Latency (ms)",
+ "axisPlacement": "auto",
+ "barAlignment": 0,
+ "barWidthFactor": 0.6,
+ "drawStyle": "line",
+ "fillOpacity": 10,
+ "gradientMode": "opacity",
+ "hideFrom": {
+ "legend": false,
+ "tooltip": false,
+ "viz": false
+ },
+ "insertNulls": false,
+ "lineInterpolation": "smooth",
+ "lineWidth": 2,
+ "pointSize": 5,
+ "scaleDistribution": {
+ "type": "linear"
+ },
+ "showPoints": "auto",
+ "spanNulls": false,
+ "stacking": {
+ "group": "A",
+ "mode": "none"
+ },
+ "thresholdsStyle": {
+ "mode": "off"
+ }
+ },
+ "mappings": [],
+ "thresholds": {
+ "mode": "absolute",
+ "steps": [
+ {
+ "color": "green",
+ "value": null
+ }
+ ]
+ },
+ "unit": "ms"
+ },
+ "overrides": [
+ {
+ "matcher": {
+ "id": "byName",
+ "options": "TTFT"
+ },
+ "properties": [
+ {
+ "id": "color",
+ "value": {
+ "fixedColor": "#FF6B6B",
+ "mode": "fixed"
+ }
+ },
+ {
+ "id": "custom.axisPlacement",
+ "value": "left"
+ },
+ {
+ "id": "custom.axisLabel",
+ "value": "TTFT (ms)"
+ }
+ ]
+ },
+ {
+ "matcher": {
+ "id": "byName",
+ "options": "ITL"
+ },
+ "properties": [
+ {
+ "id": "color",
+ "value": {
+ "fixedColor": "#4ECDC4",
+ "mode": "fixed"
+ }
+ },
+ {
+ "id": "custom.axisPlacement",
+ "value": "right"
+ },
+ {
+ "id": "custom.axisLabel",
+ "value": "ITL (ms)"
+ }
+ ]
+ }
+ ]
+ },
+ "gridPos": {
+ "h": 7,
+ "w": 8,
+ "x": 0,
+ "y": 7
+ },
+ "id": 10,
+ "options": {
+ "legend": {
+ "calcs": ["lastNotNull", "mean", "max"],
+ "displayMode": "table",
+ "placement": "bottom",
+ "showLegend": true
+ },
+ "tooltip": {
+ "hideZeros": false,
+ "mode": "multi",
+ "sort": "none"
+ }
+ },
+ "pluginVersion": "12.0.1",
+ "targets": [
+ {
+ "editorMode": "code",
+ "expr": "planner:observed_ttft{namespace=~\"$namespace\"}",
+ "legendFormat": "TTFT",
+ "range": true,
+ "refId": "A"
+ },
+ {
+ "editorMode": "code",
+ "expr": "planner:observed_itl{namespace=~\"$namespace\"}",
+ "legendFormat": "ITL",
+ "range": true,
+ "refId": "B"
+ }
+ ],
+ "title": "Observed Latency (TTFT & ITL)",
+ "type": "timeseries"
+ },
+ {
+ "datasource": {
+ "type": "prometheus",
+ "uid": "${datasource}"
+ },
+ "description": "Observed request rate and duration",
+ "fieldConfig": {
+ "defaults": {
+ "color": {
+ "mode": "palette-classic"
+ },
+ "custom": {
+ "axisBorderShow": false,
+ "axisCenteredZero": false,
+ "axisColorMode": "text",
+ "axisLabel": "",
+ "axisPlacement": "auto",
+ "barAlignment": 0,
+ "barWidthFactor": 0.6,
+ "drawStyle": "line",
+ "fillOpacity": 10,
+ "gradientMode": "opacity",
+ "hideFrom": {
+ "legend": false,
+ "tooltip": false,
+ "viz": false
+ },
+ "insertNulls": false,
+ "lineInterpolation": "smooth",
+ "lineWidth": 2,
+ "pointSize": 5,
+ "scaleDistribution": {
+ "type": "linear"
+ },
+ "showPoints": "auto",
+ "spanNulls": false,
+ "stacking": {
+ "group": "A",
+ "mode": "none"
+ },
+ "thresholdsStyle": {
+ "mode": "off"
+ }
+ },
+ "mappings": [],
+ "thresholds": {
+ "mode": "absolute",
+ "steps": [
+ {
+ "color": "green",
+ "value": null
+ }
+ ]
+ }
+ },
+ "overrides": [
+ {
+ "matcher": {
+ "id": "byName",
+ "options": "Request Rate"
+ },
+ "properties": [
+ {
+ "id": "color",
+ "value": {
+ "fixedColor": "#F9A825",
+ "mode": "fixed"
+ }
+ },
+ {
+ "id": "unit",
+ "value": "reqps"
+ },
+ {
+ "id": "custom.axisPlacement",
+ "value": "left"
+ }
+ ]
+ },
+ {
+ "matcher": {
+ "id": "byName",
+ "options": "Request Duration"
+ },
+ "properties": [
+ {
+ "id": "color",
+ "value": {
+ "fixedColor": "#AB47BC",
+ "mode": "fixed"
+ }
+ },
+ {
+ "id": "unit",
+ "value": "s"
+ },
+ {
+ "id": "custom.axisPlacement",
+ "value": "right"
+ }
+ ]
+ }
+ ]
+ },
+ "gridPos": {
+ "h": 7,
+ "w": 8,
+ "x": 8,
+ "y": 7
+ },
+ "id": 11,
+ "options": {
+ "legend": {
+ "calcs": ["lastNotNull", "mean", "max"],
+ "displayMode": "table",
+ "placement": "bottom",
+ "showLegend": true
+ },
+ "tooltip": {
+ "hideZeros": false,
+ "mode": "multi",
+ "sort": "none"
+ }
+ },
+ "pluginVersion": "12.0.1",
+ "targets": [
+ {
+ "editorMode": "code",
+ "expr": "planner:observed_request_rate{namespace=~\"$namespace\"}",
+ "legendFormat": "Request Rate",
+ "range": true,
+ "refId": "A"
+ },
+ {
+ "editorMode": "code",
+ "expr": "planner:observed_request_duration{namespace=~\"$namespace\"}",
+ "legendFormat": "Request Duration",
+ "range": true,
+ "refId": "B"
+ }
+ ],
+ "title": "Observed Request Rate & Duration",
+ "type": "timeseries"
+ },
+ {
+ "datasource": {
+ "type": "prometheus",
+ "uid": "${datasource}"
+ },
+ "description": "Observed input and output sequence lengths",
+ "fieldConfig": {
+ "defaults": {
+ "color": {
+ "mode": "palette-classic"
+ },
+ "custom": {
+ "axisBorderShow": false,
+ "axisCenteredZero": false,
+ "axisColorMode": "text",
+ "axisLabel": "Tokens",
+ "axisPlacement": "auto",
+ "barAlignment": 0,
+ "barWidthFactor": 0.6,
+ "drawStyle": "line",
+ "fillOpacity": 10,
+ "gradientMode": "opacity",
+ "hideFrom": {
+ "legend": false,
+ "tooltip": false,
+ "viz": false
+ },
+ "insertNulls": false,
+ "lineInterpolation": "smooth",
+ "lineWidth": 2,
+ "pointSize": 5,
+ "scaleDistribution": {
+ "type": "linear"
+ },
+ "showPoints": "auto",
+ "spanNulls": false,
+ "stacking": {
+ "group": "A",
+ "mode": "none"
+ },
+ "thresholdsStyle": {
+ "mode": "off"
+ }
+ },
+ "mappings": [],
+ "thresholds": {
+ "mode": "absolute",
+ "steps": [
+ {
+ "color": "green",
+ "value": null
+ }
+ ]
+ },
+ "unit": "none"
+ },
+ "overrides": [
+ {
+ "matcher": {
+ "id": "byName",
+ "options": "ISL"
+ },
+ "properties": [
+ {
+ "id": "color",
+ "value": {
+ "fixedColor": "#26A69A",
+ "mode": "fixed"
+ }
+ }
+ ]
+ },
+ {
+ "matcher": {
+ "id": "byName",
+ "options": "OSL"
+ },
+ "properties": [
+ {
+ "id": "color",
+ "value": {
+ "fixedColor": "#5C6BC0",
+ "mode": "fixed"
+ }
+ }
+ ]
+ }
+ ]
+ },
+ "gridPos": {
+ "h": 7,
+ "w": 8,
+ "x": 16,
+ "y": 7
+ },
+ "id": 12,
+ "options": {
+ "legend": {
+ "calcs": ["lastNotNull", "mean", "max"],
+ "displayMode": "table",
+ "placement": "bottom",
+ "showLegend": true
+ },
+ "tooltip": {
+ "hideZeros": false,
+ "mode": "multi",
+ "sort": "none"
+ }
+ },
+ "pluginVersion": "12.0.1",
+ "targets": [
+ {
+ "editorMode": "code",
+ "expr": "planner:observed_isl{namespace=~\"$namespace\"}",
+ "legendFormat": "ISL",
+ "range": true,
+ "refId": "A"
+ },
+ {
+ "editorMode": "code",
+ "expr": "planner:observed_osl{namespace=~\"$namespace\"}",
+ "legendFormat": "OSL",
+ "range": true,
+ "refId": "B"
+ }
+ ],
+ "title": "Observed Sequence Lengths (ISL & OSL)",
+ "type": "timeseries"
+ },
+ {
+ "collapsed": false,
+ "gridPos": {
+ "h": 1,
+ "w": 24,
+ "x": 0,
+ "y": 14
+ },
+ "id": 102,
+ "panels": [],
+ "title": "๐ฎ Predicted Metrics",
+ "type": "row"
+ },
+ {
+ "datasource": {
+ "type": "prometheus",
+ "uid": "${datasource}"
+ },
+ "description": "Predicted request rate",
+ "fieldConfig": {
+ "defaults": {
+ "color": {
+ "mode": "palette-classic"
+ },
+ "custom": {
+ "axisBorderShow": false,
+ "axisCenteredZero": false,
+ "axisColorMode": "text",
+ "axisLabel": "Request Rate",
+ "axisPlacement": "auto",
+ "barAlignment": 0,
+ "barWidthFactor": 0.6,
+ "drawStyle": "line",
+ "fillOpacity": 10,
+ "gradientMode": "opacity",
+ "hideFrom": {
+ "legend": false,
+ "tooltip": false,
+ "viz": false
+ },
+ "insertNulls": false,
+ "lineInterpolation": "smooth",
+ "lineStyle": {
+ "dash": [10, 10],
+ "fill": "dash"
+ },
+ "lineWidth": 2,
+ "pointSize": 5,
+ "scaleDistribution": {
+ "type": "linear"
+ },
+ "showPoints": "auto",
+ "spanNulls": false,
+ "stacking": {
+ "group": "A",
+ "mode": "none"
+ },
+ "thresholdsStyle": {
+ "mode": "off"
+ }
+ },
+ "mappings": [],
+ "thresholds": {
+ "mode": "absolute",
+ "steps": [
+ {
+ "color": "green",
+ "value": null
+ }
+ ]
+ },
+ "unit": "reqps"
+ },
+ "overrides": [
+ {
+ "matcher": {
+ "id": "byName",
+ "options": "Predicted Request Rate"
+ },
+ "properties": [
+ {
+ "id": "color",
+ "value": {
+ "fixedColor": "#FFB74D",
+ "mode": "fixed"
+ }
+ }
+ ]
+ }
+ ]
+ },
+ "gridPos": {
+ "h": 7,
+ "w": 8,
+ "x": 0,
+ "y": 15
+ },
+ "id": 20,
+ "options": {
+ "legend": {
+ "calcs": ["lastNotNull", "mean"],
+ "displayMode": "table",
+ "placement": "bottom",
+ "showLegend": true
+ },
+ "tooltip": {
+ "hideZeros": false,
+ "mode": "multi",
+ "sort": "none"
+ }
+ },
+ "pluginVersion": "12.0.1",
+ "targets": [
+ {
+ "editorMode": "code",
+ "expr": "planner:predicted_request_rate{namespace=~\"$namespace\"}",
+ "legendFormat": "Predicted Request Rate",
+ "range": true,
+ "refId": "A"
+ }
+ ],
+ "title": "Predicted Request Rate",
+ "type": "timeseries"
+ },
+ {
+ "datasource": {
+ "type": "prometheus",
+ "uid": "${datasource}"
+ },
+ "description": "Predicted input and output sequence lengths",
+ "fieldConfig": {
+ "defaults": {
+ "color": {
+ "mode": "palette-classic"
+ },
+ "custom": {
+ "axisBorderShow": false,
+ "axisCenteredZero": false,
+ "axisColorMode": "text",
+ "axisLabel": "Tokens",
+ "axisPlacement": "auto",
+ "barAlignment": 0,
+ "barWidthFactor": 0.6,
+ "drawStyle": "line",
+ "fillOpacity": 10,
+ "gradientMode": "opacity",
+ "hideFrom": {
+ "legend": false,
+ "tooltip": false,
+ "viz": false
+ },
+ "insertNulls": false,
+ "lineInterpolation": "smooth",
+ "lineStyle": {
+ "dash": [10, 10],
+ "fill": "dash"
+ },
+ "lineWidth": 2,
+ "pointSize": 5,
+ "scaleDistribution": {
+ "type": "linear"
+ },
+ "showPoints": "auto",
+ "spanNulls": false,
+ "stacking": {
+ "group": "A",
+ "mode": "none"
+ },
+ "thresholdsStyle": {
+ "mode": "off"
+ }
+ },
+ "mappings": [],
+ "thresholds": {
+ "mode": "absolute",
+ "steps": [
+ {
+ "color": "green",
+ "value": null
+ }
+ ]
+ },
+ "unit": "none"
+ },
+ "overrides": [
+ {
+ "matcher": {
+ "id": "byName",
+ "options": "Predicted ISL"
+ },
+ "properties": [
+ {
+ "id": "color",
+ "value": {
+ "fixedColor": "#80CBC4",
+ "mode": "fixed"
+ }
+ }
+ ]
+ },
+ {
+ "matcher": {
+ "id": "byName",
+ "options": "Predicted OSL"
+ },
+ "properties": [
+ {
+ "id": "color",
+ "value": {
+ "fixedColor": "#9FA8DA",
+ "mode": "fixed"
+ }
+ }
+ ]
+ }
+ ]
+ },
+ "gridPos": {
+ "h": 7,
+ "w": 8,
+ "x": 8,
+ "y": 15
+ },
+ "id": 22,
+ "options": {
+ "legend": {
+ "calcs": ["lastNotNull", "mean"],
+ "displayMode": "table",
+ "placement": "bottom",
+ "showLegend": true
+ },
+ "tooltip": {
+ "hideZeros": false,
+ "mode": "multi",
+ "sort": "none"
+ }
+ },
+ "pluginVersion": "12.0.1",
+ "targets": [
+ {
+ "editorMode": "code",
+ "expr": "planner:predicted_isl{namespace=~\"$namespace\"}",
+ "legendFormat": "Predicted ISL",
+ "range": true,
+ "refId": "A"
+ },
+ {
+ "editorMode": "code",
+ "expr": "planner:predicted_osl{namespace=~\"$namespace\"}",
+ "legendFormat": "Predicted OSL",
+ "range": true,
+ "refId": "B"
+ }
+ ],
+ "title": "Predicted Sequence Lengths (ISL & OSL)",
+ "type": "timeseries"
+ },
+ {
+ "datasource": {
+ "type": "prometheus",
+ "uid": "${datasource}"
+ },
+ "description": "Predicted number of prefill and decode replicas",
+ "fieldConfig": {
+ "defaults": {
+ "color": {
+ "mode": "palette-classic"
+ },
+ "custom": {
+ "axisBorderShow": false,
+ "axisCenteredZero": false,
+ "axisColorMode": "text",
+ "axisLabel": "Replicas",
+ "axisPlacement": "auto",
+ "barAlignment": 0,
+ "barWidthFactor": 0.6,
+ "drawStyle": "line",
+ "fillOpacity": 20,
+ "gradientMode": "opacity",
+ "hideFrom": {
+ "legend": false,
+ "tooltip": false,
+ "viz": false
+ },
+ "insertNulls": false,
+ "lineInterpolation": "stepAfter",
+ "lineStyle": {
+ "dash": [10, 10],
+ "fill": "dash"
+ },
+ "lineWidth": 2,
+ "pointSize": 5,
+ "scaleDistribution": {
+ "type": "linear"
+ },
+ "showPoints": "never",
+ "spanNulls": false,
+ "stacking": {
+ "group": "A",
+ "mode": "none"
+ },
+ "thresholdsStyle": {
+ "mode": "off"
+ }
+ },
+ "decimals": 0,
+ "mappings": [],
+ "thresholds": {
+ "mode": "absolute",
+ "steps": [
+ {
+ "color": "green",
+ "value": null
+ }
+ ]
+ },
+ "unit": "none"
+ },
+ "overrides": [
+ {
+ "matcher": {
+ "id": "byName",
+ "options": "Predicted Prefill"
+ },
+ "properties": [
+ {
+ "id": "color",
+ "value": {
+ "fixedColor": "#B388FF",
+ "mode": "fixed"
+ }
+ }
+ ]
+ },
+ {
+ "matcher": {
+ "id": "byName",
+ "options": "Predicted Decode"
+ },
+ "properties": [
+ {
+ "id": "color",
+ "value": {
+ "fixedColor": "#64B5F6",
+ "mode": "fixed"
+ }
+ }
+ ]
+ }
+ ]
+ },
+ "gridPos": {
+ "h": 7,
+ "w": 8,
+ "x": 16,
+ "y": 15
+ },
+ "id": 21,
+ "options": {
+ "legend": {
+ "calcs": ["lastNotNull", "mean", "max"],
+ "displayMode": "table",
+ "placement": "bottom",
+ "showLegend": true
+ },
+ "tooltip": {
+ "hideZeros": false,
+ "mode": "multi",
+ "sort": "none"
+ }
+ },
+ "pluginVersion": "12.0.1",
+ "targets": [
+ {
+ "editorMode": "code",
+ "expr": "planner:predicted_num_p{namespace=~\"$namespace\"}",
+ "legendFormat": "Predicted Prefill",
+ "range": true,
+ "refId": "A"
+ },
+ {
+ "editorMode": "code",
+ "expr": "planner:predicted_num_d{namespace=~\"$namespace\"}",
+ "legendFormat": "Predicted Decode",
+ "range": true,
+ "refId": "B"
+ }
+ ],
+ "title": "Predicted Replica Counts",
+ "type": "timeseries"
+ },
+ {
+ "collapsed": false,
+ "gridPos": {
+ "h": 1,
+ "w": 24,
+ "x": 0,
+ "y": 22
+ },
+ "id": 103,
+ "panels": [],
+ "title": "โ๏ธ Correction Factors",
+ "type": "row"
+ },
+ {
+ "datasource": {
+ "type": "prometheus",
+ "uid": "${datasource}"
+ },
+ "description": "Current prefill correction factor (TTFT observed / TTFT expected)",
+ "fieldConfig": {
+ "defaults": {
+ "color": {
+ "mode": "thresholds"
+ },
+ "decimals": 3,
+ "mappings": [],
+ "max": 2,
+ "min": 0,
+ "thresholds": {
+ "mode": "absolute",
+ "steps": [
+ {
+ "color": "#73BF69",
+ "value": null
+ },
+ {
+ "color": "#FF9830",
+ "value": 1.2
+ },
+ {
+ "color": "#F2495C",
+ "value": 1.5
+ }
+ ]
+ },
+ "unit": "none"
+ },
+ "overrides": []
+ },
+ "gridPos": {
+ "h": 5,
+ "w": 4,
+ "x": 0,
+ "y": 23
+ },
+ "id": 30,
+ "options": {
+ "minVizHeight": 75,
+ "minVizWidth": 75,
+ "orientation": "auto",
+ "reduceOptions": {
+ "calcs": ["lastNotNull"],
+ "fields": "",
+ "values": false
+ },
+ "showThresholdLabels": false,
+ "showThresholdMarkers": true,
+ "sizing": "auto"
+ },
+ "pluginVersion": "12.0.1",
+ "targets": [
+ {
+ "editorMode": "code",
+ "expr": "planner:p_correction_factor{namespace=~\"$namespace\"}",
+ "legendFormat": "Prefill CF",
+ "range": true,
+ "refId": "A"
+ }
+ ],
+ "title": "Prefill Correction Factor",
+ "type": "gauge"
+ },
+ {
+ "datasource": {
+ "type": "prometheus",
+ "uid": "${datasource}"
+ },
+ "description": "Current decode correction factor (ITL observed / ITL expected)",
+ "fieldConfig": {
+ "defaults": {
+ "color": {
+ "mode": "thresholds"
+ },
+ "decimals": 3,
+ "mappings": [],
+ "max": 2,
+ "min": 0,
+ "thresholds": {
+ "mode": "absolute",
+ "steps": [
+ {
+ "color": "#73BF69",
+ "value": null
+ },
+ {
+ "color": "#FF9830",
+ "value": 1.2
+ },
+ {
+ "color": "#F2495C",
+ "value": 1.5
+ }
+ ]
+ },
+ "unit": "none"
+ },
+ "overrides": []
+ },
+ "gridPos": {
+ "h": 5,
+ "w": 4,
+ "x": 4,
+ "y": 23
+ },
+ "id": 31,
+ "options": {
+ "minVizHeight": 75,
+ "minVizWidth": 75,
+ "orientation": "auto",
+ "reduceOptions": {
+ "calcs": ["lastNotNull"],
+ "fields": "",
+ "values": false
+ },
+ "showThresholdLabels": false,
+ "showThresholdMarkers": true,
+ "sizing": "auto"
+ },
+ "pluginVersion": "12.0.1",
+ "targets": [
+ {
+ "editorMode": "code",
+ "expr": "planner:d_correction_factor{namespace=~\"$namespace\"}",
+ "legendFormat": "Decode CF",
+ "range": true,
+ "refId": "A"
+ }
+ ],
+ "title": "Decode Correction Factor",
+ "type": "gauge"
+ },
+ {
+ "datasource": {
+ "type": "prometheus",
+ "uid": "${datasource}"
+ },
+ "description": "Correction factor history over time. Values close to 1.0 indicate accurate predictions.",
+ "fieldConfig": {
+ "defaults": {
+ "color": {
+ "mode": "palette-classic"
+ },
+ "custom": {
+ "axisBorderShow": false,
+ "axisCenteredZero": false,
+ "axisColorMode": "text",
+ "axisLabel": "Factor",
+ "axisPlacement": "auto",
+ "barAlignment": 0,
+ "barWidthFactor": 0.6,
+ "drawStyle": "line",
+ "fillOpacity": 10,
+ "gradientMode": "opacity",
+ "hideFrom": {
+ "legend": false,
+ "tooltip": false,
+ "viz": false
+ },
+ "insertNulls": false,
+ "lineInterpolation": "smooth",
+ "lineWidth": 2,
+ "pointSize": 5,
+ "scaleDistribution": {
+ "type": "linear"
+ },
+ "showPoints": "auto",
+ "spanNulls": false,
+ "stacking": {
+ "group": "A",
+ "mode": "none"
+ },
+ "thresholdsStyle": {
+ "mode": "line+area"
+ }
+ },
+ "mappings": [],
+ "thresholds": {
+ "mode": "absolute",
+ "steps": [
+ {
+ "color": "transparent",
+ "value": null
+ },
+ {
+ "color": "rgba(255, 152, 48, 0.1)",
+ "value": 1.2
+ },
+ {
+ "color": "rgba(242, 73, 92, 0.1)",
+ "value": 1.5
+ }
+ ]
+ },
+ "unit": "none"
+ },
+ "overrides": [
+ {
+ "matcher": {
+ "id": "byName",
+ "options": "Prefill CF"
+ },
+ "properties": [
+ {
+ "id": "color",
+ "value": {
+ "fixedColor": "#CE93D8",
+ "mode": "fixed"
+ }
+ }
+ ]
+ },
+ {
+ "matcher": {
+ "id": "byName",
+ "options": "Decode CF"
+ },
+ "properties": [
+ {
+ "id": "color",
+ "value": {
+ "fixedColor": "#81D4FA",
+ "mode": "fixed"
+ }
+ }
+ ]
+ }
+ ]
+ },
+ "gridPos": {
+ "h": 5,
+ "w": 16,
+ "x": 8,
+ "y": 23
+ },
+ "id": 32,
+ "options": {
+ "legend": {
+ "calcs": ["lastNotNull", "mean", "min", "max"],
+ "displayMode": "table",
+ "placement": "right",
+ "showLegend": true
+ },
+ "tooltip": {
+ "hideZeros": false,
+ "mode": "multi",
+ "sort": "none"
+ }
+ },
+ "pluginVersion": "12.0.1",
+ "targets": [
+ {
+ "editorMode": "code",
+ "expr": "planner:p_correction_factor{namespace=~\"$namespace\"}",
+ "legendFormat": "Prefill CF",
+ "range": true,
+ "refId": "A"
+ },
+ {
+ "editorMode": "code",
+ "expr": "planner:d_correction_factor{namespace=~\"$namespace\"}",
+ "legendFormat": "Decode CF",
+ "range": true,
+ "refId": "B"
+ }
+ ],
+ "title": "Correction Factor History",
+ "type": "timeseries"
+ }
+ ],
+ "refresh": "",
+ "schemaVersion": 41,
+ "tags": ["dynamo", "planner"],
+ "templating": {
+ "list": [
+ {
+ "current": {
+ "text": "default",
+ "value": "default"
+ },
+ "label": "Data source",
+ "name": "datasource",
+ "options": [],
+ "query": "prometheus",
+ "refresh": 1,
+ "regex": "",
+ "type": "datasource"
+ },
+ {
+ "current": {
+ "selected": true,
+ "text": ["All"],
+ "value": ["$__all"]
+ },
+ "datasource": {
+ "type": "prometheus",
+ "uid": "${datasource}"
+ },
+ "definition": "label_values(planner:num_p_workers, namespace)",
+ "hide": 0,
+ "includeAll": true,
+ "label": "Namespace",
+ "multi": true,
+ "name": "namespace",
+ "options": [],
+ "query": "label_values(planner:num_p_workers, namespace)",
+ "refresh": 2,
+ "regex": "",
+ "skipUrlSync": false,
+ "sort": 1,
+ "type": "query"
+ }
+ ]
+ },
+ "time": {
+ "from": "now-30m",
+ "to": "now"
+ },
+ "timepicker": {
+ "refresh_intervals": ["5s", "10s", "30s", "1m", "5m", "15m", "30m", "1h"]
+ },
+ "timezone": "browser",
+ "title": "Dynamo Planner Dashboard",
+ "uid": "dynamo-planner-dashboard",
+ "version": 1
+ }
+
diff --git a/deploy/observability/tempo.yaml b/deploy/observability/tempo.yaml
index d5656245ee..a150aca64c 100644
--- a/deploy/observability/tempo.yaml
+++ b/deploy/observability/tempo.yaml
@@ -9,7 +9,7 @@ distributor:
otlp:
protocols:
grpc:
- endpoint: 0.0.0.0:4317
+ endpoint: 0.0.0.0:4317 # Receives from OTEL collector
http:
endpoint: 0.0.0.0:4318
diff --git a/deploy/sanity_check.py b/deploy/sanity_check.py
index 165eeab8d5..51fd1fd5f2 100755
--- a/deploy/sanity_check.py
+++ b/deploy/sanity_check.py
@@ -92,6 +92,7 @@
--thorough-check Enable thorough checking (file permissions, directory sizes, HuggingFace model details)
--terse Enable terse output mode (show only essential info and errors)
--runtime-check Skip compile-time dependency checks (Rust, Cargo, Maturin) for runtime containers
+ and validate ai-dynamo packages (ai-dynamo-runtime and ai-dynamo)
"""
import datetime
@@ -299,10 +300,12 @@ def __init__(
thorough_check: bool = False,
terse: bool = False,
runtime_check: bool = False,
+ no_gpu_check: bool = False,
):
self.thorough_check = thorough_check
self.terse = terse
self.runtime_check = runtime_check
+ self.no_gpu_check = no_gpu_check
if hostname is None:
hostname = platform.node()
@@ -325,9 +328,10 @@ def __init__(
self.add_child(OSInfo())
self.add_child(UserInfo())
- # Add GPU info (always show, even if not found)
- gpu_info = GPUInfo()
- self.add_child(gpu_info)
+ # Add GPU info (always show, even if not found) unless --no-gpu-check
+ if not self.no_gpu_check:
+ gpu_info = GPUInfo()
+ self.add_child(gpu_info)
# Add Framework info (vllm, sglang, tensorrt_llm)
self.add_child(FrameworkInfo())
@@ -359,7 +363,11 @@ def __init__(
self._add_error_only_components()
# Add Dynamo workspace info (always show, even if not found)
- self.add_child(DynamoInfo(thorough_check=self.thorough_check))
+ self.add_child(
+ DynamoInfo(
+ thorough_check=self.thorough_check, runtime_check=self.runtime_check
+ )
+ )
def _get_ip_address(self) -> Optional[str]:
"""Get the primary IP address of the system."""
@@ -1094,13 +1102,23 @@ def _check_dynamo_directory_permissions(self):
dynamo_root = DynamoInfo.find_workspace()
if not dynamo_root:
- self.add_child(
- NodeInfo(
- label="Dynamo workspace",
- desc="workspace not found",
- status=NodeStatus.ERROR,
+ # In runtime check mode, workspace not being found is expected
+ if self.runtime_check:
+ self.add_child(
+ NodeInfo(
+ label="Dynamo workspace",
+ desc="not needed for runtime container",
+ status=NodeStatus.INFO,
+ )
+ )
+ else:
+ self.add_child(
+ NodeInfo(
+ label="Dynamo workspace",
+ desc="workspace not found",
+ status=NodeStatus.ERROR,
+ )
)
- )
return
if not DynamoInfo.is_dynamo_workspace(dynamo_root):
@@ -1840,25 +1858,78 @@ def __init__(self):
]
frameworks_found = 0
+ gpu_dependent_found = 0
for module_name, display_name in frameworks_to_check:
- # Regular import for all frameworks
- try:
- module = __import__(module_name)
- version = getattr(module, "__version__", "installed")
- frameworks_found += 1
+ # First check if module exists without importing (for GPU-dependent modules)
+ import importlib.metadata
+ import importlib.util
- # Get module path
- module_path = None
- if hasattr(module, "__file__") and module.__file__:
- module_path = self._replace_home_with_var(module.__file__)
+ spec = importlib.util.find_spec(module_name)
+ if not spec:
+ # Module not installed at all
+ continue
- # Get executable path
- exec_path = None
- exec_path_raw = shutil.which(module_name)
+ # Module exists, try to get version from metadata (doesn't require import)
+ version = None
+ try:
+ version = importlib.metadata.version(module_name)
+ except Exception:
+ # Try alternative package names
+ alt_names = {
+ "tensorrt_llm": "tensorrt-llm",
+ "sglang": "sglang",
+ "vllm": "vllm",
+ }
+ if module_name in alt_names:
+ try:
+ version = importlib.metadata.version(alt_names[module_name])
+ except Exception:
+ pass
+
+ # Get module path from spec
+ module_path = None
+ if spec.origin:
+ module_path = self._replace_home_with_var(spec.origin)
+
+ # Get executable path (special handling for each framework)
+ exec_path = None
+ exec_names = {
+ "vllm": "vllm",
+ "sglang": "sglang",
+ "tensorrt_llm": "trtllm-build",
+ }
+ if module_name in exec_names:
+ exec_path_raw = shutil.which(exec_names[module_name])
if exec_path_raw:
exec_path = self._replace_home_with_var(exec_path_raw)
+ # Now try to import to get runtime version if needed
+ gpu_required = False
+ try:
+ module = __import__(module_name)
+ # Get version from module if not already found
+ if not version:
+ version = getattr(module, "__version__", "installed")
+ except ImportError as e:
+ # Check if it's a GPU-related error
+ error_msg = str(e).lower()
+ if "libcuda" in error_msg or "cuda" in error_msg:
+ gpu_required = True
+ gpu_dependent_found += 1
+ except Exception:
+ pass
+
+ # If we found the module (either importable or just installed)
+ if spec:
+ frameworks_found += 1
+ if not version:
+ version = "installed"
+
+ # Add status indicator to version for GPU-dependent modules
+ if gpu_required:
+ version = f"{version} (requires GPU)"
+
package_info = PythonPackageInfo(
package_name=display_name,
version=version,
@@ -1868,9 +1939,6 @@ def __init__(self):
is_installed=True,
)
self.add_child(package_info)
- except (ImportError, Exception):
- # Framework not installed - don't add it
- pass
# If no frameworks found, set status to ERROR (X) and show what's missing
if frameworks_found == 0:
@@ -1881,6 +1949,9 @@ def __init__(self):
missing_frameworks.append(f"no {module_name}")
missing_text = ", ".join(missing_frameworks)
self.desc = missing_text
+ elif gpu_dependent_found > 0:
+ # At least one framework needs GPU
+ self.status = NodeStatus.WARNING
class PythonPackageInfo(NodeInfo):
@@ -1962,8 +2033,14 @@ def __init__(self, pythonpath: str):
class DynamoRuntimeInfo(NodeInfo):
"""Dynamo runtime components information"""
- def __init__(self, workspace_dir: str, thorough_check: bool = False):
+ def __init__(
+ self,
+ workspace_dir: Optional[str],
+ thorough_check: bool = False,
+ runtime_check: bool = False,
+ ):
self.thorough_check = thorough_check
+ self.runtime_check = runtime_check
# Try to get package version
import importlib.metadata
@@ -1993,20 +2070,30 @@ def __init__(self, workspace_dir: str, thorough_check: bool = False):
if pth_file:
self.add_child(pth_file)
- # Check for multiple _core*.so files
- multiple_so_warning = self._check_multiple_core_so(workspace_dir)
- if multiple_so_warning:
- self.add_child(multiple_so_warning)
+ # Check for multiple _core*.so files (only if workspace exists)
+ if workspace_dir:
+ multiple_so_warning = self._check_multiple_core_so(workspace_dir)
+ if multiple_so_warning:
+ self.add_child(multiple_so_warning)
# Discover runtime components from source
components = self._discover_runtime_components(workspace_dir)
+ # For runtime check, always try to import the core modules
+ if self.runtime_check:
+ # Force check of essential runtime modules
+ essential_components = ["dynamo._core", "dynamo.runtime"]
+ for comp in essential_components:
+ if comp not in components:
+ components.append(comp)
+
# Find where each component actually is and add them
if components:
# Calculate max width for alignment
max_len = max(len(comp) for comp in components)
components_found = False
+ import_failures = []
for component in components:
try:
# Try to import to find actual location
@@ -2041,16 +2128,31 @@ def __init__(self, workspace_dir: str, thorough_check: bool = False):
label=padded_name, desc=error_msg, status=NodeStatus.ERROR
)
self.add_child(module_node)
+ import_failures.append(component)
# Don't set components_found to True for failed imports
# Update status and value based on whether we found components
if components_found:
- self.status = NodeStatus.OK
+ # For runtime check, fail if any essential component failed to import
+ if self.runtime_check and import_failures:
+ essential_failed = any(
+ comp in import_failures
+ for comp in ["dynamo._core", "dynamo.runtime"]
+ )
+ if essential_failed:
+ self.status = NodeStatus.ERROR
+ self.desc = "ai-dynamo-runtime - FAILED (essential modules not importable)"
+ else:
+ self.status = NodeStatus.OK
+ else:
+ self.status = NodeStatus.OK
# If not installed but components work via PYTHONPATH, update the message
- if not is_installed:
+ if not is_installed and self.status == NodeStatus.OK:
self.desc = "ai-dynamo-runtime (via PYTHONPATH)"
else:
self.status = NodeStatus.ERROR
+ if self.runtime_check:
+ self.desc = "ai-dynamo-runtime - FAILED (no components found)"
else:
# No components discovered at all
self.status = NodeStatus.ERROR
@@ -2102,7 +2204,7 @@ def _check_multiple_core_so(self, workspace_dir: str) -> Optional[NodeInfo]:
return None
- def _discover_runtime_components(self, workspace_dir: str) -> list:
+ def _discover_runtime_components(self, workspace_dir: Optional[str]) -> list:
"""Discover ai-dynamo-runtime components from filesystem.
Returns:
@@ -2195,8 +2297,14 @@ def _find_pth_file(self) -> Optional[NodeInfo]:
class DynamoFrameworkInfo(NodeInfo):
"""Dynamo framework components information"""
- def __init__(self, workspace_dir: str, thorough_check: bool = False):
+ def __init__(
+ self,
+ workspace_dir: Optional[str],
+ thorough_check: bool = False,
+ runtime_check: bool = False,
+ ):
self.thorough_check = thorough_check
+ self.runtime_check = runtime_check
# Try to get package version
import importlib.metadata
@@ -2248,6 +2356,16 @@ def __init__(self, workspace_dir: str, thorough_check: bool = False):
# Discover framework components from source
components = self._discover_framework_components(workspace_dir)
+ # For runtime check, always try to import at least one framework component
+ if self.runtime_check and not components:
+ # Try common framework components even if not discovered
+ components = [
+ "dynamo.frontend",
+ "dynamo.vllm",
+ "dynamo.sglang",
+ "dynamo.trtllm",
+ ]
+
# Find where each component actually is and add them
if components:
# Sort components for consistent output
@@ -2257,6 +2375,7 @@ def __init__(self, workspace_dir: str, thorough_check: bool = False):
max_len = max(len(comp) for comp in components)
components_found = False
+ import_failures = []
for component in components:
try:
# Try to import to find actual location
@@ -2281,21 +2400,29 @@ def __init__(self, workspace_dir: str, thorough_check: bool = False):
label=padded_name, desc=error_msg, status=NodeStatus.ERROR
)
self.add_child(component_node)
+ import_failures.append(component)
# Don't set components_found to True for failed imports
# Update status and value based on whether we found components
if components_found:
- self.status = NodeStatus.OK
+ # For runtime check, we need at least one component to work
+ if self.runtime_check and len(import_failures) == len(components):
+ self.status = NodeStatus.ERROR
+ self.desc = "ai-dynamo - FAILED (no components importable)"
+ else:
+ self.status = NodeStatus.OK
# If not installed but components work via PYTHONPATH, update the message
- if not is_installed:
+ if not is_installed and self.status == NodeStatus.OK:
self.desc = "ai-dynamo (via PYTHONPATH)"
else:
self.status = NodeStatus.ERROR
+ if self.runtime_check:
+ self.desc = "ai-dynamo - FAILED (no components found)"
else:
# No components discovered at all
self.status = NodeStatus.ERROR
- def _discover_framework_components(self, workspace_dir: str) -> list:
+ def _discover_framework_components(self, workspace_dir: Optional[str]) -> list:
"""Discover ai-dynamo framework components from filesystem.
Returns:
@@ -2326,12 +2453,37 @@ def _discover_framework_components(self, workspace_dir: str) -> list:
class DynamoInfo(NodeInfo):
"""Dynamo workspace information"""
- def __init__(self, thorough_check: bool = False):
+ def __init__(self, thorough_check: bool = False, runtime_check: bool = False):
self.thorough_check = thorough_check
+ self.runtime_check = runtime_check
# Find workspace directory
workspace_dir = DynamoInfo.find_workspace()
+ # For runtime check, we don't need a workspace - just check packages
+ if self.runtime_check and not workspace_dir:
+ super().__init__(
+ label="Dynamo",
+ desc="Runtime container - checking installed packages",
+ status=NodeStatus.INFO,
+ )
+ # Check runtime components even without workspace
+ runtime_info = DynamoRuntimeInfo(
+ None,
+ thorough_check=self.thorough_check,
+ runtime_check=self.runtime_check,
+ )
+ self.add_child(runtime_info)
+
+ # Check framework components even without workspace
+ framework_info = DynamoFrameworkInfo(
+ None,
+ thorough_check=self.thorough_check,
+ runtime_check=self.runtime_check,
+ )
+ self.add_child(framework_info)
+ return
+
if not workspace_dir:
# Show error when workspace is not found
super().__init__(
@@ -2368,13 +2520,17 @@ def __init__(self, thorough_check: bool = False):
# Always add runtime components
runtime_info = DynamoRuntimeInfo(
- workspace_dir, thorough_check=self.thorough_check
+ workspace_dir,
+ thorough_check=self.thorough_check,
+ runtime_check=self.runtime_check,
)
self.add_child(runtime_info)
# Always add framework components
framework_info = DynamoFrameworkInfo(
- workspace_dir, thorough_check=self.thorough_check
+ workspace_dir,
+ thorough_check=self.thorough_check,
+ runtime_check=self.runtime_check,
)
self.add_child(framework_info)
@@ -2513,8 +2669,14 @@ def main():
)
parser.add_argument(
"--runtime-check",
+ "--runtime",
+ action="store_true",
+ help="Skip compile-time dependency checks (Rust, Cargo, Maturin) for runtime containers and validate ai-dynamo packages",
+ )
+ parser.add_argument(
+ "--no-gpu-check",
action="store_true",
- help="Skip compile-time dependency checks (Rust, Cargo, Maturin) for runtime containers",
+ help="Skip GPU detection and information collection (useful for CI environments without GPU access)",
)
args = parser.parse_args()
@@ -2527,6 +2689,7 @@ def main():
thorough_check=args.thorough_check,
terse=args.terse,
runtime_check=args.runtime_check,
+ no_gpu_check=args.no_gpu_check,
)
tree.print_tree()
diff --git a/docs/_sections/k8s_deployment.rst b/docs/_sections/k8s_deployment.rst
index 81d06513cb..cdd7d2029a 100644
--- a/docs/_sections/k8s_deployment.rst
+++ b/docs/_sections/k8s_deployment.rst
@@ -10,3 +10,4 @@ Deployment Guide
Webhooks <../kubernetes/webhooks>
Minikube Setup <../kubernetes/deployment/minikube>
Managing Models with DynamoModel <../kubernetes/deployment/dynamomodel-guide>
+ Autoscaling <../kubernetes/autoscaling>
diff --git a/docs/agents/tool-calling.md b/docs/agents/tool-calling.md
index 0326d57bf2..dd0d116215 100644
--- a/docs/agents/tool-calling.md
+++ b/docs/agents/tool-calling.md
@@ -38,6 +38,7 @@ Parser to Model Mapping
| deepseek_v3 | deepseek-ai/DeepSeek-V3, deepseek-ai/DeepSeek-R1, deepseek-ai/DeepSeek-R1-0528 |
| deepseek_v3_1 | deepseek-ai/DeepSeek-V3.1 |
| pythonic | meta-llama/Llama-4-* |
+| jamba | ai21labs/AI21-Jamba-*-1.5, ai21labs/AI21-Jamba-*-1.6, ai21labs/AI21-Jamba-*-1.7, |
## Examples
diff --git a/docs/api/nixl_connect/connector.md b/docs/api/nixl_connect/connector.md
index 05db27be03..3c64d99eae 100644
--- a/docs/api/nixl_connect/connector.md
+++ b/docs/api/nixl_connect/connector.md
@@ -47,7 +47,6 @@ The metadata contains required information (identifiers, keys, etc.) which enabl
@async_on_start
async def async_init(self):
self.connector = dynamo.nixl_connect.Connector()
- await self.connector.initialize()
```
> [!Tip]
@@ -109,7 +108,7 @@ Use [`.wait_for_completion()`](write_operation.md#wait_for_completion) to block
### `create_readable`
```python
-def create_readable(
+async def create_readable(
self,
local_descriptors: Descriptor | list[Descriptor],
) -> ReadableOperation:
@@ -130,7 +129,7 @@ Use [`.wait_for_completion()`](readable_operation.md#wait_for_completion) to blo
### `create_writable`
```python
-def create_writable(
+async def create_writable(
self,
local_descriptors: Descriptor | list[Descriptor],
) -> WritableOperation:
@@ -151,6 +150,15 @@ Use [`.wait_for_completion()`](writable_operation.md#wait_for_completion) to blo
## Properties
+### `hostname`
+
+```python
+@property
+def hostname(self) -> str:
+```
+
+Gets the name of the current worker's host.
+
### `is_cuda_available`
```python
@@ -169,22 +177,6 @@ def name(self) -> str | None:
Gets the Dynamo component name used by the connector.
-### `namespace`
-
-```python
-@property
-def namespace(self) -> str:
-```
-
-Gets the Dynamo namespace used by the connector.
-
-### `runtime`
-
-```python
-def runtime(self) -> dynamo.runtime.DistributedRuntime:
-```
-
-Gets the Dynamo distributed runtime instance associated with the connector.
## Related Classes
diff --git a/docs/api/nixl_connect/read_operation.md b/docs/api/nixl_connect/read_operation.md
index f01e925498..71b9e22fd9 100644
--- a/docs/api/nixl_connect/read_operation.md
+++ b/docs/api/nixl_connect/read_operation.md
@@ -38,7 +38,7 @@ therefore the operation should be awaited until completed unless cancellation is
) -> None:
descriptor = dynamo.nixl_connect.Descriptor(local_tensor)
- with self.connector.begin_read(descriptor, remote_metadata) as read_op:
+ with await self.connector.begin_read(remote_metadata, descriptor) as read_op:
# Wait for the operation to complete writing data from the remote worker to local_tensor.
await read_op.wait_for_completion()
```
diff --git a/docs/api/nixl_connect/readable_operation.md b/docs/api/nixl_connect/readable_operation.md
index f112c77b3b..1e66a33b57 100644
--- a/docs/api/nixl_connect/readable_operation.md
+++ b/docs/api/nixl_connect/readable_operation.md
@@ -37,7 +37,7 @@ therefore the operation should be awaited until completed unless cancellation is
) -> None:
descriptor = dynamo.nixl_connect.Descriptor(local_tensor)
- with self.connector.create_readable(descriptor) as read_op:
+ with await self.connector.create_readable(descriptor) as read_op:
op_metadata = read_op.metadata()
# Send the metadata to the remote worker via sideband communication.
diff --git a/docs/api/nixl_connect/writable_operation.md b/docs/api/nixl_connect/writable_operation.md
index 4d57bb0808..d191f7d733 100644
--- a/docs/api/nixl_connect/writable_operation.md
+++ b/docs/api/nixl_connect/writable_operation.md
@@ -38,7 +38,7 @@ Cancellation is handled asynchronously.
) -> None:
descriptor = dynamo.nixl_connect.Descriptor(local_tensor)
- with self.connector.create_writable(descriptor) as write_op:
+ with await self.connector.create_writable(descriptor) as write_op:
op_metadata = write_op.metadata()
# Send the metadata to the remote worker via sideband communication.
diff --git a/docs/api/nixl_connect/write_operation.md b/docs/api/nixl_connect/write_operation.md
index 48c6729417..4740f13987 100644
--- a/docs/api/nixl_connect/write_operation.md
+++ b/docs/api/nixl_connect/write_operation.md
@@ -39,7 +39,7 @@ Cancellation is handled asynchronously.
) -> None:
descriptor = dynamo.nixl_connect.Descriptor(local_tensor)
- with self.connector.begin_write(descriptor, remote_metadata) as write_op:
+ with await self.connector.begin_write(descriptor, remote_metadata) as write_op:
# Wait for the operation to complete writing local_tensor to the remote worker.
await write_op.wait_for_completion()
```
diff --git a/docs/backends/sglang/multimodal_sglang_guide.md b/docs/backends/sglang/multimodal_sglang_guide.md
new file mode 100644
index 0000000000..43848584cb
--- /dev/null
+++ b/docs/backends/sglang/multimodal_sglang_guide.md
@@ -0,0 +1,324 @@
+
+
+# SGLang Multimodal Guide
+
+This document provides a comprehensive guide for multimodal inference using SGLang backend in Dynamo. For more details on the multimodal examples, see [Multimodal Examples Documentation](./multimodal_epd.md).
+
+## Multimodal Support Matrix
+
+| Modality | Input Format | Aggregated | Disaggregated | Notes |
+|----------|--------------|------------|---------------|-------|
+| **Image** | HTTP/HTTPS URL | โ
Yes | โ
Yes | Vision encoder generates embeddings |
+| **Image** | Data URL (Base64) | โ No | โ No | Not supported |
+| **Video** | HTTP/HTTPS URL | โ No | โ No | Not implemented |
+| **Audio** | HTTP/HTTPS URL | โ No | โ No | Not implemented |
+
+## Architecture Comparison
+
+SGLang multimodal supports two deployment patterns:
+
+```text
+AGGREGATED (E->PD):
+ Client โ Frontend (Rust) โ Processor โ Encoder [NIXL] โ PD Worker โ Response
+ โข 3 components โข Vision encoder in Python โข NIXL embeddings transfer
+
+DISAGGREGATED (E->P->D):
+ Client โ Frontend โ Processor โ Encoder [NIXL] โ Prefill [bootstrap] โ Decode โ Response
+ โข 4 components โข Vision encoder in Python โข KV cache transfer via bootstrap mechanism
+```
+
+## Aggregated Mode (E->PD)
+
+In aggregated mode, encoding happens in a separate worker, but prefill and decode share the same engine.
+
+### Architecture
+
+```text
+HTTP Frontend (Rust)
+ โ
+Processor (Python - ModelInput.Text - REGISTERED)
+ โ tokenizes with chat template, extracts image URL
+Encode Worker (Python - NOT registered)
+ โ downloads image, runs vision encoder, generates embeddings, NIXL transfer
+PD Worker (Python - NOT registered)
+ โ receives embeddings via NIXL, prefill + decode
+Response โ Processor โ Frontend
+```
+
+### Components
+
+| Component | Flag | ModelInput | Registered | Has SGLang Engine? | Purpose |
+|-----------|------|-----------|------------|-------------------|---------|
+| Processor | `--multimodal-processor` | Text | โ
Yes | โ No | HTTP entry, OpenAIโSGLang conversion |
+| Encode Worker | `--multimodal-encode-worker` | N/A | โ No | โ No | Vision encoder, embeddings generation |
+| PD Worker | `--multimodal-worker` | N/A | โ No | โ
Yes | Prefill + Decode with embeddings |
+
+### Key Characteristics
+
+- **Vision Encoder in Python**: Encode worker loads vision model (AutoModel) and image processor (AutoImageProcessor)
+- **Token Expansion**: Single `<|image_pad|>` token replaced with N tokens based on embedding shape
+- **NIXL Transfer**: Embeddings transferred from Encoder โ PD Worker using NIXL
+- **No Rust Processing**: All tokenization and image handling happens in Python
+
+## Disaggregated Mode (E->P->D)
+
+In disaggregated mode, encoding, prefill, and decode are handled by separate workers using SGLang's bootstrap coordination.
+
+### Architecture
+
+```text
+HTTP Frontend (Rust)
+ โ
+Processor (Python - ModelInput.Text - REGISTERED)
+ โ tokenizes with chat template, extracts image URL
+Encode Worker (Python - NOT registered)
+ โ downloads image, runs vision encoder, generates embeddings, NIXL transfer
+Prefill Worker (Python - NOT registered)
+ โ receives embeddings via NIXL, prefill only, returns bootstrap info
+Decode Worker (Python - NOT registered)
+ โ uses bootstrap info, decode only, token generation
+Response โ Processor โ Frontend
+```
+
+### Components
+
+| Component | Flag | ModelInput | Registered | Has SGLang Engine? | Purpose |
+|-----------|------|-----------|------------|-------------------|---------|
+| Processor | `--multimodal-processor` | Text | โ
Yes | โ No | HTTP entry, OpenAIโSGLang conversion |
+| Encode Worker | `--multimodal-encode-worker` | N/A | โ No | โ No | Vision encoder, embeddings generation |
+| Decode Worker | `--multimodal-worker --serving-mode=decode` | N/A | โ No | โ
Yes | **Entry point for disaggregation**, calls Prefill |
+| Prefill Worker | `--multimodal-worker --serving-mode=prefill` | N/A | โ No | โ
Yes | Called by Decode, bootstrap coordination |
+
+### Bootstrap Coordination
+
+SGLang disaggregation uses a bootstrap mechanism for P->D coordination:
+
+**Request Flow (Important):**
+```text
+Client โ Frontend โ Processor โ Encode โ DECODE Worker โ Prefill Worker
+ โ
+ Entry point for disaggregation!
+```
+
+**Bootstrap Process:**
+1. **Decode Worker** receives request from Encode Worker
+2. **Decode Worker** calls Prefill Worker via NATS to request bootstrap info
+3. **Prefill Worker** generates `{host, port, room}` and returns immediately
+4. **Both workers** connect to same "room" using bootstrap coordinates
+5. **SGLang internally** transfers KV cache state via bootstrap connection (not NIXL)
+
+**Key Difference from vLLM:**
+- vLLM: Frontend โ Prefill โ Decode (Prefill is entry point)
+- SGLang: Frontend โ Processor โ Encode โ **Decode โ Prefill** (Decode is entry point)
+
+## ModelInput Types and Registration
+
+**Only the Processor registers with Dynamo Rust.**
+
+### Registration Pattern
+
+```python
+# ONLY Processor registers with Dynamo Rust
+await register_llm_with_readiness_gate(
+ None, # No engine for processor
+ generate_endpoint,
+ server_args,
+ dynamo_args,
+ input_type=ModelInput.Text, # Receives raw OpenAI format
+ readiness_gate=ready_event,
+)
+
+# Workers do NOT register - they are internal components
+# They communicate via NATS clients created in main.py
+```
+
+### Component Initialization
+
+```python
+# Encode Worker - connects to downstream PD worker
+pd_worker_client = (
+ await runtime.namespace(dynamo_args.namespace)
+ .component("backend")
+ .endpoint("generate")
+ .client()
+)
+
+# PD Worker (Decode mode) - connects to upstream Prefill worker
+prefill_client = (
+ await runtime.namespace(dynamo_args.namespace)
+ .component("prefill")
+ .endpoint("generate")
+ .client()
+)
+```
+
+## Inter-Component Communication
+
+### Control Flow (NATS)
+
+All component-to-component communication happens via NATS:
+
+**Aggregated Mode (EโPD):**
+```text
+Processor โ Encode Worker โ PD Worker
+ (NATS) (NATS + NIXL embeddings)
+```
+
+**Disaggregated Mode (EโPโD):**
+```text
+Processor โ Encode Worker โ DECODE Worker โ Prefill Worker
+ (NATS) (NATS) (NATS)
+ โ
+ Decode requests bootstrap
+ โ
+ Prefill returns {host, port, room}
+ โ
+ Both connect via bootstrap
+ โ
+ SGLang internal KV cache transfer
+```
+
+**Detailed Message Flow:**
+
+```text
+Processor โ Encode Worker:
+ - NATS round_robin with SglangMultimodalRequest
+ - Contains: tokenized input_ids, image URL, sampling params
+
+Encode Worker โ Decode/PD Worker:
+ - NATS round_robin to "backend" component
+ - Contains: expanded token_ids, NIXL metadata, embeddings shape
+ - NIXL transfer: embeddings tensor
+
+Decode Worker โ Prefill Worker (disagg only):
+ - NATS call to "prefill" component
+ - Decode requests bootstrap coordinates
+ - Prefill returns: {bootstrap_host, bootstrap_port, bootstrap_room}
+
+Prefill โ Decode (via bootstrap):
+ - SGLang internal connection (not NATS)
+ - KV cache state shared via bootstrap mechanism
+```
+
+### Data Transfer (NIXL)
+
+NIXL is used only for embedding transfer:
+
+```python
+Encode Worker:
+ descriptor = connect.Descriptor(precomputed_embeddings)
+ with await connector.create_readable(descriptor) as readable:
+ request.serialized_request = readable.metadata()
+ # Send request with NIXL metadata
+ await pd_worker_client.round_robin(request)
+ await readable.wait_for_completion()
+
+PD Worker:
+ embeddings = torch.empty(request.embeddings_shape, dtype=torch.float16)
+ descriptor = connect.Descriptor(embeddings)
+ read_op = await connector.begin_read(request.serialized_request, descriptor)
+ await read_op.wait_for_completion()
+```
+
+## Vision Encoding Details
+
+### Encode Worker Components
+
+The encode worker loads and runs the vision model in Python:
+
+```python
+# Vision components loaded in encode worker
+self.image_processor = AutoImageProcessor.from_pretrained(
+ model_path, trust_remote_code=True
+)
+self.vision_model = AutoModel.from_pretrained(
+ model_path,
+ device_map="auto",
+ torch_dtype=torch.float16,
+ trust_remote_code=True
+)
+```
+
+### Token Expansion Process
+
+1. Processor inserts single image token (e.g., `<|image_pad|>`)
+2. Encode worker generates embeddings: `shape = (batch, num_patches, hidden_dim)`
+3. Encode worker replaces single token with `num_patches` tokens
+4. Downstream worker receives expanded token sequence
+
+Example:
+```python
+# Before: ["Hello", "<|image_pad|>", "world"]
+# After: ["Hello", "<|image_pad|>", "<|image_pad|>", ...(576 tokens), "world"]
+```
+
+## Chat Template Processing
+
+SGLang uses its own chat template system:
+
+```python
+from sglang.srt.parser.conversation import chat_templates
+
+conv = chat_templates["qwen2-vl"].copy()
+conv.append_message(conv.roles[0], f"{conv.image_token} Describe this image")
+processed = tokenizer(text=conv.get_prompt(), return_tensors="pt")
+```
+
+Supported templates: `qwen2-vl`, `llama-3`, `vicuna`, etc.
+
+## NIXL USE
+
+| Use Case | NIXL Used? | Data Transfer | Notes |
+|----------|------------|---------------|-------|
+| EโPD Aggregated | โ
Yes | Encoder โ PD (embeddings) | Vision encoder separate |
+| EโPโD Disaggregated | โ
Yes | Encoder โ Prefill (embeddings) | KV cache via SGLang bootstrap |
+
+**Key Difference:** SGLang PโD uses bootstrap mechanism, not NIXL for KV cache like vLLM.
+
+## Known Limitations
+
+- **No Data URL support** - Only HTTP/HTTPS URLs supported; `data:image/...` base64 URLs not supported
+- **No pre-computed embeddings** - Cannot use `.pt`, `.pth`, `.bin` embedding files; vision encoder runs for every request
+- **No video support** - No video encoder implementation
+- **No audio support** - No audio encoder implementation
+- **Only Processor registers with Dynamo** - Workers are internal components, frontend routes to Processor only
+- **Disaggregated routing** - Decode Worker is the entry point (calls Prefill), cannot route directly to Prefill workers
+- **Limited model generalization** - Token expansion logic is model-specific; adding new models may require implementation updates
+
+## Supported Models
+
+SGLang multimodal **only supports image-based vision-language models**:
+
+### โ
Supported (Images Only)
+- **Qwen2-VL** / **Qwen2.5-VL** (primary support)
+- Models with `AutoImageProcessor` and vision tower
+- Models compatible with SGLang's image embedding format
+
+
+## Key Files
+
+| File | Description |
+|------|-------------|
+| `components/src/dynamo/sglang/main.py` | Component initialization, only Processor registers |
+| `components/src/dynamo/sglang/request_handlers/multimodal/processor_handler.py` | Processor implementation, OpenAIโSGLang |
+| `components/src/dynamo/sglang/request_handlers/multimodal/encode_worker_handler.py` | Vision encoder, embeddings generation |
+| `components/src/dynamo/sglang/request_handlers/multimodal/worker_handler.py` | PD/Prefill/Decode workers, NIXL read |
+| `components/src/dynamo/sglang/multimodal_utils/multimodal_chat_processor.py` | Chat template processing |
+| `components/src/dynamo/sglang/protocol.py` | Request/response data structures |
+| `components/src/dynamo/sglang/register.py` | Registration logic (only called for Processor) |
+
diff --git a/docs/backends/sglang/profiling.md b/docs/backends/sglang/profiling.md
new file mode 100644
index 0000000000..40a1c5ced1
--- /dev/null
+++ b/docs/backends/sglang/profiling.md
@@ -0,0 +1,44 @@
+
+
+# Profiling SGLang Workers in Dynamo
+
+Dynamo exposes profiling endpoints for SGLang workers via the system server's `/engine/*` routes. This allows you to start and stop PyTorch profiling on running inference workers without restarting them.
+
+These endpoints wrap SGLang's internal `TokenizerManager.start_profile()` and `stop_profile()` methods. See SGLang's documentation for the full list of supported parameters.
+
+## Quick Start
+
+1. **Start profiling:**
+
+```bash
+curl -X POST http://localhost:9090/engine/start_profile \
+ -H "Content-Type: application/json" \
+ -d '{"output_dir": "/tmp/profiler_output"}'
+```
+
+2. **Run some inference requests to generate profiling data**
+
+3. **Stop profiling:**
+
+```bash
+curl -X POST http://localhost:9090/engine/stop_profile
+```
+
+4. **View the traces:**
+
+The profiler outputs Chrome trace files in the specified `output_dir`. You can view them using:
+- Chrome's `chrome://tracing`
+- [Perfetto UI](https://ui.perfetto.dev/)
+- TensorBoard with the PyTorch Profiler plugin
+
+## Test Script
+
+A test script is provided at [`examples/backends/sglang/test_sglang_profile.py`](../../../examples/backends/sglang/test_sglang_profile.py) that demonstrates the full profiling workflow:
+
+```bash
+python examples/backends/sglang/test_sglang_profile.py
+```
+
diff --git a/docs/backends/trtllm/multimodal_epd.md b/docs/backends/trtllm/multimodal_epd.md
deleted file mode 100644
index 17839e5826..0000000000
--- a/docs/backends/trtllm/multimodal_epd.md
+++ /dev/null
@@ -1,139 +0,0 @@
-# Encode-Prefill-Decode (EPD) Flow with NIXL
-
-For high-performance multimodal inference with large embeddings, Dynamo supports a specialized **Encode-Prefill-Decode (EPD)** flow using **NIXL (RDMA)** for zero-copy tensor transfer.
-
-## Enabling the Feature
-
-This is an experimental feature that requires using a specific TensorRT-LLM commit.
-To enable it build the dynamo container with the `--tensorrtllm-commit` flag, followed by the commit hash:
-
-```bash
-./container/build.sh --framework trtllm --tensorrtllm-git-url https://github.com/NVIDIA/TensorRT-LLM.git --tensorrtllm-commit v1.2.0rc2
-```
-
-## Key Features
-
-- **High Performance**: Zero-copy RDMA transfer for embeddings
-- **Dynamic Shape Allocation**: Automatically handles variable embedding shapes per image
-- **Multi-Format Support**: Works with tensor files (`.pt`) and dictionary-based embeddings
-- **Hybrid Transfer**: Large tensors via NIXL, small metadata via JSON
-
-## How to use
-
-```bash
-cd $DYNAMO_HOME/examples/backends/trtllm
-
-# Launch 3-worker EPD flow with NIXL.
-./launch/epd_disagg.sh
-```
-
-## Pre-requsites
-
-This script is specifically designed to work on 8 node H200 and `Llama-4-Maverick-17B-128E-Instruct` model with assumption that you already have a model specific embedding file ready.
-
-## Configuration
-
-The EPD flow uses a dedicated **Encode Worker** that runs separately from the Prefill and Decode workers. The `ENCODE_ENDPOINT` environment variable specifies how the Prefill worker communicates with the Encode worker:
-
-```bash
-export ENCODE_ENDPOINT="dyn://dynamo.tensorrt_llm_encode.generate"
-```
-
-This endpoint follows Dynamo's standard format: `dyn://namespace.component.endpoint` where the Encode worker registers itself as `dynamo.tensorrt_llm_encode.generate`.
-
-For local embedding file access, use the `--allowed-local-media-path "$ALLOWED_LOCAL_MEDIA_PATH"` parameter to specify the secure directory path where embedding files can be loaded from (default: `/tmp`). This prevents path traversal attacks while allowing flexible file access within the designated directory.
-
-```bash
-export ALLOWED_LOCAL_MEDIA_PATH="/tmp"
-```
-
-For tensor file size protection, use the `--max-file-size-mb "$MAX_FILE_SIZE_MB"` parameter to limit the maximum size of downloadable embedding files/Image URLs (default: `50MB`). This prevents Denial of Service (DoS) attacks from maliciously large files while accommodating typical embedding file sizes.
-
-```bash
-export MAX_FILE_SIZE_MB=50
-```
-
-## Architecture Overview
-
-The EPD flow implements a **3-worker architecture** for high-performance multimodal inference:
-
-- **Encode Worker**: Loads and processes multimodal embeddings
-- **Prefill Worker**: Handles initial context processing and KV-cache generation
-- **Decode Worker**: Performs streaming token generation
-
-## Request Flow Diagram
-
-```mermaid
-sequenceDiagram
- participant Client
- participant Frontend
- participant PrefillWorker as "Prefill Worker
(PrefillHandler)"
- participant EncodeWorker as "Encode Worker
(EncodeHandler)"
- participant DecodeWorker as "Decode Worker
(DecodeHandler)"
- participant NIXL as "NIXL
(RDMA Transfer)"
-
- Note over Client,NIXL: Unified Frontend: Context processing followed by streaming generation
-
- Client->>Frontend: POST /v1/chat/completions
(multimodal request)
- Frontend->>PrefillWorker: Route to prefill worker
-
- Note over PrefillWorker: Check for multimodal content
- PrefillWorker->>EncodeWorker: Send request
(contains embedding paths)
-
- Note over EncodeWorker: Load embeddings from file/url
- EncodeWorker->>NIXL: Create readable operation
- EncodeWorker->>PrefillWorker: Send metadata + NIXL info
(JSON: shape, dtype, aux_data)
-
- Note over PrefillWorker: Allocate tensor with dynamic shape
- PrefillWorker->>NIXL: Begin read operation
- NIXL-->>PrefillWorker: Zero-copy transfer complete
-
- Note over PrefillWorker: Reconstruct embeddings
(mm_embeddings + special_tokens + offsets)
- Note over PrefillWorker: Process full context
(text + multimodal embeddings)
- Note over PrefillWorker: Generate KV-cache
(max_tokens=1 in prefill mode)
-
- PrefillWorker->>Frontend: Return prefill response
(disaggregated_params)
-
- Frontend->>DecodeWorker: Route to decode worker
with disaggregated_params
-
- Note over DecodeWorker: Continue generation
(streaming tokens)
- DecodeWorker->>Frontend: Stream response chunk 1
- Frontend->>Client: Response chunk 1
- DecodeWorker->>Frontend: Stream response chunk 2
- Frontend->>Client: Response chunk 2
- DecodeWorker->>Frontend: ... (continue streaming)
- Frontend->>Client: ... (continue streaming)
- DecodeWorker->>Frontend: Final response + [DONE]
- Frontend->>Client: Final response + [DONE]
-```
-
-## How the System Works
-
-1. **Request Processing**: Multimodal requests containing embedding file paths or URLs are routed by the frontend to prefill workers
-2. **Multimodal Loading**: EncodeWorker loads large embedding files and extracts auxiliary metadata
-3. **NIXL Transfer**: Main tensors transferred via zero-copy RDMA, small metadata via JSON for efficiency
-4. **Dynamic Allocation**: Consumer workers allocate tensors with exact shapes received from EncodeWorker
-5. **Reconstruction**: Original embedding format (dictionary or tensor) is reconstructed for model processing
-
-## Example Request
-
-The request format is identical to regular multimodal requests:
-
-```bash
-curl localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{
- "model": "meta-llama/Llama-4-Maverick-17B-128E-Instruct",
- "messages": [
- {
- "role": "user",
- "content": [
- {"type": "text", "text": "Describe the image"},
- {
- "type": "image_url",
- "image_url": {"url": "/path/to/embeddings.pt"}
- }
- ]
- }
- ],
- "max_tokens": 160
-}'
-```
diff --git a/docs/backends/trtllm/multimodal_support.md b/docs/backends/trtllm/multimodal_support.md
index 7f90874be7..cc58f924b9 100644
--- a/docs/backends/trtllm/multimodal_support.md
+++ b/docs/backends/trtllm/multimodal_support.md
@@ -92,23 +92,41 @@ In general, disaggregated serving can run on a single node, provided the model f
To deploy `Llama-4-Maverick-17B-128E-Instruct` in disaggregated mode, you will need to follow the multi-node setup instructions, which can be found [here](./multinode/multinode-multimodal-example.md).
-## Using Pre-computed Embeddings (Experimental)
+## Pre-computed Embeddings with EPD Flow
-Dynamo with TensorRT-LLM supports providing pre-computed embeddings directly in an inference request. This bypasses the need for the model to process an image and generate embeddings itself, which is useful for performance optimization or when working with custom, pre-generated embeddings.
+For high-performance multimodal inference, Dynamo supports pre-computed embeddings with an **Encode-Prefill-Decode (EPD)** flow using **NIXL (RDMA)** for zero-copy tensor transfer.
-### How to Use
+### Supported File Types
-Once the container is built, you can send requests with paths to local embedding files.
+- `.pt` - PyTorch tensor files
+- `.pth` - PyTorch checkpoint files
+- `.bin` - Binary tensor files
-- **Format:** Provide the embedding as part of the `messages` array, using the `image_url` content type.
-- **URL:** The `url` field should contain the absolute or relative path to your embedding file on the local filesystem.
-- **File Types:** Supported embedding file extensions are `.pt`, `.pth`, and `.bin`. Dynamo will automatically detect these extensions.
+### How to Launch
-When a request with a supported embedding file is received, Dynamo will load the tensor from the file and pass it directly to the model for inference, skipping the image-to-embedding pipeline.
+```bash
+cd $DYNAMO_HOME/examples/backends/trtllm
-### Example Request
+# Launch 3-worker EPD flow with NIXL
+./launch/epd_disagg.sh
+```
-Here is an example of how to send a request with a pre-computed embedding file.
+> **Note:** This script is designed for 8-node H200 with `Llama-4-Scout-17B-16E-Instruct` model and assumes you have a model-specific embedding file ready.
+
+### Configuration
+
+```bash
+# Encode endpoint for Prefill โ Encode communication
+export ENCODE_ENDPOINT="dyn://dynamo.tensorrt_llm_encode.generate"
+
+# Security: Allowed directory for embedding files (default: /tmp)
+export ALLOWED_LOCAL_MEDIA_PATH="/tmp"
+
+# Security: Max file size to prevent DoS attacks (default: 50MB)
+export MAX_FILE_SIZE_MB=50
+```
+
+### Example Request
```bash
curl localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{
@@ -117,27 +135,47 @@ curl localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '
{
"role": "user",
"content": [
- {
- "type": "text",
- "text": "Describe the content represented by the embeddings"
- },
- {
- "type": "image_url",
- "image_url": {
- "url": "/path/to/your/embedding.pt"
- }
- }
+ {"type": "text", "text": "Describe the image"},
+ {"type": "image_url", "image_url": {"url": "/path/to/embedding.pt"}}
]
}
],
- "stream": false,
"max_tokens": 160
}'
```
-## Encode-Prefill-Decode (EPD) Flow with NIXL
-Dynamo with the TensorRT-LLM backend supports multimodal models in Encode -> Decode -> Prefill fashion, enabling you to process embeddings seperately in a seperate worker. For detailed setup instructions, example requests, and best practices, see the [Multimodal EPD Support Guide](./multimodal_epd.md).
+### Architecture
+
+The EPD flow implements a **3-worker architecture**:
+
+- **Encode Worker**: Loads pre-computed embeddings, transfers via NIXL
+- **Prefill Worker**: Receives embeddings, handles context processing and KV-cache generation
+- **Decode Worker**: Performs streaming token generation
+
+### Request Flow
+
+```mermaid
+sequenceDiagram
+ participant Client
+ participant Frontend
+ participant PrefillWorker as "Prefill Worker"
+ participant EncodeWorker as "Encode Worker"
+ participant DecodeWorker as "Decode Worker"
+ participant NIXL as "NIXL (RDMA)"
+
+ Client->>Frontend: POST /v1/chat/completions
+ Frontend->>PrefillWorker: Route to prefill worker
+ PrefillWorker->>EncodeWorker: Send request (embedding paths)
+ EncodeWorker->>NIXL: Create readable operation
+ EncodeWorker->>PrefillWorker: Send metadata + NIXL info
+ PrefillWorker->>NIXL: Begin read operation
+ NIXL-->>PrefillWorker: Zero-copy transfer complete
+ PrefillWorker->>Frontend: Return prefill response
+ Frontend->>DecodeWorker: Route to decode worker
+ DecodeWorker->>Frontend: Stream response chunks
+ Frontend->>Client: Stream response
+```
## Supported Multimodal Models
-Multimodel models listed [here](https://github.com/NVIDIA/TensorRT-LLM/blob/main/tensorrt_llm/inputs/utils.py#L221) are supported by dynamo.
\ No newline at end of file
+Multimodal models listed in [TensorRT-LLM supported models](https://github.com/NVIDIA/TensorRT-LLM/blob/main/docs/source/models/supported-models.md) are supported by Dynamo.
diff --git a/docs/backends/trtllm/multimodal_trtllm_guide.md b/docs/backends/trtllm/multimodal_trtllm_guide.md
new file mode 100644
index 0000000000..3bd3b9b0fe
--- /dev/null
+++ b/docs/backends/trtllm/multimodal_trtllm_guide.md
@@ -0,0 +1,270 @@
+
+
+# TRT-LLM Multimodal Guide
+
+This document provides a comprehensive guide for multimodal inference using TensorRT-LLM backend in Dynamo. For more details on the multimodal examples, see [Multimodal Examples Documentation](./multimodal_support.md).
+
+## Multimodal Support Matrix
+
+| Modality | Input Format | Aggregated | Disaggregated | Notes |
+|----------|--------------|------------|---------------|-------|
+| **Image** | HTTP/HTTPS URL | Yes | Yes | Full support for all image models |
+| **Image** | Pre-computed Embeddings (.pt, .pth, .bin) | Yes | Yes | Direct embedding files |
+| **Video** | HTTP/HTTPS URL | โ No | โ No | Not implemented |
+| **Audio** | HTTP/HTTPS URL | โ No | โ No | Not implemented |
+
+## Architecture Comparison
+
+TRT-LLM multimodal supports three deployment patterns:
+
+```text
+SIMPLE AGGREGATED (agg.sh):
+ Client โ Frontend (Rust) โ Worker [image load, encode, P+D] โ Response
+ โข 2 components โข worker flag `--modality multimodal` โข Easiest setup
+
+DISAGGREGATED P->D (disagg_multimodal.sh):
+ Client โ Frontend โ Prefill [image load, encode] โ Decode โ Response
+ โข 3 components โข worker flag `--disaggregation-mode prefill/decode` โข Multi-GPU, KV transfer
+
+EPD DISAGGREGATED - WIP:
+ Client โ Frontend โ Encode [MultimodalEncoder] โ Prefill [via params] โ Decode โ Response
+ โข 4 components โข worker flag `--disaggregation-mode encode/prefill/decode` โข WIP PR #4668
+```
+
+## Input Format Details
+
+### Supported URL Formats
+
+| Format | Example | Description | Support |
+|--------|---------|-------------|---------|
+| **HTTP/HTTPS** | `http://example.com/image.jpg` | Remote media files | โ
|
+| **Pre-computed Embeddings** | `/path/to/embedding.pt` | Local embedding files (.pt, .pth, .bin) | โ
|
+
+## Simple Aggregated Mode (PD)
+
+In aggregated mode, all processing (image loading, encoding, prefill, decode) happens within a single worker.
+
+### Architecture
+
+```text
+HTTP Frontend (Rust)
+ โ
+TRT-LLM Worker (Python - ModelInput.Tokens)
+ โ downloads media, encodes, prefill + decode
+Response
+```
+
+### Components
+
+| Component | Flag | ModelInput | Registered | Purpose |
+|-----------|------|-----------|------------|---------|
+| Worker | `--modality multimodal` | Tokens | Yes | Complete inference pipeline |
+
+### Launch Script
+
+Example: [`examples/backends/trtllm/launch/agg.sh`](../../../examples/backends/trtllm/launch/agg.sh)
+
+## Disaggregated Mode (P->D)
+
+In disaggregated mode, prefill and decode are handled by separate workers. The prefill worker handles image loading and encoding internally.
+
+### Architecture
+
+```text
+HTTP Frontend (Rust)
+ โ
+Prefill Worker (Python - ModelInput.Tokens)
+ โ downloads media, encodes, prefill, KV cache transfer
+Decode Worker (Python - ModelInput.Tokens)
+ โ decode only, token generation
+Response
+```
+
+### Components
+
+| Component | Flag | ModelInput | Registered | Purpose |
+|-----------|------|-----------|------------|---------|
+| Prefill Worker | `--disaggregation-mode prefill` | Tokens | Yes | Image processing + Prefill |
+| Decode Worker | `--disaggregation-mode decode` | Tokens | Yes | Decode only |
+
+### Launch Script
+
+Example: [`examples/backends/trtllm/launch/disagg_multimodal.sh`](../../../examples/backends/trtllm/launch/disagg_multimodal.sh)
+
+## Pre-computed Embeddings
+
+TRT-LLM supports providing pre-computed embeddings, bypassing image-to-embedding processing.
+
+### Supported File Types
+
+- `.pt` - PyTorch tensor files
+- `.pth` - PyTorch checkpoint files
+- `.bin` - Binary tensor files
+
+### Embedding File Formats
+
+TRT-LLM supports two formats for embedding files:
+
+#### 1. Simple Tensor Format
+
+- Direct tensor saved as `.pt` file
+- Example: `llava_next_mm_embed_seashore.pt`
+- Contains only the embedding tensor
+
+```python
+# Example: Simple tensor format
+embedding_tensor = torch.rand(1, 576, 4096) # [batch, seq_len, hidden_dim]
+torch.save(embedding_tensor, "embedding.pt")
+```
+
+#### 2. Dictionary Format with Auxiliary Data
+
+- Dictionary containing multiple keys
+- Used by models like Llama-4 that require additional metadata
+- Must contain `mm_embeddings` key with the main tensor
+- Can include auxiliary data like special tokens, offsets, etc.
+
+```python
+# Example: Dictionary format (Llama-4 style)
+embedding_dict = {
+ "mm_embeddings": torch.rand(1, 576, 4096),
+ "special_tokens": [128256, 128257],
+ "image_token_offsets": [[0, 576]],
+ # ... other model-specific metadata
+}
+torch.save(embedding_dict, "llama4_embedding.pt")
+```
+
+**How They're Used:**
+- **Simple tensors**: Loaded directly and passed to `mm_embeddings` parameter
+- **Dictionary format**: `mm_embeddings` key extracted as main tensor, other keys preserved as auxiliary data and transferred separately
+
+### Launch Script
+
+Example: [`examples/backends/trtllm/launch/epd_disagg.sh`](../../../examples/backends/trtllm/launch/epd_disagg.sh)
+
+### Security Considerations
+
+For EPD mode with local embedding files:
+
+- `--allowed-local-media-path` - Specify secure directory for embedding files (default: `/tmp`)
+- `--max-file-size-mb` - Limit max file size to prevent DoS attacks (default: `50MB`)
+
+## EPD Disaggregated Mode (E->P->D) - WIP
+
+**Status:** Work In Progress (WIP PR #4668) - Full EPD flow with MultimodalEncoder
+
+In EPD mode, encoding, prefill, and decode are handled by separate workers. The encode worker uses TensorRT-LLM's `MultimodalEncoder` to process images and transfer embeddings via disaggregated parameters.
+
+### Architecture
+
+```text
+HTTP Frontend (Rust)
+ โ
+Encode Worker (Python - NOT registered, uses MultimodalEncoder)
+ โ downloads image, encodes with vision model, transfers via disaggregated_params
+Prefill Worker (Python - ModelInput.Tokens)
+ โ receives embeddings via disaggregated_params, prefill only, KV cache transfer
+Decode Worker (Python - ModelInput.Tokens)
+ โ decode only, token generation
+Response
+```
+
+**Note (WIP):** The encode worker uses `MultimodalEncoder` from TensorRT-LLM to actually encode images, not just load pre-computed embeddings. This is a significant change from the legacy NIXL-based embedding transfer.
+
+### Components
+
+| Component | Flag | ModelInput | Registered | Purpose |
+|-----------|------|-----------|------------|---------|
+| Encode Worker | `--disaggregation-mode encode` | N/A | No | Image encoding with MultimodalEncoder |
+| Prefill Worker | `--disaggregation-mode prefill --encode-endpoint` | Tokens | Yes | Prefill only |
+| Decode Worker | `--disaggregation-mode decode` | Tokens | Yes | Decode only |
+
+
+## ModelInput Types and Registration
+
+### Understanding ModelInput
+
+TRT-LLM workers register with Dynamo using:
+
+| ModelInput Type | Preprocessing | Use Case |
+|-----------------|---------------|----------|
+| `ModelInput.Tokens` | Rust SDK tokenizes text (bypassed for multimodal) | All TRT-LLM workers |
+
+### Component Registration Pattern
+
+```python
+# TRT-LLM Worker - Register with Tokens
+await register_llm(
+ ModelInput.Tokens, # Rust does minimal preprocessing
+ model_type, # ModelType.Chat or ModelType.Prefill
+ generate_endpoint,
+ model_name,
+ ...
+)
+```
+
+## Inter-Component Communication
+
+| Transfer Stage | Message | NIXL Transfer |
+|----------------|--------------|---------------|
+| **Frontend โ Prefill** | Request with image URL or embedding path | No |
+| **Encode โ Prefill (pre-computed embeddings)** | NIXL metadata (pre-computed embeddings) | Yes (Embeddings tensor) |
+| **Encode โ Prefill (Image URL) (WIP)** | Disaggregated params with multimodal handles | No (Handles via params) |
+| **Prefill โ Decode** | Disaggregated params | Configurable (KV cache: NIXL default, UCX optional) |
+
+
+## **NIXL USE**
+
+| Use Case | Script | NIXL Used? | Data Transfer |
+|----------|--------|------------|---------------|
+| Simple Aggregated | [`examples/backends/trtllm/launch/agg.sh`](../../../examples/backends/trtllm/launch/agg.sh) | โ No | All in one worker |
+| P->D Disaggregated | [`examples/backends/trtllm/launch/disagg_multimodal.sh`](../../../examples/backends/trtllm/launch/disagg_multimodal.sh) | โ๏ธ Optional | Prefill โ Decode (KV cache via UCX or NIXL) |
+| E->P->D Disaggregated (pre-computed embeddings) | [`examples/backends/trtllm/launch/epd_disagg.sh`](../../../examples/backends/trtllm/launch/epd_disagg.sh) | โ
Yes | Encoder โ Prefill (pre-computed embeddings via NIXL) |
+| E->P->D Disaggregated (WIP) | X | โ No | Encoder โ Prefill (multimodal handles via disaggregated_params)
Prefill โ Decode (KV cache via UCX/NIXL) |
+
+**Note:** NIXL for KV cache transfer is currently beta and only supported on AMD64 (x86_64) architecture.
+
+
+## Key Files
+
+| File | Description |
+|------|-------------|
+| `components/src/dynamo/trtllm/main.py` | Worker initialization and setup |
+| `components/src/dynamo/trtllm/utils/trtllm_utils.py` | Command-line argument parsing |
+| `components/src/dynamo/trtllm/multimodal_processor.py` | Multimodal request processing |
+| `components/src/dynamo/trtllm/request_handlers/handlers.py` | Request handler factory |
+| `components/src/dynamo/trtllm/request_handlers/handler_base.py` | Base handler and disaggregation modes |
+
+## Known Limitations
+
+- **No Data URL support** - Only HTTP/HTTPS URLs supported; `...` | Base64-encoded inline data | โ
|
+
+## Simple Aggregated Mode (PD)
+
+In simple aggregated mode, encoding, prefill, and decode happen within the same worker.
+
+### Architecture
+
+```text
+HTTP Frontend with Rust processor
+ โ
+Worker (Python - ModelInput.Tokens)
+ โ encode + prefill + decode
+Response
+```
+
+## EPD Aggregated Mode (PD)
+
+In EPD aggregated mode, encoding happens in a separate worker and prefill and decode happen within the same pipeline.
+
+### Architecture
+
+```text
+HTTP Frontend (Rust)
+ โ
+Processor (Python - ModelInput.Text)
+ โ tokenizes, extracts media URL
+Encode Worker (Python - not registered)
+ โ downloads media, generates embeddings, NIXL transfer
+PD Worker (Python - ModelInput.Tokens)
+ โ prefill + decode
+Response
+```
+
+### Components
+
+| Component | Flag | ModelInput | Registered | Purpose |
+|-----------|------|-----------|------------|---------|
+| Processor | `--multimodal-processor` | Text | Yes | HTTP entry, tokenization |
+| Encode Worker | `--multimodal-encode-worker` | N/A | No | Media encoding |
+| PD Worker | `--multimodal-worker` | Tokens | Yes | Prefill + Decode |
+
+## EPD Disaggregated Mode (E->P->D)
+
+In EPD disaggregated mode, encoding, prefill, and decode are handled by separate workers.
+
+### Architecture
+
+```text
+HTTP Frontend (Rust)
+ โ
+Processor (Python - ModelInput.Text)
+ โ tokenizes, extracts media URL
+Encode Worker (Python - not registered)
+ โ downloads media, generates embeddings, NIXL transfer
+Prefill Worker (Python - ModelInput.Tokens)
+ โ prefill only, KV cache NIXL transfer
+Decode Worker (Python - ModelInput.Tokens)
+ โ decode only, token generation
+Response
+```
+
+### Components
+
+| Component | Flag | ModelInput | Registered | Purpose |
+|-----------|------|-----------|------------|---------|
+| Processor | `--multimodal-processor` | Text | Yes | HTTP entry, tokenization |
+| Encode Worker | `--multimodal-encode-worker` | N/A | No | Media encoding |
+| Prefill Worker | `--multimodal-worker --is-prefill-worker` | Tokens | Yes | Prefill only |
+| Decode Worker | `--multimodal-decode-worker` | Tokens | Yes | Decode only |
+
+## Traditional Disagg (EP->D)
+
+Llama 4 models don't support pre-computed embeddings, so they use a combined Encode+Prefill worker.
+
+### Architecture
+
+```text
+HTTP Frontend (Rust)
+ โ
+Processor (Python - ModelInput.Text)
+ โ tokenizes, extracts media URL
+Encode+Prefill Worker (Python - ModelInput.Tokens)
+ โ downloads media, encodes inline, prefill, KV cache NIXL transfer
+Decode Worker (Python - ModelInput.Tokens)
+ โ decode only, token generation
+Response
+```
+
+### Components
+
+| Component | Flag | ModelInput | Registered | Purpose |
+|-----------|------|-----------|------------|---------|
+| Processor | `--multimodal-processor` | Text | Yes | HTTP entry, tokenization |
+| Encode+Prefill | `--multimodal-encode-prefill-worker --is-prefill-worker` | Tokens | Yes | Encode + Prefill |
+| Decode Worker | `--multimodal-decode-worker` | Tokens | Yes | Decode only |
+
+### Launch Script
+
+Example: [`examples/backends/vllm/launch/disagg_multimodal_llama.sh`](../../../examples/backends/vllm/launch/disagg_multimodal_llama.sh)
+
+## ModelInput Types and Registration
+
+### Understanding ModelInput
+
+Dynamo's Rust SDK supports two input types that determine how the HTTP frontend preprocesses requests:
+
+| ModelInput Type | Preprocessing | Use Case |
+|-----------------|---------------|----------|
+| `ModelInput.Text` | None (raw text passed through) | Components that tokenize themselves |
+| `ModelInput.Tokens` | Rust SDK would tokenize (but bypassed in multimodal) | Components expecting pre-tokenized input |
+
+### Component Registration Pattern
+
+```python
+# Processor - Entry point from HTTP frontend
+await register_llm(
+ ModelInput.Text, # Frontend sends raw text
+ ModelType.Chat,
+ generate_endpoint,
+ model_name,
+ ...
+)
+
+# Workers - Internal components
+await register_llm(
+ ModelInput.Tokens, # Expect pre-tokenized input
+ ModelType.Chat, # or ModelType.Prefill for prefill workers
+ generate_endpoint,
+ model_name,
+ ...
+)
+```
+
+## **NIXL USE**
+
+| Use Case | Script | NIXL Used? | Data Transfer |
+|----------|--------|------------|---------------|
+| Simple Aggregated | [`examples/backends/vllm/launch/agg_multimodal.sh`](../../../examples/backends/vllm/launch/agg_multimodal.sh) | โ No | All in one worker |
+| E->PD Aggregated | [`examples/backends/vllm/launch/agg_multimodal_epd.sh`](../../../examples/backends/vllm/launch/agg_multimodal_epd.sh) | โ
Yes | Encoder โ PD (embeddings) |
+| E->P->D Disaggregated | [`examples/backends/vllm/launch/disagg_multimodal_epd.sh`](../../../examples/backends/vllm/launch/disagg_multimodal_epd.sh) | โ
Yes | Encoder โ Prefill (embeddings)
Prefill โ Decode (KV cache) |
+| EP->D Disaggregated (Llama 4) | [`examples/backends/vllm/launch/disagg_multimodal_llama.sh`](../../../examples/backends/vllm/launch/disagg_multimodal_llama.sh) | โ
Yes | Prefill โ Decode (KV cache) |
+
+
+## Known Limitations
+
+- **Disaggregated flows require Python Processor** - All multimodal disaggregation requires the Python Processor component (`ModelInput.Text`).
+
+## Supported Models
+
+The following models have been tested with Dynamo's vLLM multimodal backend:
+
+- **Qwen2.5-VL** - `Qwen/Qwen2.5-VL-7B-Instruct`
+- **Qwen3-VL** - `Qwen/Qwen3-VL-30B-A3B-Instruct-FP8`
+- **LLaVA 1.5** - `llava-hf/llava-1.5-7b-hf`
+- **Llama 4 Maverick** - `meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8`
+- **LLaVA Next Video** - `llava-hf/LLaVA-NeXT-Video-7B-hf`
+- **Qwen2-Audio** - `Qwen/Qwen2-Audio-7B-Instruct`
+
+For a complete list of multimodal models supported by vLLM, see [vLLM Supported Multimodal Models](https://docs.vllm.ai/en/latest/models/supported_models/#list-of-multimodal-language-models). Models listed there should work with Simple Aggregated Mode but may not be explicitly tested.
+
+## Key Files
+
+| File | Description |
+|------|-------------|
+| `components/src/dynamo/vllm/main.py` | Worker initialization and setup |
+| `components/src/dynamo/vllm/args.py` | Command-line argument parsing |
+| `components/src/dynamo/vllm/multimodal_handlers/processor_handler.py` | Processor implementation |
+| `components/src/dynamo/vllm/multimodal_handlers/encode_worker_handler.py` | Encode worker implementation |
+| `components/src/dynamo/vllm/multimodal_handlers/worker_handler.py` | PD/Prefill/Decode worker implementation |
+
diff --git a/docs/backends/vllm/speculative_decoding.md b/docs/backends/vllm/speculative_decoding.md
new file mode 100644
index 0000000000..b0cdf65d8b
--- /dev/null
+++ b/docs/backends/vllm/speculative_decoding.md
@@ -0,0 +1,121 @@
+
+# Running **Meta-Llama-3.1-8B-Instruct** with Speculative Decoding (Eagle3)
+
+This guide walks through how to deploy **Meta-Llama-3.1-8B-Instruct** using **aggregated speculative decoding** with **Eagle3** on a single node.
+Since the model is only **8B parameters**, you can run it on **any GPU with at least 16GB VRAM**.
+
+
+
+## Step 1: Set Up Your Docker Environment
+
+First, weโll initialize a Docker container using the VLLM backend.
+You can refer to the [VLLM Quickstart Guide](./README.md#vllm-quick-start) โ or follow the full steps below.
+
+### 1. Launch Docker Compose
+
+```bash
+docker compose -f deploy/docker-compose.yml up -d
+```
+
+### 2. Build the Container
+
+```bash
+./container/build.sh --framework VLLM
+```
+
+### 3. Run the Container
+
+```bash
+./container/run.sh -it --framework VLLM --mount-workspace
+```
+
+
+
+## Step 2: Get Access to the Llama-3 Model
+
+The **Meta-Llama-3.1-8B-Instruct** model is gated, so youโll need to request access on Hugging Face.
+Go to the official [Meta-Llama-3.1-8B-Instruct repository](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) and fill out the access form.
+Approval usually takes around **5 minutes**.
+
+Once you have access, generate a **Hugging Face access token** with permission for gated repositories, then set it inside your container:
+
+```bash
+export HUGGING_FACE_HUB_TOKEN="insert_your_token_here"
+export HF_TOKEN=$HUGGING_FACE_HUB_TOKEN
+```
+
+
+
+## Step 3: Run Aggregated Speculative Decoding
+
+Now that your environment is ready, start the aggregated server with **speculative decoding**.
+
+```bash
+# Requires only one GPU
+cd examples/backends/vllm
+bash launch/agg_spec_decoding.sh
+```
+
+Once the weights finish downloading and serving begins, youโll be ready to send inference requests to your model.
+
+
+
+
+## Step 4: Example Request
+
+To verify your setup, try sending a simple prompt to your model:
+
+```bash
+curl http://localhost:8000/v1/chat/completions \
+ -H "Content-Type: application/json" \
+ -d '{
+ "model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
+ "messages": [
+ {"role": "user", "content": "Write a poem about why Sakura trees are beautiful."}
+ ],
+ "max_tokens": 250
+ }'
+```
+
+### Example Output
+
+```json
+{
+ "id": "cmpl-3e87ea5c-010e-4dd2-bcc4-3298ebd845a8",
+ "choices": [
+ {
+ "text": "In cherry blossomโs gentle breeze ... A delicate balance of life and death, as petals fade, and new life breathes.",
+ "index": 0,
+ "finish_reason": "stop"
+ }
+ ],
+ "model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
+ "usage": {
+ "prompt_tokens": 16,
+ "completion_tokens": 250,
+ "total_tokens": 266
+ }
+}
+```
+
+
+
+## Additional Resources
+
+* [VLLM Quickstart](./README.md#vllm-quick-start)
+* [Meta-Llama-3.1-8B-Instruct on Hugging Face](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct)
\ No newline at end of file
diff --git a/docs/conf.py b/docs/conf.py
index 0b34264c38..b717f1ea3f 100644
--- a/docs/conf.py
+++ b/docs/conf.py
@@ -9,7 +9,10 @@
project = "NVIDIA Dynamo"
copyright = "2024-2025, NVIDIA CORPORATION & AFFILIATES"
author = "NVIDIA"
-release = "latest"
+
+# Version is set via DYNAMO_DOCS_VERSION env var during build (e.g., "0.3.0")
+# Defaults to "dev" for main branch and PR builds
+release = os.environ.get("DYNAMO_DOCS_VERSION", "dev")
# -- General configuration ---------------------------------------------------
@@ -112,7 +115,7 @@
# -- Options for HTML output -------------------------------------------------
html_theme = "nvidia_sphinx_theme"
html_static_path = ["_static"]
-html_extra_path = ["project.json", "versions1.json"]
+html_extra_path = ["project.json"]
html_theme_options = {
"collapse_navigation": False,
"icon_links": [
@@ -123,7 +126,9 @@
}
],
"switcher": {
- "json_url": "versions1.json",
+ # Use single shared URL so all versions see the same switcher list
+ # When a new version is added, all old docs automatically see it
+ "json_url": "https://docs.nvidia.com/dynamo/versions1.json",
"version_match": release,
},
"extra_head": {
diff --git a/docs/design_docs/distributed_runtime.md b/docs/design_docs/distributed_runtime.md
index f61cf4f762..31f56f34fc 100644
--- a/docs/design_docs/distributed_runtime.md
+++ b/docs/design_docs/distributed_runtime.md
@@ -53,7 +53,7 @@ The hierarchy and naming in etcd and NATS may change over time, and this documen
For etcd, it also creates a primary lease and spin up a background task to keep the lease alive. All objects registered under this `DistributedRuntime` use this lease_id to maintain their life cycle. There is also a cancellation token that is tied to the primary lease. When the cancellation token is triggered or the background task failed, the primary lease is revoked or expired and the kv pairs stored with this lease_id is removed.
- `Namespace`: `Namespace`s are primarily a logical grouping mechanism and is not registered in etcd. It provides the root path for all components under this `Namespace`.
-- `Component`: When a `Component` object is created, similar to `Namespace`, it isn't be registered in etcd. When `create_service` is called, it creates a NATS service group using `{namespace_name}.{service_name}` for metrics and registers a service in the registry of the `Component`, where the registry is an internal data structure that tracks all services and endpoints within the `DistributedRuntime`.
+- `Component`: When a `Component` object is created, similar to `Namespace`, it isn't be registered in etcd. When `create_service` is called, it creates a NATS service group using `{namespace_name}.{service_name}` as the service identifier and registers a service in the registry of the `Component`, where the registry is an internal data structure that tracks all services and endpoints within the `DistributedRuntime`.
- `Endpoint`: When an Endpoint object is created and started, it performs two key registrations:
- NATS Registration: The endpoint is registered with the NATS service group created during service creation. The endpoint is assigned a unique subject following the naming: `{namespace_name}.{service_name}.{endpoint_name}-{lease_id_hex}`.
- etcd Registration: The endpoint information is stored in etcd at a path following the naming: `/services/{namespace}/{component}/{endpoint}-{lease_id}`. Note that the endpoints of different workers of the same type (i.e., two `VllmPrefillWorker`s in one deployment) share the same `Namespace`, `Component`, and `Endpoint` name. They are distinguished by their different primary `lease_id` of their `DistributedRuntime`.
diff --git a/docs/generate_docs.py b/docs/generate_docs.py
index 342fc2d1f2..a84379ae63 100755
--- a/docs/generate_docs.py
+++ b/docs/generate_docs.py
@@ -16,6 +16,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
+import json
import logging
import os
import re
@@ -282,9 +283,23 @@ def change_directory(path):
os.chdir(original_directory)
+def update_project_json():
+ """Update project.json with the current version from DYNAMO_DOCS_VERSION env var."""
+ version = os.environ.get("DYNAMO_DOCS_VERSION", "dev")
+ project_json_path = os.path.join(dynamo_docs_abspath, "project.json")
+
+ project_data = {"name": "NVIDIA Dynamo", "version": version}
+
+ with open(project_json_path, "w") as f:
+ json.dump(project_data, f)
+
+ log_message(f"Updated project.json with version: {version}")
+
+
def main():
with change_directory(dynamo_docs_abspath):
run_command("make clean")
+ update_project_json()
preprocess_docs()
run_command("make html")
diff --git a/docs/hidden_toctree.rst b/docs/hidden_toctree.rst
index 669ae0339c..9c8a50ad91 100644
--- a/docs/hidden_toctree.rst
+++ b/docs/hidden_toctree.rst
@@ -50,7 +50,7 @@
backends/trtllm/llama4_plus_eagle.md
backends/trtllm/kv-cache-transfer.md
backends/trtllm/multimodal_support.md
- backends/trtllm/multimodal_epd.md
+ backends/trtllm/multimodal_trtllm_guide.md
backends/trtllm/gemma3_sliding_window_attention.md
backends/trtllm/gpt-oss.md
backends/trtllm/prometheus.md
@@ -61,6 +61,8 @@
backends/sglang/expert-distribution-eplb.md
backends/sglang/gpt-oss.md
backends/sglang/multimodal_epd.md
+ backends/sglang/multimodal_sglang_guide.md
+ backends/sglang/profiling.md
backends/sglang/sgl-hicache-example.md
backends/sglang/sglang-disaggregation.md
backends/sglang/prometheus.md
@@ -73,9 +75,12 @@
backends/vllm/deepseek-r1.md
backends/vllm/gpt-oss.md
+ backends/vllm/LMCache_Integration.md
backends/vllm/multi-node.md
backends/vllm/multimodal.md
+ backends/vllm/multimodal_vllm_guide.md
backends/vllm/prometheus.md
+ backends/vllm/speculative_decoding.md
benchmarks/kv-router-ab-testing.md
diff --git a/docs/kubernetes/api_reference.md b/docs/kubernetes/api_reference.md
index 09e7415769..4ae3246155 100644
--- a/docs/kubernetes/api_reference.md
+++ b/docs/kubernetes/api_reference.md
@@ -37,6 +37,7 @@ Package v1alpha1 contains API Schema definitions for the nvidia.com v1alpha1 API
- [DynamoComponentDeployment](#dynamocomponentdeployment)
- [DynamoGraphDeployment](#dynamographdeployment)
- [DynamoGraphDeploymentRequest](#dynamographdeploymentrequest)
+- [DynamoGraphDeploymentScalingAdapter](#dynamographdeploymentscalingadapter)
- [DynamoModel](#dynamomodel)
@@ -45,7 +46,9 @@ Package v1alpha1 contains API Schema definitions for the nvidia.com v1alpha1 API
-
+Deprecated: This field is deprecated and ignored. Use DynamoGraphDeploymentScalingAdapter
+with HPA, KEDA, or Planner for autoscaling instead. See docs/kubernetes/autoscaling.md
+for migration guidance. This field will be removed in a future API version.
@@ -55,11 +58,11 @@ _Appears in:_
| Field | Description | Default | Validation |
| --- | --- | --- | --- |
-| `enabled` _boolean_ | | | |
-| `minReplicas` _integer_ | | | |
-| `maxReplicas` _integer_ | | | |
-| `behavior` _[HorizontalPodAutoscalerBehavior](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#horizontalpodautoscalerbehavior-v2-autoscaling)_ | | | |
-| `metrics` _[MetricSpec](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#metricspec-v2-autoscaling) array_ | | | |
+| `enabled` _boolean_ | Deprecated: This field is ignored. | | |
+| `minReplicas` _integer_ | Deprecated: This field is ignored. | | |
+| `maxReplicas` _integer_ | Deprecated: This field is ignored. | | |
+| `behavior` _[HorizontalPodAutoscalerBehavior](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#horizontalpodautoscalerbehavior-v2-autoscaling)_ | Deprecated: This field is ignored. | | |
+| `metrics` _[MetricSpec](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#metricspec-v2-autoscaling) array_ | Deprecated: This field is ignored. | | |
@@ -165,7 +168,7 @@ _Appears in:_
| `dynamoNamespace` _string_ | DynamoNamespace is deprecated and will be removed in a future version.
The DGD Kubernetes namespace and DynamoGraphDeployment name are used to construct the Dynamo namespace for each component | | Optional: \{\}
|
| `globalDynamoNamespace` _boolean_ | GlobalDynamoNamespace indicates that the Component will be placed in the global Dynamo namespace | | |
| `resources` _[Resources](#resources)_ | Resources requested and limits for this component, including CPU, memory,
GPUs/devices, and any runtime-specific resources. | | |
-| `autoscaling` _[Autoscaling](#autoscaling)_ | Autoscaling config for this component (replica range, target utilization, etc.). | | |
+| `autoscaling` _[Autoscaling](#autoscaling)_ | Deprecated: This field is deprecated and ignored. Use DynamoGraphDeploymentScalingAdapter
with HPA, KEDA, or Planner for autoscaling instead. See docs/kubernetes/autoscaling.md
for migration guidance. This field will be removed in a future API version. | | |
| `envs` _[EnvVar](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#envvar-v1-core) array_ | Envs defines additional environment variables to inject into the component containers. | | |
| `envFromSecret` _string_ | EnvFromSecret references a Secret whose key/value pairs will be exposed as
environment variables in the component containers. | | |
| `volumeMounts` _[VolumeMount](#volumemount) array_ | VolumeMounts references PVCs defined at the top level for volumes to be mounted by the component. | | |
@@ -176,8 +179,9 @@ _Appears in:_
| `extraPodSpec` _[ExtraPodSpec](#extrapodspec)_ | ExtraPodSpec allows to override the main pod spec configuration.
It is a k8s standard PodSpec. It also contains a MainContainer (standard k8s Container) field
that allows overriding the main container configuration. | | |
| `livenessProbe` _[Probe](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#probe-v1-core)_ | LivenessProbe to detect and restart unhealthy containers. | | |
| `readinessProbe` _[Probe](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#probe-v1-core)_ | ReadinessProbe to signal when the container is ready to receive traffic. | | |
-| `replicas` _integer_ | Replicas is the desired number of Pods for this component when autoscaling is not used. | | |
+| `replicas` _integer_ | Replicas is the desired number of Pods for this component.
When scalingAdapter is enabled (default), this field is managed by the
DynamoGraphDeploymentScalingAdapter and should not be modified directly. | | Minimum: 0
|
| `multinode` _[MultinodeSpec](#multinodespec)_ | Multinode is the configuration for multinode components. | | |
+| `scalingAdapter` _[ScalingAdapter](#scalingadapter)_ | ScalingAdapter configures whether this service uses the DynamoGraphDeploymentScalingAdapter.
When enabled (default), replicas are managed via DGDSA and external autoscalers can scale
the service using the Scale subresource. When disabled, replicas can be modified directly. | | |
#### DynamoComponentDeploymentSpec
@@ -202,7 +206,7 @@ _Appears in:_
| `dynamoNamespace` _string_ | DynamoNamespace is deprecated and will be removed in a future version.
The DGD Kubernetes namespace and DynamoGraphDeployment name are used to construct the Dynamo namespace for each component | | Optional: \{\}
|
| `globalDynamoNamespace` _boolean_ | GlobalDynamoNamespace indicates that the Component will be placed in the global Dynamo namespace | | |
| `resources` _[Resources](#resources)_ | Resources requested and limits for this component, including CPU, memory,
GPUs/devices, and any runtime-specific resources. | | |
-| `autoscaling` _[Autoscaling](#autoscaling)_ | Autoscaling config for this component (replica range, target utilization, etc.). | | |
+| `autoscaling` _[Autoscaling](#autoscaling)_ | Deprecated: This field is deprecated and ignored. Use DynamoGraphDeploymentScalingAdapter
with HPA, KEDA, or Planner for autoscaling instead. See docs/kubernetes/autoscaling.md
for migration guidance. This field will be removed in a future API version. | | |
| `envs` _[EnvVar](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#envvar-v1-core) array_ | Envs defines additional environment variables to inject into the component containers. | | |
| `envFromSecret` _string_ | EnvFromSecret references a Secret whose key/value pairs will be exposed as
environment variables in the component containers. | | |
| `volumeMounts` _[VolumeMount](#volumemount) array_ | VolumeMounts references PVCs defined at the top level for volumes to be mounted by the component. | | |
@@ -213,8 +217,9 @@ _Appears in:_
| `extraPodSpec` _[ExtraPodSpec](#extrapodspec)_ | ExtraPodSpec allows to override the main pod spec configuration.
It is a k8s standard PodSpec. It also contains a MainContainer (standard k8s Container) field
that allows overriding the main container configuration. | | |
| `livenessProbe` _[Probe](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#probe-v1-core)_ | LivenessProbe to detect and restart unhealthy containers. | | |
| `readinessProbe` _[Probe](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#probe-v1-core)_ | ReadinessProbe to signal when the container is ready to receive traffic. | | |
-| `replicas` _integer_ | Replicas is the desired number of Pods for this component when autoscaling is not used. | | |
+| `replicas` _integer_ | Replicas is the desired number of Pods for this component.
When scalingAdapter is enabled (default), this field is managed by the
DynamoGraphDeploymentScalingAdapter and should not be modified directly. | | Minimum: 0
|
| `multinode` _[MultinodeSpec](#multinodespec)_ | Multinode is the configuration for multinode components. | | |
+| `scalingAdapter` _[ScalingAdapter](#scalingadapter)_ | ScalingAdapter configures whether this service uses the DynamoGraphDeploymentScalingAdapter.
When enabled (default), replicas are managed via DGDSA and external autoscalers can scale
the service using the Scale subresource. When disabled, replicas can be modified directly. | | |
#### DynamoGraphDeployment
@@ -314,6 +319,83 @@ _Appears in:_
| `deployment` _[DeploymentStatus](#deploymentstatus)_ | Deployment tracks the auto-created DGD when AutoApply is true.
Contains name, namespace, state, and creation status of the managed DGD. | | Optional: \{\}
|
+#### DynamoGraphDeploymentScalingAdapter
+
+
+
+DynamoGraphDeploymentScalingAdapter provides a scaling interface for individual services
+within a DynamoGraphDeployment. It implements the Kubernetes scale
+subresource, enabling integration with HPA, KEDA, and custom autoscalers.
+
+The adapter acts as an intermediary between autoscalers and the DGD,
+ensuring that only the adapter controller modifies the DGD's service replicas.
+This prevents conflicts when multiple autoscaling mechanisms are in play.
+
+
+
+
+
+| Field | Description | Default | Validation |
+| --- | --- | --- | --- |
+| `apiVersion` _string_ | `nvidia.com/v1alpha1` | | |
+| `kind` _string_ | `DynamoGraphDeploymentScalingAdapter` | | |
+| `metadata` _[ObjectMeta](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#objectmeta-v1-meta)_ | Refer to Kubernetes API documentation for fields of `metadata`. | | |
+| `spec` _[DynamoGraphDeploymentScalingAdapterSpec](#dynamographdeploymentscalingadapterspec)_ | | | |
+| `status` _[DynamoGraphDeploymentScalingAdapterStatus](#dynamographdeploymentscalingadapterstatus)_ | | | |
+
+
+#### DynamoGraphDeploymentScalingAdapterSpec
+
+
+
+DynamoGraphDeploymentScalingAdapterSpec defines the desired state of DynamoGraphDeploymentScalingAdapter
+
+
+
+_Appears in:_
+- [DynamoGraphDeploymentScalingAdapter](#dynamographdeploymentscalingadapter)
+
+| Field | Description | Default | Validation |
+| --- | --- | --- | --- |
+| `replicas` _integer_ | Replicas is the desired number of replicas for the target service.
This field is modified by external autoscalers (HPA/KEDA/Planner) or manually by users. | | Minimum: 0
Required: \{\}
|
+| `dgdRef` _[DynamoGraphDeploymentServiceRef](#dynamographdeploymentserviceref)_ | DGDRef references the DynamoGraphDeployment and the specific service to scale. | | Required: \{\}
|
+
+
+#### DynamoGraphDeploymentScalingAdapterStatus
+
+
+
+DynamoGraphDeploymentScalingAdapterStatus defines the observed state of DynamoGraphDeploymentScalingAdapter
+
+
+
+_Appears in:_
+- [DynamoGraphDeploymentScalingAdapter](#dynamographdeploymentscalingadapter)
+
+| Field | Description | Default | Validation |
+| --- | --- | --- | --- |
+| `replicas` _integer_ | Replicas is the current number of replicas for the target service.
This is synced from the DGD's service replicas and is required for the scale subresource. | | |
+| `selector` _string_ | Selector is a label selector string for the pods managed by this adapter.
Required for HPA compatibility via the scale subresource. | | |
+| `lastScaleTime` _[Time](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#time-v1-meta)_ | LastScaleTime is the last time the adapter scaled the target service. | | |
+
+
+#### DynamoGraphDeploymentServiceRef
+
+
+
+DynamoGraphDeploymentServiceRef identifies a specific service within a DynamoGraphDeployment
+
+
+
+_Appears in:_
+- [DynamoGraphDeploymentScalingAdapterSpec](#dynamographdeploymentscalingadapterspec)
+
+| Field | Description | Default | Validation |
+| --- | --- | --- | --- |
+| `name` _string_ | Name of the DynamoGraphDeployment | | MinLength: 1
Required: \{\}
|
+| `serviceName` _string_ | ServiceName is the key name of the service within the DGD's spec.services map to scale | | MinLength: 1
Required: \{\}
|
+
+
#### DynamoGraphDeploymentSpec
@@ -638,6 +720,25 @@ _Appears in:_
| `claims` _[ResourceClaim](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#resourceclaim-v1-core) array_ | Claims specifies resource claims for dynamic resource allocation | | |
+#### ScalingAdapter
+
+
+
+ScalingAdapter configures whether a service uses the DynamoGraphDeploymentScalingAdapter
+for replica management. When enabled (default), the DGDSA owns the replicas field and
+external autoscalers (HPA, KEDA, Planner) can control scaling via the Scale subresource.
+
+
+
+_Appears in:_
+- [DynamoComponentDeploymentSharedSpec](#dynamocomponentdeploymentsharedspec)
+- [DynamoComponentDeploymentSpec](#dynamocomponentdeploymentspec)
+
+| Field | Description | Default | Validation |
+| --- | --- | --- | --- |
+| `disable` _boolean_ | Disable indicates whether the ScalingAdapter should be disabled for this service.
When false (default), a DGDSA is created and owns the replicas field.
When true, no DGDSA is created and replicas can be modified directly in the DGD. | false | |
+
+
#### SharedMemorySpec
diff --git a/docs/kubernetes/autoscaling.md b/docs/kubernetes/autoscaling.md
new file mode 100644
index 0000000000..8adaf09107
--- /dev/null
+++ b/docs/kubernetes/autoscaling.md
@@ -0,0 +1,733 @@
+# Autoscaling
+
+This guide explains how to configure autoscaling for DynamoGraphDeployment (DGD) services using the `sglang-agg` example from `examples/backends/sglang/deploy/agg.yaml`.
+
+## Example DGD
+
+All examples in this guide use the following DGD:
+
+```yaml
+# examples/backends/sglang/deploy/agg.yaml
+apiVersion: nvidia.com/v1alpha1
+kind: DynamoGraphDeployment
+metadata:
+ name: sglang-agg
+ namespace: default
+spec:
+ services:
+ Frontend:
+ dynamoNamespace: sglang-agg
+ componentType: frontend
+ replicas: 1
+
+ decode:
+ dynamoNamespace: sglang-agg
+ componentType: worker
+ replicas: 1
+ resources:
+ limits:
+ gpu: "1"
+```
+
+**Key identifiers:**
+- **DGD name**: `sglang-agg`
+- **Namespace**: `default`
+- **Services**: `Frontend`, `decode`
+- **dynamo_namespace label**: `default-sglang-agg` (used for metric filtering)
+
+## Overview
+
+Dynamo provides flexible autoscaling through the `DynamoGraphDeploymentScalingAdapter` (DGDSA) resource. When you deploy a DGD, the operator automatically creates one adapter per service (unless explicitly disabled). These adapters implement the Kubernetes [Scale subresource](https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#scale-subresource), enabling integration with:
+
+| Autoscaler | Description | Best For |
+|------------|-------------|----------|
+| **KEDA** | Event-driven autoscaling (recommended) | Most use cases |
+| **Kubernetes HPA** | Native horizontal pod autoscaling | Simple CPU/memory-based scaling |
+| **Dynamo Planner** | LLM-aware autoscaling with SLA optimization | Production LLM workloads |
+| **Custom Controllers** | Any scale-subresource-compatible controller | Custom requirements |
+
+> **โ ๏ธ Deprecation Notice**: The `spec.services[X].autoscaling` field in DGD is **deprecated and ignored**. Use DGDSA with HPA, KEDA, or Planner instead. If you have existing DGDs with `autoscaling` configured, you'll see a warning. Remove the field to silence the warning.
+
+## Architecture
+
+```
+โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
+โ DynamoGraphDeployment โ โ Scaling Adapters (auto-created) โ
+โ "sglang-agg" โ โ (one per service) โ
+โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
+โ โ โ โ
+โ spec.services: โ โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ โโโโโโโโโโโโโโโโโโโโ
+โ โ โ โ sglang-agg-frontend โโโโโโผโโโโโโโ Autoscalers โ
+โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโผโโโ spec.replicas: 1 โ โ โ โ
+โ โ Frontend: 1 replica โ โ โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ โ โข KEDA โ
+โ โโโโโโโโโโโโโโโโโโโโโโโโโโ โ โ โ โ โข HPA โ
+โ โ โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ โ โข Planner โ
+โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโผโโโ sglang-agg-decode โโโโโโผโโโโโโโ โข Custom โ
+โ โ decode: 1 replica โ โ โ โ spec.replicas: 1 โ โ โ โ
+โ โโโโโโโโโโโโโโโโโโโโโโโโโโ โ โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ โโโโโโโโโโโโโโโโโโโโ
+โ โ โ โ
+โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
+```
+
+**How it works:**
+
+1. You deploy a DGD with services (Frontend, decode)
+2. The operator auto-creates one DGDSA per service
+3. Autoscalers (KEDA, HPA, Planner) target the adapters via `/scale` subresource
+4. Adapter controller syncs replica changes to the DGD
+5. DGD controller reconciles the underlying pods
+
+## Viewing Scaling Adapters
+
+After deploying the `sglang-agg` DGD, verify the auto-created adapters:
+
+```bash
+kubectl get dgdsa -n default
+
+# Example output:
+# NAME DGD SERVICE REPLICAS AGE
+# sglang-agg-frontend sglang-agg Frontend 1 5m
+# sglang-agg-decode sglang-agg decode 1 5m
+```
+
+## Replica Ownership Model
+
+When DGDSA is enabled (the default), it becomes the **source of truth** for replica counts. This follows the same pattern as Kubernetes Deployments owning ReplicaSets.
+
+### How It Works
+
+1. **DGDSA owns replicas**: Autoscalers (HPA, KEDA, Planner) update the DGDSA's `spec.replicas`
+2. **DGDSA syncs to DGD**: The DGDSA controller writes the replica count to the DGD's service
+3. **Direct DGD edits blocked**: A validating webhook prevents users from directly editing `spec.services[X].replicas` in the DGD
+4. **Controllers allowed**: Only authorized controllers (operator, Planner) can modify DGD replicas
+
+### Manual Scaling with DGDSA Enabled
+
+When DGDSA is enabled, use `kubectl scale` on the adapter (not the DGD):
+
+```bash
+# โ
Correct - scale via DGDSA
+kubectl scale dgdsa sglang-agg-decode --replicas=3
+
+# โ Blocked - direct DGD edit rejected by webhook
+kubectl patch dgd sglang-agg --type=merge -p '{"spec":{"services":{"decode":{"replicas":3}}}}'
+# Error: spec.services[decode].replicas cannot be modified directly when scaling adapter is enabled;
+# use 'kubectl scale dgdsa/sglang-agg-decode --replicas=3' or update the DynamoGraphDeploymentScalingAdapter instead
+```
+
+## Disabling DGDSA for a Service
+
+If you want to manage replicas directly in the DGD (without autoscaling), you can disable the scaling adapter per service:
+
+```yaml
+apiVersion: nvidia.com/v1alpha1
+kind: DynamoGraphDeployment
+metadata:
+ name: sglang-agg
+spec:
+ services:
+ Frontend:
+ replicas: 2
+ scalingAdapter:
+ disable: true # โ No DGDSA created, direct edits allowed
+
+ decode:
+ replicas: 1 # โ DGDSA created by default, managed via adapter
+```
+
+**When to disable DGDSA:**
+- You want simple, manual replica management
+- You don't need autoscaling for that service
+- You prefer direct DGD edits over adapter-based scaling
+
+**When to keep DGDSA enabled (default):**
+- You want to use HPA, KEDA, or Planner for autoscaling
+- You want a clear separation between "desired scale" (adapter) and "deployment config" (DGD)
+- You want protection against accidental direct replica edits
+
+## Autoscaling with Dynamo Planner
+
+The Dynamo Planner is an LLM-aware autoscaler that optimizes scaling decisions based on inference-specific metrics like Time To First Token (TTFT), Inter-Token Latency (ITL), and KV cache utilization.
+
+**When to use Planner:**
+- You want LLM-optimized autoscaling out of the box
+- You need coordinated scaling across prefill/decode services
+- You want SLA-driven scaling (e.g., target TTFT < 500ms)
+
+**How Planner works:**
+
+Planner is deployed as a service component within your DGD. It:
+1. Queries Prometheus for frontend metrics (request rate, latency, etc.)
+2. Uses profiling data to predict optimal replica counts
+3. Scales prefill/decode workers to meet SLA targets
+
+**Deployment:**
+
+The recommended way to deploy Planner is via `DynamoGraphDeploymentRequest` (DGDR). See the [SLA Planner Quick Start](../planner/sla_planner_quickstart.md) for complete instructions.
+
+Example configurations with Planner:
+- `examples/backends/vllm/deploy/disagg_planner.yaml`
+- `examples/backends/sglang/deploy/disagg_planner.yaml`
+- `examples/backends/trtllm/deploy/disagg_planner.yaml`
+
+For more details, see the [SLA Planner documentation](../planner/sla_planner.md).
+
+## Autoscaling with Kubernetes HPA
+
+The Horizontal Pod Autoscaler (HPA) is Kubernetes' native autoscaling solution.
+
+**When to use HPA:**
+- You have simple, predictable scaling requirements
+- You want to use standard Kubernetes tooling
+- You need CPU or memory-based scaling
+
+> **Note**: For custom metrics (like TTFT or queue depth), consider using [KEDA](#autoscaling-with-keda-recommended) instead - it's simpler to configure.
+
+### Basic HPA (CPU-based)
+
+```yaml
+apiVersion: autoscaling/v2
+kind: HorizontalPodAutoscaler
+metadata:
+ name: sglang-agg-frontend-hpa
+ namespace: default
+spec:
+ scaleTargetRef:
+ apiVersion: nvidia.com/v1alpha1
+ kind: DynamoGraphDeploymentScalingAdapter
+ name: sglang-agg-frontend
+ minReplicas: 1
+ maxReplicas: 10
+ metrics:
+ - type: Resource
+ resource:
+ name: cpu
+ target:
+ type: Utilization
+ averageUtilization: 70
+ behavior:
+ scaleDown:
+ stabilizationWindowSeconds: 300
+ scaleUp:
+ stabilizationWindowSeconds: 0
+```
+
+### HPA with Dynamo Metrics
+
+Dynamo exports several metrics useful for autoscaling. These are available at the `/metrics` endpoint on each frontend pod.
+
+> **See also**: For a complete list of all Dynamo metrics, see the [Metrics Reference](../observability/metrics.md). For Prometheus and Grafana setup, see the [Prometheus and Grafana Setup Guide](../observability/prometheus-grafana.md).
+
+#### Available Dynamo Metrics
+
+| Metric | Type | Description | Good for scaling |
+|--------|------|-------------|------------------|
+| `dynamo_frontend_queued_requests` | Gauge | Requests waiting in HTTP queue | โ
Workers |
+| `dynamo_frontend_inflight_requests` | Gauge | Concurrent requests to engine | โ
All services |
+| `dynamo_frontend_time_to_first_token_seconds` | Histogram | TTFT latency | โ
Workers |
+| `dynamo_frontend_inter_token_latency_seconds` | Histogram | ITL latency | โ
Decode |
+| `dynamo_frontend_request_duration_seconds` | Histogram | Total request duration | โ ๏ธ General |
+| `kvstats_gpu_cache_usage_percent` | Gauge | GPU KV cache usage (0-1) | โ
Decode |
+
+#### Metric Labels
+
+Dynamo metrics include these labels for filtering:
+
+| Label | Description | Example |
+|-------|-------------|---------|
+| `dynamo_namespace` | Unique DGD identifier (`{k8s-namespace}-{dynamoNamespace}`) | `default-sglang-agg` |
+| `model` | Model being served | `Qwen/Qwen3-0.6B` |
+
+> **Note**: When you have multiple DGDs in the same namespace, use `dynamo_namespace` to filter metrics for a specific DGD.
+
+#### Example: Scale Decode Service Based on TTFT
+
+Using HPA with Prometheus Adapter requires configuring external metrics.
+
+**Step 1: Configure Prometheus Adapter**
+
+Add this to your Helm values file (e.g., `prometheus-adapter-values.yaml`):
+
+```yaml
+# prometheus-adapter-values.yaml
+prometheus:
+ url: http://prometheus-kube-prometheus-prometheus.monitoring.svc
+ port: 9090
+
+rules:
+ external:
+ # TTFT p95 from frontend - used to scale decode
+ - seriesQuery: 'dynamo_frontend_time_to_first_token_seconds_bucket{namespace!=""}'
+ resources:
+ overrides:
+ namespace: {resource: "namespace"}
+ name:
+ as: "dynamo_ttft_p95_seconds"
+ metricsQuery: |
+ histogram_quantile(0.95,
+ sum(rate(dynamo_frontend_time_to_first_token_seconds_bucket{<<.LabelMatchers>>}[5m]))
+ by (le, namespace, dynamo_namespace)
+ )
+```
+
+**Step 2: Install Prometheus Adapter**
+
+```bash
+helm repo add prometheus-community https://prometheus-community.github.io/helm-charts
+helm repo update
+
+helm upgrade --install prometheus-adapter prometheus-community/prometheus-adapter \
+ -n monitoring --create-namespace \
+ -f prometheus-adapter-values.yaml
+```
+
+**Step 3: Verify the metric is available**
+
+```bash
+kubectl get --raw "/apis/external.metrics.k8s.io/v1beta1/namespaces//dynamo_ttft_p95_seconds" | jq
+```
+
+**Step 4: Create the HPA**
+
+```yaml
+apiVersion: autoscaling/v2
+kind: HorizontalPodAutoscaler
+metadata:
+ name: sglang-agg-decode-hpa
+spec:
+ scaleTargetRef:
+ apiVersion: nvidia.com/v1alpha1
+ kind: DynamoGraphDeploymentScalingAdapter
+ name: sglang-agg-decode # โ DGD name + service name (lowercase)
+ minReplicas: 1
+ maxReplicas: 10
+ metrics:
+ - type: External
+ external:
+ metric:
+ name: dynamo_ttft_p95_seconds
+ selector:
+ matchLabels:
+ dynamo_namespace: "default-sglang-agg" # โ {namespace}-{dynamoNamespace}
+ target:
+ type: Value
+ value: "500m" # Scale up when TTFT p95 > 500ms
+ behavior:
+ scaleDown:
+ stabilizationWindowSeconds: 60 # Wait 1 min before scaling down
+ policies:
+ - type: Pods
+ value: 1
+ periodSeconds: 30
+ scaleUp:
+ stabilizationWindowSeconds: 0 # Scale up immediately
+ policies:
+ - type: Pods
+ value: 2
+ periodSeconds: 30
+```
+
+**How it works:**
+1. Frontend pods export `dynamo_frontend_time_to_first_token_seconds` histogram
+2. Prometheus Adapter calculates p95 TTFT per `dynamo_namespace`
+3. HPA monitors this metric filtered by `dynamo_namespace: "default-sglang-agg"`
+4. When TTFT p95 > 500ms, HPA scales up the `sglang-agg-decode` adapter
+5. Adapter controller syncs the replica count to the DGD's `decode` service
+6. More decode workers are created, reducing TTFT
+
+#### Example: Scale Based on Queue Depth
+
+Add this rule to your `prometheus-adapter-values.yaml` (alongside the TTFT rule):
+
+```yaml
+# Add to rules.external in prometheus-adapter-values.yaml
+- seriesQuery: 'dynamo_frontend_queued_requests{namespace!=""}'
+ resources:
+ overrides:
+ namespace: {resource: "namespace"}
+ name:
+ as: "dynamo_queued_requests"
+ metricsQuery: |
+ sum(<<.Series>>{<<.LabelMatchers>>}) by (namespace, dynamo_namespace)
+```
+
+Then create the HPA:
+
+```yaml
+apiVersion: autoscaling/v2
+kind: HorizontalPodAutoscaler
+metadata:
+ name: sglang-agg-decode-queue-hpa
+ namespace: default
+spec:
+ scaleTargetRef:
+ apiVersion: nvidia.com/v1alpha1
+ kind: DynamoGraphDeploymentScalingAdapter
+ name: sglang-agg-decode
+ minReplicas: 1
+ maxReplicas: 10
+ metrics:
+ - type: External
+ external:
+ metric:
+ name: dynamo_queued_requests
+ selector:
+ matchLabels:
+ dynamo_namespace: "default-sglang-agg"
+ target:
+ type: Value
+ value: "10" # Scale up when queue > 10 requests
+```
+
+## Autoscaling with KEDA (Recommended)
+
+KEDA (Kubernetes Event-driven Autoscaling) extends Kubernetes with event-driven autoscaling, supporting 50+ scalers including Prometheus.
+
+**Advantages over HPA + Prometheus Adapter:**
+- No Prometheus Adapter configuration needed
+- PromQL queries are defined in the ScaledObject itself (declarative, per-deployment)
+- Easy to update - just `kubectl apply` the ScaledObject
+- Can scale to zero when idle
+- Supports multiple triggers per object
+
+**When to use KEDA:**
+- You want simpler configuration (no Prometheus Adapter to manage)
+- You need event-driven scaling (e.g., queue depth, Kafka, etc.)
+- You want to scale to zero when idle
+
+### Installing KEDA
+
+```bash
+# Add KEDA Helm repo
+helm repo add kedacore https://kedacore.github.io/charts
+helm repo update
+
+# Install KEDA
+helm install keda kedacore/keda \
+ --namespace keda \
+ --create-namespace
+
+# Verify installation
+kubectl get pods -n keda
+```
+
+> **Note**: If you have Prometheus Adapter installed, either uninstall it first (`helm uninstall prometheus-adapter -n monitoring`) or install KEDA with `--set metricsServer.enabled=false` to avoid API conflicts.
+
+### Example: Scale Decode Based on TTFT
+
+Using the `sglang-agg` DGD from `examples/backends/sglang/deploy/agg.yaml`:
+
+```yaml
+apiVersion: keda.sh/v1alpha1
+kind: ScaledObject
+metadata:
+ name: sglang-agg-decode-scaler
+ namespace: default
+spec:
+ scaleTargetRef:
+ apiVersion: nvidia.com/v1alpha1
+ kind: DynamoGraphDeploymentScalingAdapter
+ name: sglang-agg-decode
+ minReplicaCount: 1
+ maxReplicaCount: 10
+ pollingInterval: 15 # Check metrics every 15 seconds
+ cooldownPeriod: 60 # Wait 60s before scaling down
+ triggers:
+ - type: prometheus
+ metadata:
+ # Update this URL to match your Prometheus service
+ serverAddress: http://prometheus-kube-prometheus-prometheus.monitoring.svc:9090
+ metricName: dynamo_ttft_p95
+ query: |
+ histogram_quantile(0.95,
+ sum(rate(dynamo_frontend_time_to_first_token_seconds_bucket{dynamo_namespace="default-sglang-agg"}[5m]))
+ by (le)
+ )
+ threshold: "0.5" # Scale up when TTFT p95 > 500ms (0.5 seconds)
+ activationThreshold: "0.1" # Start scaling when TTFT > 100ms
+```
+
+Apply it:
+
+```bash
+kubectl apply -f sglang-agg-decode-scaler.yaml
+```
+
+### Verify KEDA Scaling
+
+```bash
+# Check ScaledObject status
+kubectl get scaledobject -n default
+
+# KEDA creates an HPA under the hood - you can see it
+kubectl get hpa -n default
+
+# Example output:
+# NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS
+# keda-hpa-sglang-agg-decode-scaler DynamoGraphDeploymentScalingAdapter/sglang-agg-decode 45m/500m 1 10 1
+
+# Get detailed status
+kubectl describe scaledobject sglang-agg-decode-scaler -n default
+```
+
+### Example: Scale Based on Queue Depth
+
+```yaml
+apiVersion: keda.sh/v1alpha1
+kind: ScaledObject
+metadata:
+ name: sglang-agg-decode-queue-scaler
+ namespace: default
+spec:
+ scaleTargetRef:
+ apiVersion: nvidia.com/v1alpha1
+ kind: DynamoGraphDeploymentScalingAdapter
+ name: sglang-agg-decode
+ minReplicaCount: 1
+ maxReplicaCount: 10
+ pollingInterval: 15
+ cooldownPeriod: 60
+ triggers:
+ - type: prometheus
+ metadata:
+ serverAddress: http://prometheus-kube-prometheus-prometheus.monitoring.svc:9090
+ metricName: dynamo_queued_requests
+ query: |
+ sum(dynamo_frontend_queued_requests{dynamo_namespace="default-sglang-agg"})
+ threshold: "10" # Scale up when queue > 10 requests
+```
+
+### How KEDA Works
+
+KEDA creates and manages an HPA under the hood:
+
+```
+โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
+โ You create: ScaledObject โ
+โ - scaleTargetRef: sglang-agg-decode โ
+โ - triggers: prometheus query โ
+โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
+ โ
+ โผ
+โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
+โ KEDA Operator automatically creates: HPA โ
+โ - name: keda-hpa-sglang-agg-decode-scaler โ
+โ - scaleTargetRef: sglang-agg-decode โ
+โ - metrics: External (from KEDA metrics server) โ
+โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
+ โ
+ โผ
+โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
+โ DynamoGraphDeploymentScalingAdapter: sglang-agg-decode โ
+โ - spec.replicas: updated by HPA โ
+โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
+ โ
+ โผ
+โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
+โ DynamoGraphDeployment: sglang-agg โ
+โ - spec.services.decode.replicas: synced from adapter โ
+โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
+```
+
+## Mixed Autoscaling
+
+For disaggregated deployments (prefill + decode), you can use different autoscaling strategies for different services:
+
+```yaml
+---
+# HPA for Frontend (CPU-based)
+apiVersion: autoscaling/v2
+kind: HorizontalPodAutoscaler
+metadata:
+ name: sglang-agg-frontend-hpa
+ namespace: default
+spec:
+ scaleTargetRef:
+ apiVersion: nvidia.com/v1alpha1
+ kind: DynamoGraphDeploymentScalingAdapter
+ name: sglang-agg-frontend
+ minReplicas: 1
+ maxReplicas: 5
+ metrics:
+ - type: Resource
+ resource:
+ name: cpu
+ target:
+ type: Utilization
+ averageUtilization: 70
+
+---
+# KEDA for Decode (TTFT-based)
+apiVersion: keda.sh/v1alpha1
+kind: ScaledObject
+metadata:
+ name: sglang-agg-decode-scaler
+ namespace: default
+spec:
+ scaleTargetRef:
+ apiVersion: nvidia.com/v1alpha1
+ kind: DynamoGraphDeploymentScalingAdapter
+ name: sglang-agg-decode
+ minReplicaCount: 1
+ maxReplicaCount: 10
+ triggers:
+ - type: prometheus
+ metadata:
+ serverAddress: http://prometheus-kube-prometheus-prometheus.monitoring.svc:9090
+ query: |
+ histogram_quantile(0.95,
+ sum(rate(dynamo_frontend_time_to_first_token_seconds_bucket{dynamo_namespace="default-sglang-agg"}[5m]))
+ by (le)
+ )
+ threshold: "0.5"
+```
+
+## Manual Scaling
+
+### With DGDSA Enabled (Default)
+
+When DGDSA is enabled (the default), scale via the adapter:
+
+```bash
+kubectl scale dgdsa sglang-agg-decode -n default --replicas=3
+```
+
+Verify the scaling:
+
+```bash
+kubectl get dgdsa sglang-agg-decode -n default
+
+# Output:
+# NAME DGD SERVICE REPLICAS AGE
+# sglang-agg-decode sglang-agg decode 3 10m
+```
+
+> **Note**: If an autoscaler (KEDA, HPA, Planner) is managing the adapter, your change will be overwritten on the next evaluation cycle.
+
+### With DGDSA Disabled
+
+If you've disabled the scaling adapter for a service, edit the DGD directly:
+
+```bash
+kubectl patch dgd sglang-agg --type=merge -p '{"spec":{"services":{"decode":{"replicas":3}}}}'
+```
+
+Or edit the YAML:
+
+```yaml
+spec:
+ services:
+ decode:
+ replicas: 3
+ scalingAdapter:
+ disable: true
+```
+
+## Best Practices
+
+### 1. Choose One Autoscaler Per Service
+
+Avoid configuring multiple autoscalers for the same service:
+
+| Configuration | Status |
+|---------------|--------|
+| HPA for frontend, Planner for prefill/decode | โ
Good |
+| KEDA for all services | โ
Good |
+| Planner only (default) | โ
Good |
+| HPA + Planner both targeting decode | โ Bad - they will fight |
+
+### 2. Use Appropriate Metrics
+
+| Service Type | Recommended Metrics | Dynamo Metric |
+|--------------|---------------------|---------------|
+| Frontend | CPU utilization, request rate | `dynamo_frontend_requests_total` |
+| Prefill | Queue depth, TTFT | `dynamo_frontend_queued_requests`, `dynamo_frontend_time_to_first_token_seconds` |
+| Decode | KV cache utilization, ITL | `kvstats_gpu_cache_usage_percent`, `dynamo_frontend_inter_token_latency_seconds` |
+
+### 3. Configure Stabilization Windows
+
+Prevent thrashing with appropriate stabilization:
+
+```yaml
+# HPA
+behavior:
+ scaleDown:
+ stabilizationWindowSeconds: 300 # Wait 5 min before scaling down
+ scaleUp:
+ stabilizationWindowSeconds: 0 # Scale up immediately
+
+# KEDA
+spec:
+ cooldownPeriod: 300
+```
+
+### 4. Set Sensible Min/Max Replicas
+
+Always configure minimum and maximum replicas in your HPA/KEDA to prevent:
+- Scaling to zero (unless intentional)
+- Unbounded scaling that exhausts cluster resources
+
+## Troubleshooting
+
+### Adapters Not Created
+
+```bash
+# Check DGD status
+kubectl describe dgd sglang-agg -n default
+
+# Check operator logs
+kubectl logs -n dynamo-system deployment/dynamo-operator
+```
+
+### Scaling Not Working
+
+```bash
+# Check adapter status
+kubectl describe dgdsa sglang-agg-decode -n default
+
+# Check HPA/KEDA status
+kubectl describe hpa sglang-agg-decode-hpa -n default
+kubectl describe scaledobject sglang-agg-decode-scaler -n default
+
+# Verify metrics are available in Kubernetes metrics API
+kubectl get --raw /apis/external.metrics.k8s.io/v1beta1
+```
+
+### Metrics Not Available
+
+If HPA/KEDA shows `` for metrics:
+
+```bash
+# Check if Dynamo metrics are being scraped
+kubectl port-forward -n default svc/sglang-agg-frontend 8000:8000
+curl http://localhost:8000/metrics | grep dynamo_frontend
+
+# Example output:
+# dynamo_frontend_queued_requests{model="Qwen/Qwen3-0.6B"} 2
+# dynamo_frontend_inflight_requests{model="Qwen/Qwen3-0.6B"} 5
+
+# Verify Prometheus is scraping the metrics
+kubectl port-forward -n monitoring svc/prometheus-kube-prometheus-prometheus 9090:9090
+# Then query: dynamo_frontend_time_to_first_token_seconds_bucket
+
+# Check KEDA operator logs
+kubectl logs -n keda deployment/keda-operator
+```
+
+### Rapid Scaling Up and Down
+
+If you see unstable scaling:
+
+1. Check if multiple autoscalers are targeting the same adapter
+2. Increase `cooldownPeriod` in KEDA ScaledObject
+3. Increase `stabilizationWindowSeconds` in HPA behavior
+
+## References
+
+- [Kubernetes HPA Documentation](https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/)
+- [KEDA Documentation](https://keda.sh/)
+- [Prometheus Adapter](https://github.com/kubernetes-sigs/prometheus-adapter)
+- [Planner Documentation](../planner/sla_planner.md)
+- [Dynamo Metrics Reference](../observability/metrics.md)
+- [Prometheus and Grafana Setup](../observability/prometheus-grafana.md)
+
diff --git a/docs/kvbm/trtllm-setup.md b/docs/kvbm/trtllm-setup.md
index 3884fad4c2..17975e05cf 100644
--- a/docs/kvbm/trtllm-setup.md
+++ b/docs/kvbm/trtllm-setup.md
@@ -23,7 +23,6 @@ To learn what KVBM is, please check [here](kvbm_architecture.md)
> [!Note]
> - Ensure that `etcd` and `nats` are running before starting.
-> - KVBM does not currently support CUDA graphs in TensorRT-LLM.
> - KVBM only supports TensorRT-LLMโs PyTorch backend.
> - Disable partial reuse `enable_partial_reuse: false` in the LLM API configโs `kv_connector_config` to increase offloading cache hits.
> - KVBM requires TensorRT-LLM v1.1.0rc5 or newer.
diff --git a/docs/observability/health-checks.md b/docs/observability/health-checks.md
index 07dacaf0b2..980401fd03 100644
--- a/docs/observability/health-checks.md
+++ b/docs/observability/health-checks.md
@@ -20,6 +20,9 @@ orchestration frameworks such as Kubernetes.
| `DYN_SYSTEM_HEALTH_PATH` | Custom health endpoint path | `/health` | `/custom/health` |
| `DYN_SYSTEM_LIVE_PATH` | Custom liveness endpoint path | `/live` | `/custom/live` |
| `DYN_SYSTEM_USE_ENDPOINT_HEALTH_STATUS` | Endpoints required for ready state | none | `["generate"]` |
+| `DYN_HEALTH_CHECK_ENABLED` | Enable canary health checks | `false` (K8s: `true`) | `true`, `false` |
+| `DYN_CANARY_WAIT_TIME` | Seconds before sending canary health check | `10` | `5`, `30` |
+| `DYN_HEALTH_CHECK_REQUEST_TIMEOUT` | Health check request timeout in seconds | `3` | `5`, `10` |
## Getting Started Quickly
@@ -213,6 +216,127 @@ date: Wed, 03 Sep 2025 13:42:45 GMT
}
```
+## Canary Health Checks (Active Monitoring)
+
+In addition to the HTTP endpoints described above, Dynamo includes a **canary health check** system that actively monitors worker endpoints.
+
+### Overview
+
+The canary health check system:
+- **Monitors endpoint health** by sending periodic test requests to worker endpoints
+- **Only activates during idle periods** - if there's ongoing traffic, health checks are skipped to avoid overhead
+- **Automatically enabled in Kubernetes** deployments via the operator
+- **Disabled by default** in local/development environments
+
+### How It Works
+
+1. **Idle Detection**: After no activity on an endpoint for a configurable wait time (default: 10 seconds), a canary health check is triggered
+2. **Health Check Request**: A lightweight test request is sent to the endpoint with a minimal payload (generates 1 token)
+3. **Activity Resets Timer**: If normal requests arrive, the canary timer resets and no health check is sent
+4. **Timeout Handling**: If a health check doesn't respond within the timeout (default: 3 seconds), the endpoint is marked as unhealthy
+
+### Configuration
+
+#### In Kubernetes (Enabled by Default)
+
+Health checks are automatically enabled by the Dynamo operator. No additional configuration is required.
+
+```yaml
+apiVersion: nvidia.com/v1alpha1
+kind: DynamoGraphDeployment
+metadata:
+ name: my-deployment
+spec:
+ services:
+ VllmWorker:
+ componentType: worker
+ replicas: 2
+ # Health checks automatically enabled by operator
+```
+
+#### In Local/Development Environments (Disabled by Default)
+
+To enable health checks locally:
+
+```bash
+# Enable health checks
+export DYN_HEALTH_CHECK_ENABLED=true
+
+# Optional: Customize timing
+export DYN_CANARY_WAIT_TIME=5 # Wait 5 seconds before sending health check
+export DYN_HEALTH_CHECK_REQUEST_TIMEOUT=5 # 5 second timeout
+
+# Start worker
+python -m dynamo.vllm --model Qwen/Qwen3-0.6B
+```
+
+#### Configuration Options
+
+| Environment Variable | Description | Default | Notes |
+|---------------------|-------------|---------|-------|
+| `DYN_HEALTH_CHECK_ENABLED` | Enable/disable canary health checks | `false` (K8s: `true`) | Automatically set to `true` in K8s |
+| `DYN_CANARY_WAIT_TIME` | Seconds to wait (during idle) before sending health check | `10` | Lower values = more frequent checks |
+| `DYN_HEALTH_CHECK_REQUEST_TIMEOUT` | Max seconds to wait for health check response | `3` | Higher values = more tolerance for slow responses |
+
+### Health Check Payloads
+
+Each backend defines its own minimal health check payload:
+
+- **vLLM**: Single token generation with minimal sampling options
+- **TensorRT-LLM**: Single token with BOS token ID
+- **SGLang**: Single token generation request
+
+These payloads are designed to:
+- Complete quickly (< 100ms typically)
+- Minimize GPU overhead
+- Verify the full inference stack is working
+
+### Observing Health Checks
+
+When health checks are enabled, you'll see logs like:
+
+```
+INFO Health check manager started (canary_wait_time: 10s, request_timeout: 3s)
+INFO Spawned health check task for endpoint: generate
+INFO Canary timer expired for generate, sending health check
+INFO Health check successful for generate
+```
+
+If an endpoint fails:
+
+```
+WARN Health check timeout for generate
+ERROR Health check request failed for generate: connection refused
+```
+
+### When to Use Canary Health Checks
+
+**Enable in production (Kubernetes):**
+- โ
Detect unhealthy workers before they affect user traffic
+- โ
Enable faster failure detection and recovery
+- โ
Monitor worker availability continuously
+
+**Disable in development:**
+- โ
Reduce log noise during debugging
+- โ
Avoid overhead when not needed
+- โ
Simplify local testing
+
+### Troubleshooting
+
+**Health checks timing out:**
+- Increase `DYN_HEALTH_CHECK_REQUEST_TIMEOUT`
+- Check worker logs for errors
+- Verify network connectivity
+
+**Too many health check logs:**
+- Increase `DYN_CANARY_WAIT_TIME` to reduce frequency
+- Or disable with `DYN_HEALTH_CHECK_ENABLED=false` in dev
+
+**Health checks not running:**
+- Verify `DYN_HEALTH_CHECK_ENABLED=true` is set
+- Check that `DYN_SYSTEM_USE_ENDPOINT_HEALTH_STATUS` includes the endpoint
+- Ensure the worker is serving the endpoint
+
## Related Documentation
- [Distributed Runtime Architecture](../design_docs/distributed_runtime.md)
diff --git a/docs/observability/metrics.md b/docs/observability/metrics.md
index 4b4781f761..55d0d3e8d3 100644
--- a/docs/observability/metrics.md
+++ b/docs/observability/metrics.md
@@ -152,6 +152,7 @@ The Dynamo HTTP Frontend (`python -m dynamo.frontend`) exposes `dynamo_frontend_
- `dynamo_frontend_queued_requests`: Number of requests in HTTP processing queue (gauge)
- `dynamo_frontend_disconnected_clients`: Number of disconnected clients (gauge)
- `dynamo_frontend_input_sequence_tokens`: Input sequence length (histogram)
+- `dynamo_frontend_cached_tokens`: Number of cached tokens (prefix cache hits) per request (histogram)
- `dynamo_frontend_inter_token_latency_seconds`: Inter-token latency (histogram)
- `dynamo_frontend_output_sequence_tokens`: Output sequence length (histogram)
- `dynamo_frontend_output_tokens_total`: Total number of output tokens generated (counter)
diff --git a/docs/planner/sla_planner_quickstart.md b/docs/planner/sla_planner_quickstart.md
index 4d0c375f6e..c4029a2a2d 100644
--- a/docs/planner/sla_planner_quickstart.md
+++ b/docs/planner/sla_planner_quickstart.md
@@ -179,6 +179,25 @@ kubectl port-forward svc/trtllm-disagg-frontend 8000:8000 -n $NAMESPACE
curl http://localhost:8000/v1/models
```
+### Step 5 (Optional): Access the Planner Grafana Dashboard
+
+If you want to monitor the SLA Planner's decision-making in real-time, you can deploy the Planner Grafana dashboard.
+
+```bash
+kubectl apply -n monitoring -f deploy/observability/k8s/grafana-planner-dashboard-configmap.yaml
+```
+
+Follow the instructions in [Dynamo Metrics Collection on Kubernetes](../kubernetes/observability/metrics.md) to access the Grafana UI and select the **Dynamo Planner Dashboard**.
+
+The dashboard displays:
+- **Worker Counts & GPU Usage**: Current prefill/decode worker counts and cumulative GPU hours
+- **Observed Metrics**: Real-time TTFT, ITL, request rate, and sequence lengths from Prometheus
+- **Predicted Metrics**: Planner's load predictions and recommended replica counts
+- **Correction Factors**: How the planner adjusts predictions based on observed vs expected performance
+
+> [!TIP]
+> Use the **Namespace** dropdown at the top of the dashboard to filter metrics for your specific deployment namespace.
+
## DGDR Configuration Details
### Required Fields
diff --git a/docs/project.json b/docs/project.json
index 3b94839f5f..a951ef7e58 100644
--- a/docs/project.json
+++ b/docs/project.json
@@ -1 +1 @@
-{"name": "NVIDIA Dynamo", "version": "latest"}
\ No newline at end of file
+{"name": "NVIDIA Dynamo", "version": "dev"}
diff --git a/docs/reference/support-matrix.md b/docs/reference/support-matrix.md
index 2efb446874..e6c862b8b4 100644
--- a/docs/reference/support-matrix.md
+++ b/docs/reference/support-matrix.md
@@ -58,12 +58,12 @@ If you are using a **GPU**, the following GPU models and architectures are suppo
### Build Dependency
-| **Build Dependency** | **Version as of Dynamo v0.7.0** |
-| :------------------- | :------------------------------------------------------------------------------- |
-| **SGLang** | 0.5.3.post4 |
-| **TensorRT-LLM** | 1.2.0rc2 |
-| **vLLM** | 0.11.0 |
-| **NIXL** | 0.7.1 |
+| **Build Dependency** | **Version as of Dynamo v0.7.0** |
+| :------------------- | :------------------------------ |
+| **SGLang** | 0.5.3.post4 |
+| **TensorRT-LLM** | 1.2.0rc5 |
+| **vLLM** | 0.11.0 |
+| **NIXL** | 0.7.1 |
> [!Important]
diff --git a/docs/versions1.json b/docs/versions1.json
deleted file mode 100644
index 856c91f1f9..0000000000
--- a/docs/versions1.json
+++ /dev/null
@@ -1,62 +0,0 @@
-[
- {
- "preferred": true,
- "version": "latest",
- "url": "https://docs.nvidia.com/dynamo/latest/"
- },
- {
- "version": "0.7.0",
- "url": "https://docs.nvidia.com/dynamo/archive/0.7.0/"
- },
- {
- "version": "0.6.1",
- "url": "https://docs.nvidia.com/dynamo/archive/0.6.1/"
- },
- {
- "version": "0.6.0",
- "url": "https://docs.nvidia.com/dynamo/archive/0.6.0/"
- },
- {
- "version": "0.5.1",
- "url": "https://docs.nvidia.com/dynamo/archive/0.5.1/"
- },
- {
- "version": "0.5.0",
- "url": "https://docs.nvidia.com/dynamo/archive/0.5.0/"
- },
- {
- "name": "0.4.1",
- "version": "0.4.1",
- "url": "https://docs.nvidia.com/dynamo/archive/0.4.1/"
- },
- {
- "name": "0.4.0",
- "version": "0.4.0",
- "url": "https://docs.nvidia.com/dynamo/archive/0.4.0/"
- },
- {
- "name": "0.3.2",
- "version": "0.3.2",
- "url": "https://docs.nvidia.com/dynamo/archive/0.3.2/"
- },
- {
- "name": "0.3.1",
- "version": "0.3.1",
- "url": "https://docs.nvidia.com/dynamo/archive/0.3.1/"
- },
- {
- "name": "0.3.0",
- "version": "0.3.0",
- "url": "https://docs.nvidia.com/dynamo/archive/0.3.0/"
- },
- {
- "name": "0.2.1",
- "version": "0.2.1",
- "url": "https://docs.nvidia.com/dynamo/archive/0.2.1/"
- },
- {
- "name": "0.2.0",
- "version": "0.2.0",
- "url": "https://docs.nvidia.com/dynamo/archive/0.2.0/"
- }
-]
diff --git a/examples/backends/sglang/launch/agg.sh b/examples/backends/sglang/launch/agg.sh
index 9ccb48f260..43e4f1f4af 100755
--- a/examples/backends/sglang/launch/agg.sh
+++ b/examples/backends/sglang/launch/agg.sh
@@ -46,10 +46,12 @@ while [[ $# -gt 0 ]]; do
done
# Enable tracing if requested
+TRACE_ARGS=()
if [ "$ENABLE_OTEL" = true ]; then
export DYN_LOGGING_JSONL=true
export OTEL_EXPORT_ENABLED=1
export OTEL_EXPORTER_OTLP_TRACES_ENDPOINT=${OTEL_EXPORTER_OTLP_TRACES_ENDPOINT:-http://localhost:4317}
+ TRACE_ARGS+=(--enable-trace --otlp-traces-endpoint localhost:4317)
fi
# run ingress
@@ -59,7 +61,7 @@ python3 -m dynamo.frontend &
DYNAMO_PID=$!
# run worker with metrics enabled
-DYN_SYSTEM_PORT=${DYN_SYSTEM_PORT:-8081} \
+OTEL_SERVICE_NAME=dynamo-worker DYN_SYSTEM_PORT=${DYN_SYSTEM_PORT:-8081} \
python3 -m dynamo.sglang \
--model-path "$MODEL" \
--served-model-name "$MODEL" \
@@ -68,4 +70,5 @@ python3 -m dynamo.sglang \
--trust-remote-code \
--skip-tokenizer-init \
--enable-metrics \
+ "${TRACE_ARGS[@]}" \
"${EXTRA_ARGS[@]}"
diff --git a/examples/backends/sglang/launch/agg_embed.sh b/examples/backends/sglang/launch/agg_embed.sh
index 9064273f30..e78ebb2458 100755
--- a/examples/backends/sglang/launch/agg_embed.sh
+++ b/examples/backends/sglang/launch/agg_embed.sh
@@ -37,10 +37,12 @@ while [[ $# -gt 0 ]]; do
done
# Enable tracing if requested
+TRACE_ARGS=()
if [ "$ENABLE_OTEL" = true ]; then
export DYN_LOGGING_JSONL=true
export OTEL_EXPORT_ENABLED=1
export OTEL_EXPORTER_OTLP_TRACES_ENDPOINT=${OTEL_EXPORTER_OTLP_TRACES_ENDPOINT:-http://localhost:4317}
+ TRACE_ARGS+=(--enable-trace --otlp-traces-endpoint localhost:4317)
fi
# run ingress
@@ -59,4 +61,5 @@ python3 -m dynamo.sglang \
--tp 1 \
--trust-remote-code \
--use-sglang-tokenizer \
- --enable-metrics
+ --enable-metrics \
+ "${TRACE_ARGS[@]}"
diff --git a/examples/backends/sglang/launch/agg_router.sh b/examples/backends/sglang/launch/agg_router.sh
index 0b336f5f15..4cfca011f4 100755
--- a/examples/backends/sglang/launch/agg_router.sh
+++ b/examples/backends/sglang/launch/agg_router.sh
@@ -37,10 +37,12 @@ while [[ $# -gt 0 ]]; do
done
# Enable tracing if requested
+TRACE_ARGS=()
if [ "$ENABLE_OTEL" = true ]; then
export DYN_LOGGING_JSONL=true
export OTEL_EXPORT_ENABLED=1
export OTEL_EXPORTER_OTLP_TRACES_ENDPOINT=${OTEL_EXPORTER_OTLP_TRACES_ENDPOINT:-http://localhost:4317}
+ TRACE_ARGS+=(--enable-trace --otlp-traces-endpoint localhost:4317)
fi
# run ingress
@@ -58,7 +60,8 @@ python3 -m dynamo.sglang \
--tp 1 \
--trust-remote-code \
--kv-events-config '{"publisher":"zmq","topic":"kv-events","endpoint":"tcp://*:5557"}' \
- --enable-metrics &
+ --enable-metrics \
+ "${TRACE_ARGS[@]}" &
WORKER_PID=$!
OTEL_SERVICE_NAME=dynamo-worker-2 DYN_SYSTEM_PORT=${DYN_SYSTEM_PORT_WORKER2:-8082} \
@@ -69,4 +72,5 @@ CUDA_VISIBLE_DEVICES=1 python3 -m dynamo.sglang \
--tp 1 \
--trust-remote-code \
--kv-events-config '{"publisher":"zmq","topic":"kv-events","endpoint":"tcp://*:5558"}' \
- --enable-metrics
+ --enable-metrics \
+ "${TRACE_ARGS[@]}"
diff --git a/examples/backends/sglang/launch/disagg.sh b/examples/backends/sglang/launch/disagg.sh
index 53e22fc723..9291ffb0c8 100755
--- a/examples/backends/sglang/launch/disagg.sh
+++ b/examples/backends/sglang/launch/disagg.sh
@@ -37,10 +37,12 @@ while [[ $# -gt 0 ]]; do
done
# Enable tracing if requested
+TRACE_ARGS=()
if [ "$ENABLE_OTEL" = true ]; then
export DYN_LOGGING_JSONL=true
export OTEL_EXPORT_ENABLED=1
export OTEL_EXPORTER_OTLP_TRACES_ENDPOINT=${OTEL_EXPORTER_OTLP_TRACES_ENDPOINT:-http://localhost:4317}
+ TRACE_ARGS+=(--enable-trace --otlp-traces-endpoint localhost:4317)
fi
# run ingress
@@ -49,31 +51,38 @@ OTEL_SERVICE_NAME=dynamo-frontend \
python3 -m dynamo.frontend &
DYNAMO_PID=$!
+#AssertionError: Prefill round robin balance is required when dp size > 1. Please make sure that the prefill instance is launched with `--load-balance-method round_robin` and `--prefill-round-robin-balance` is set for decode server.
+
# run prefill worker
OTEL_SERVICE_NAME=dynamo-worker-prefill DYN_SYSTEM_PORT=${DYN_SYSTEM_PORT_PREFILL:-8081} \
python3 -m dynamo.sglang \
- --model-path Qwen/Qwen3-0.6B \
- --served-model-name Qwen/Qwen3-0.6B \
+ --model-path silence09/DeepSeek-R1-Small-2layers \
+ --served-model-name silence09/DeepSeek-R1-Small-2layers \
--page-size 16 \
- --tp 1 \
+ --tp 2 --dp-size 2 --enable-dp-attention \
+ --load-balance-method round_robin \
--trust-remote-code \
--disaggregation-mode prefill \
--disaggregation-bootstrap-port 12345 \
--host 0.0.0.0 \
+ --port 40000 \
--disaggregation-transfer-backend nixl \
- --enable-metrics &
+ --enable-metrics \
+ "${TRACE_ARGS[@]}" &
PREFILL_PID=$!
# run decode worker
OTEL_SERVICE_NAME=dynamo-worker-decode DYN_SYSTEM_PORT=${DYN_SYSTEM_PORT_DECODE:-8082} \
-CUDA_VISIBLE_DEVICES=1 python3 -m dynamo.sglang \
- --model-path Qwen/Qwen3-0.6B \
- --served-model-name Qwen/Qwen3-0.6B \
+CUDA_VISIBLE_DEVICES=2,3 python3 -m dynamo.sglang \
+ --model-path silence09/DeepSeek-R1-Small-2layers \
+ --served-model-name silence09/DeepSeek-R1-Small-2layers \
--page-size 16 \
- --tp 1 \
+ --prefill-round-robin-balance \
+ --tp 2 --dp-size 2 --enable-dp-attention \
--trust-remote-code \
--disaggregation-mode decode \
--disaggregation-bootstrap-port 12345 \
--host 0.0.0.0 \
--disaggregation-transfer-backend nixl \
- --enable-metrics
+ --enable-metrics \
+ "${TRACE_ARGS[@]}"
diff --git a/examples/backends/sglang/launch/disagg_router.sh b/examples/backends/sglang/launch/disagg_router.sh
index 916cbbf410..16a7db750e 100755
--- a/examples/backends/sglang/launch/disagg_router.sh
+++ b/examples/backends/sglang/launch/disagg_router.sh
@@ -38,10 +38,12 @@ while [[ $# -gt 0 ]]; do
done
# Enable tracing if requested
+TRACE_ARGS=()
if [ "$ENABLE_OTEL" = true ]; then
export DYN_LOGGING_JSONL=true
export OTEL_EXPORT_ENABLED=1
export OTEL_EXPORTER_OTLP_TRACES_ENDPOINT=${OTEL_EXPORTER_OTLP_TRACES_ENDPOINT:-http://localhost:4317}
+ TRACE_ARGS+=(--enable-trace --otlp-traces-endpoint localhost:4317)
fi
# run ingress
@@ -74,7 +76,8 @@ python3 -m dynamo.sglang \
--host 0.0.0.0 \
--kv-events-config '{"publisher":"zmq","topic":"kv-events","endpoint":"tcp://*:5557"}' \
--disaggregation-transfer-backend nixl \
- --enable-metrics &
+ --enable-metrics \
+ "${TRACE_ARGS[@]}" &
PREFILL_PID=$!
# run prefill worker
@@ -89,7 +92,8 @@ CUDA_VISIBLE_DEVICES=1 python3 -m dynamo.sglang \
--host 0.0.0.0 \
--kv-events-config '{"publisher":"zmq","topic":"kv-events","endpoint":"tcp://*:5558"}' \
--disaggregation-transfer-backend nixl \
- --enable-metrics &
+ --enable-metrics \
+ "${TRACE_ARGS[@]}" &
PREFILL_PID=$!
# run decode worker
@@ -104,7 +108,8 @@ CUDA_VISIBLE_DEVICES=3 python3 -m dynamo.sglang \
--host 0.0.0.0 \
--kv-events-config '{"publisher":"zmq","topic":"kv-events","endpoint":"tcp://*:5560"}' \
--disaggregation-transfer-backend nixl \
- --enable-metrics &
+ --enable-metrics \
+ "${TRACE_ARGS[@]}" &
PREFILL_PID=$!
# run decode worker
@@ -119,4 +124,5 @@ CUDA_VISIBLE_DEVICES=2 python3 -m dynamo.sglang \
--host 0.0.0.0 \
--kv-events-config '{"publisher":"zmq","topic":"kv-events","endpoint":"tcp://*:5559"}' \
--disaggregation-transfer-backend nixl \
- --enable-metrics
+ --enable-metrics \
+ "${TRACE_ARGS[@]}"
diff --git a/examples/backends/sglang/slurm_jobs/scripts/gb200-fp4/disagg/1k1k-low-latency.sh b/examples/backends/sglang/slurm_jobs/scripts/gb200-fp4/disagg/1k1k-low-latency.sh
new file mode 100755
index 0000000000..f128e5cb20
--- /dev/null
+++ b/examples/backends/sglang/slurm_jobs/scripts/gb200-fp4/disagg/1k1k-low-latency.sh
@@ -0,0 +1,179 @@
+#!/bin/bash
+# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-License-Identifier: Apache-2.0
+
+# Function to print usage
+print_usage() {
+ echo "Usage: $0 "
+ echo " mode: prefill or decode"
+ echo ""
+ echo "Examples:"
+ echo " $0 prefill"
+ echo " $0 decode"
+ exit 1
+}
+
+# Check if correct number of arguments provided
+if [ $# -ne 1 ]; then
+ echo "Error: Expected 1 argument, got $#"
+ print_usage
+fi
+
+# Parse arguments
+mode=$1
+
+# Validate mode argument
+if [ "$mode" != "prefill" ] && [ "$mode" != "decode" ]; then
+ echo "Error: mode must be 'prefill' or 'decode', got '$mode'"
+ print_usage
+fi
+
+echo "Mode: $mode"
+echo "Command: dynamo"
+
+# Check if required environment variables are set
+if [ -z "$HOST_IP_MACHINE" ]; then
+ echo "Error: HOST_IP_MACHINE environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$PORT" ]; then
+ echo "Error: PORT environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$TOTAL_GPUS" ]; then
+ echo "Error: TOTAL_GPUS environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$RANK" ]; then
+ echo "Error: RANK environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$TOTAL_NODES" ]; then
+ echo "Error: TOTAL_NODES environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$USE_INIT_LOCATIONS" ]; then
+ echo "Error: USE_INIT_LOCATIONS environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$RUN_IN_CI" ]; then
+ echo "Error: RUN_IN_CI environment variable is not set"
+ exit 1
+fi
+
+# Construct command based on mode
+if [ "$mode" = "prefill" ]; then
+ set -x
+ if [[ "${RUN_IN_CI,,}" == "true" ]]; then
+ python3 -m pip install /configs/ai_dynamo_runtime-0.7.0-cp310-abi3-manylinux_2_28_aarch64.whl
+ python3 -m pip install /configs/ai_dynamo-0.7.0-py3-none-any.whl
+ fi
+ export TORCH_DISTRIBUTED_DEFAULT_TIMEOUT=1800
+
+ command_suffix=""
+ if [[ -n "${DUMP_CONFIG_PATH}" ]]; then command_suffix="${command_suffix} --dump-config-to ${DUMP_CONFIG_PATH}"; fi
+
+ PYTHONUNBUFFERED=1 \
+ DYN_SKIP_SGLANG_LOG_FORMATTING=1 \
+ SGLANG_USE_MESSAGE_QUEUE_BROADCASTER=0 \
+ SGLANG_DISABLE_TP_MEMORY_INBALANCE_CHECK=1 \
+ SGLANG_DISAGGREGATION_HEARTBEAT_MAX_FAILURE=100000 \
+ SGLANG_DISAGGREGATION_BOOTSTRAP_TIMEOUT=100000 \
+ SGLANG_DISAGGREGATION_WAITING_TIMEOUT=100000 \
+ SGLANG_DECODE_BOOTSTRAP_TIMEOUT=1000 \
+ MC_FORCE_MNNVL=1 \
+ NCCL_MNNVL_ENABLE=1 \
+ NCCL_CUMEM_ENABLE=1 \
+ SGLANG_MOONCAKE_CUSTOM_MEM_POOL=True \
+ SGLANG_ENABLE_JIT_DEEPGEMM=false \
+ SGLANG_ENABLE_FLASHINFER_GEMM=true \
+ python3 -m dynamo.sglang \
+ --disaggregation-mode prefill \
+ --served-model-name deepseek-ai/DeepSeek-R1 \
+ --model-path /model/ \
+ --trust-remote-code \
+ --disable-radix-cache \
+ --kv-cache-dtype fp8_e4m3 \
+ --attention-backend trtllm_mla \
+ --quantization modelopt_fp4 \
+ --moe-runner-backend flashinfer_trtllm \
+ --stream-interval 10 \
+ --watchdog-timeout 1000000 \
+ --context-length 2200 \
+ --mem-fraction-static 0.95 \
+ --max-total-tokens 8192 \
+ --chunked-prefill-size 8192 \
+ --cuda-graph-max-bs 256 \
+ --max-running-requests 512 \
+ --scheduler-recv-interval 10 \
+ --enable-symm-mem \
+ --moe-dense-tp-size 1 \
+ --load-balance-method round_robin \
+ --disaggregation-bootstrap-port 30001 \
+ --data-parallel-size 1 \
+ --tensor-parallel-size "$TOTAL_GPUS" \
+ --expert-parallel-size 1 \
+ --dist-init-addr "$HOST_IP_MACHINE:$PORT" \
+ --nnodes "$TOTAL_NODES" \
+ --node-rank "$RANK" \
+ --host 0.0.0.0 ${command_suffix}
+
+elif [ "$mode" = "decode" ]; then
+ set -x
+ if [[ "${RUN_IN_CI,,}" == "true" ]]; then
+ python3 -m pip install /configs/ai_dynamo_runtime-0.7.0-cp310-abi3-manylinux_2_28_aarch64.whl
+ python3 -m pip install /configs/ai_dynamo-0.7.0-py3-none-any.whl
+ fi
+ export TORCH_DISTRIBUTED_DEFAULT_TIMEOUT=1800
+
+ command_suffix=""
+ if [[ -n "${DUMP_CONFIG_PATH}" ]]; then command_suffix="${command_suffix} --dump-config-to ${DUMP_CONFIG_PATH}"; fi
+
+ PYTHONUNBUFFERED=1 \
+ DYN_SKIP_SGLANG_LOG_FORMATTING=1 \
+ SGLANG_USE_MESSAGE_QUEUE_BROADCASTER=0 \
+ SGLANG_DISABLE_TP_MEMORY_INBALANCE_CHECK=1 \
+ SGLANG_DISAGGREGATION_HEARTBEAT_MAX_FAILURE=100000 \
+ SGLANG_DISAGGREGATION_BOOTSTRAP_TIMEOUT=100000 \
+ SGLANG_DISAGGREGATION_WAITING_TIMEOUT=100000 \
+ SGLANG_DECODE_BOOTSTRAP_TIMEOUT=1000 \
+ MC_FORCE_MNNVL=1 \
+ NCCL_MNNVL_ENABLE=1 \
+ NCCL_CUMEM_ENABLE=1 \
+ SGLANG_MOONCAKE_CUSTOM_MEM_POOL=True \
+ SGLANG_ENABLE_JIT_DEEPGEMM=false \
+ SGLANG_ENABLE_FLASHINFER_GEMM=true \
+ python3 -m dynamo.sglang \
+ --disaggregation-mode decode \
+ --served-model-name deepseek-ai/DeepSeek-R1 \
+ --model-path /model/ \
+ --prefill-round-robin-balance \
+ --trust-remote-code \
+ --disable-radix-cache \
+ --kv-cache-dtype fp8_e4m3 \
+ --attention-backend trtllm_mla \
+ --quantization modelopt_fp4 \
+ --moe-runner-backend flashinfer_trtllm \
+ --disaggregation-bootstrap-port 30001 \
+ --stream-interval 10 \
+ --watchdog-timeout 1000000 \
+ --context-length 2200 \
+ --mem-fraction-static 0.95 \
+ --chunked-prefill-size 8192 \
+ --cuda-graph-max-bs 256 \
+ --scheduler-recv-interval 10 \
+ --enable-symm-mem \
+ --moe-dense-tp-size 1 \
+ --tensor-parallel-size "$TOTAL_GPUS" \
+ --expert-parallel-size 1 \
+ --dist-init-addr "$HOST_IP_MACHINE:$PORT" \
+ --nnodes "$TOTAL_NODES" \
+ --node-rank "$RANK" \
+ --host 0.0.0.0 ${command_suffix}
+fi
\ No newline at end of file
diff --git a/examples/backends/sglang/slurm_jobs/scripts/gb200-fp4/disagg/1k1k-max-tpt.sh b/examples/backends/sglang/slurm_jobs/scripts/gb200-fp4/disagg/1k1k-max-tpt.sh
new file mode 100755
index 0000000000..f81aa51a6c
--- /dev/null
+++ b/examples/backends/sglang/slurm_jobs/scripts/gb200-fp4/disagg/1k1k-max-tpt.sh
@@ -0,0 +1,200 @@
+#!/bin/bash
+# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-License-Identifier: Apache-2.0
+
+# Function to print usage
+print_usage() {
+ echo "Usage: $0 "
+ echo " mode: prefill or decode"
+ echo ""
+ echo "Examples:"
+ echo " $0 prefill"
+ echo " $0 decode"
+ exit 1
+}
+
+# Check if correct number of arguments provided
+if [ $# -ne 1 ]; then
+ echo "Error: Expected 1 argument, got $#"
+ print_usage
+fi
+
+# Parse arguments
+mode=$1
+
+# Validate mode argument
+if [ "$mode" != "prefill" ] && [ "$mode" != "decode" ]; then
+ echo "Error: mode must be 'prefill' or 'decode', got '$mode'"
+ print_usage
+fi
+
+echo "Mode: $mode"
+echo "Command: dynamo"
+
+# Check if required environment variables are set
+if [ -z "$HOST_IP_MACHINE" ]; then
+ echo "Error: HOST_IP_MACHINE environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$PORT" ]; then
+ echo "Error: PORT environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$TOTAL_GPUS" ]; then
+ echo "Error: TOTAL_GPUS environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$RANK" ]; then
+ echo "Error: RANK environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$TOTAL_NODES" ]; then
+ echo "Error: TOTAL_NODES environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$USE_INIT_LOCATIONS" ]; then
+ echo "Error: USE_INIT_LOCATIONS environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$RUN_IN_CI" ]; then
+ echo "Error: RUN_IN_CI environment variable is not set"
+ exit 1
+fi
+
+# Construct command based on mode
+if [ "$mode" = "prefill" ]; then
+ set -x
+ if [[ "${RUN_IN_CI,,}" == "true" ]]; then
+ python3 -m pip install /configs/ai_dynamo_runtime-0.7.0-cp310-abi3-manylinux_2_28_aarch64.whl
+ python3 -m pip install /configs/ai_dynamo-0.7.0-py3-none-any.whl
+ fi
+ export TORCH_DISTRIBUTED_DEFAULT_TIMEOUT=1800
+
+ command_suffix=""
+ if [[ -n "${DUMP_CONFIG_PATH}" ]]; then command_suffix="${command_suffix} --dump-config-to ${DUMP_CONFIG_PATH}"; fi
+
+ PYTHONUNBUFFERED=1 \
+ DYN_SKIP_SGLANG_LOG_FORMATTING=1 \
+ SGLANG_NVFP4_CKPT_FP8_GEMM_IN_ATTN=1 \
+ SGLANG_PER_TOKEN_GROUP_QUANT_8BIT_V2=1 \
+ SGLANG_DISAGGREGATION_HEARTBEAT_MAX_FAILURE=100000 \
+ SGLANG_DISAGGREGATION_BOOTSTRAP_TIMEOUT=100000 \
+ SGLANG_DISAGGREGATION_WAITING_TIMEOUT=100000 \
+ SGLANG_HACK_SEQ_BOOTSTRAP_ROOM=1 \
+ MC_TE_METRIC=true \
+ MC_FORCE_MNNVL=1 \
+ NCCL_MNNVL_ENABLE=1 \
+ NCCL_CUMEM_ENABLE=1 \
+ SGLANG_MOONCAKE_CUSTOM_MEM_POOL=True \
+ SGLANG_USE_MESSAGE_QUEUE_BROADCASTER=0 \
+ SGLANG_DISABLE_TP_MEMORY_INBALANCE_CHECK=1 \
+ python3 -m dynamo.sglang \
+ --served-model-name deepseek-ai/DeepSeek-R1 \
+ --model-path /model/ \
+ --trust-remote-code \
+ --kv-cache-dtype fp8_e4m3 \
+ --attention-backend trtllm_mla \
+ --quantization modelopt_fp4 \
+ --moe-runner-backend flashinfer_cutlass \
+ --disable-radix-cache \
+ --disable-chunked-prefix-cache \
+ --stream-interval 50 \
+ --decode-log-interval 1000 \
+ --watchdog-timeout 1000000 \
+ --context-length 2176 \
+ --disable-shared-experts-fusion \
+ --eplb-algorithm deepseek \
+ --disaggregation-bootstrap-port 30001 \
+ --disaggregation-mode prefill \
+ --mem-fraction-static 0.84 \
+ --max-total-tokens 131072 \
+ --max-prefill-tokens 32768 \
+ --chunked-prefill-size 65536 \
+ --enable-single-batch-overlap \
+ --max-running-requests 30000 \
+ --load-balance-method round_robin \
+ --disable-cuda-graph \
+ --enable-dp-attention \
+ --tp-size "$TOTAL_GPUS" \
+ --dp-size "$TOTAL_GPUS" \
+ --ep-size "$TOTAL_GPUS" \
+ --dist-init-addr "$HOST_IP_MACHINE:$PORT" \
+ --nnodes "$TOTAL_NODES" \
+ --node-rank "$RANK" \
+ --host 0.0.0.0 ${command_suffix}
+
+elif [ "$mode" = "decode" ]; then
+ set -x
+ if [[ "${RUN_IN_CI,,}" == "true" ]]; then
+ python3 -m pip install /configs/ai_dynamo_runtime-0.7.0-cp310-abi3-manylinux_2_28_aarch64.whl
+ python3 -m pip install /configs/ai_dynamo-0.7.0-py3-none-any.whl
+ fi
+ export TORCH_DISTRIBUTED_DEFAULT_TIMEOUT=1800
+
+ command_suffix=""
+ if [[ -n "${DUMP_CONFIG_PATH}" ]]; then command_suffix="${command_suffix} --dump-config-to ${DUMP_CONFIG_PATH}"; fi
+
+ PYTHONUNBUFFERED=1 \
+ DYN_SKIP_SGLANG_LOG_FORMATTING=1 \
+ SGLANG_NVFP4_CKPT_FP8_GEMM_IN_ATTN=1 \
+ SGLANG_PER_TOKEN_GROUP_QUANT_8BIT_V2=1 \
+ SGLANG_DISAGGREGATION_HEARTBEAT_MAX_FAILURE=100000 \
+ SGLANG_DISAGGREGATION_BOOTSTRAP_TIMEOUT=100000 \
+ SGLANG_DISAGGREGATION_WAITING_TIMEOUT=100000 \
+ SGLANG_HACK_SEQ_BOOTSTRAP_ROOM=1 \
+ MC_TE_METRIC=true \
+ MC_FORCE_MNNVL=1 \
+ NCCL_MNNVL_ENABLE=1 \
+ NCCL_CUMEM_ENABLE=1 \
+ SGLANG_MOONCAKE_CUSTOM_MEM_POOL=True \
+ SGLANG_USE_MESSAGE_QUEUE_BROADCASTER=0 \
+ SGLANG_DISABLE_TP_MEMORY_INBALANCE_CHECK=1 \
+ SGLANG_DEEPEP_NUM_MAX_DISPATCH_TOKENS_PER_RANK=1024 \
+ SGLANG_CUTEDSL_MOE_NVFP4_DISPATCH=1 \
+ SGLANG_FLASHINFER_FP4_GEMM_BACKEND=cutlass \
+ python3 -m dynamo.sglang \
+ --served-model-name deepseek-ai/DeepSeek-R1 \
+ --model-path /model/ \
+ --trust-remote-code \
+ --kv-cache-dtype fp8_e4m3 \
+ --attention-backend trtllm_mla \
+ --quantization modelopt_fp4 \
+ --moe-runner-backend flashinfer_cutedsl \
+ --disable-radix-cache \
+ --disable-chunked-prefix-cache \
+ --stream-interval 50 \
+ --decode-log-interval 1000 \
+ --watchdog-timeout 1000000 \
+ --context-length 2176 \
+ --disable-shared-experts-fusion \
+ --eplb-algorithm deepseek \
+ --disaggregation-bootstrap-port 30001 \
+ --disaggregation-mode decode \
+ --mem-fraction-static 0.83 \
+ --max-total-tokens 3122380 \
+ --chunked-prefill-size 786432 \
+ --max-running-requests 67584 \
+ --moe-a2a-backend deepep \
+ --deepep-mode low_latency \
+ --ep-dispatch-algorithm static \
+ --ep-num-redundant-experts 32 \
+ --cuda-graph-bs 1 2 4 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168 176 184 192 200 208 216 224 232 240 248 256 264 272 280 288 296 304 312 320 328 336 344 352 360 368 376 384 416 448 480 512 544 576 608 640 672 704 736 768 1024 \
+ --num-reserved-decode-tokens 112 \
+ --moe-dense-tp-size 1 \
+ --enable-dp-lm-head \
+ --prefill-round-robin-balance \
+ --enable-dp-attention \
+ --tp-size "$TOTAL_GPUS" \
+ --dp-size "$TOTAL_GPUS" \
+ --ep-size "$TOTAL_GPUS" \
+ --dist-init-addr "$HOST_IP_MACHINE:$PORT" \
+ --nnodes "$TOTAL_NODES" \
+ --node-rank "$RANK" \
+ --host 0.0.0.0 ${command_suffix}
+fi
\ No newline at end of file
diff --git a/examples/backends/sglang/slurm_jobs/scripts/gb200-fp4/disagg/default.sh b/examples/backends/sglang/slurm_jobs/scripts/gb200-fp4/disagg/1k1k-middle-curve.sh
similarity index 73%
rename from examples/backends/sglang/slurm_jobs/scripts/gb200-fp4/disagg/default.sh
rename to examples/backends/sglang/slurm_jobs/scripts/gb200-fp4/disagg/1k1k-middle-curve.sh
index de786d8e0e..43a435c95a 100755
--- a/examples/backends/sglang/slurm_jobs/scripts/gb200-fp4/disagg/default.sh
+++ b/examples/backends/sglang/slurm_jobs/scripts/gb200-fp4/disagg/1k1k-middle-curve.sh
@@ -2,8 +2,6 @@
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
-# This comes from https://github.com/sgl-project/sglang/issues/10903 and uses the low-prec decode setup
-
# Function to print usage
print_usage() {
echo "Usage: $0 "
@@ -64,152 +62,140 @@ if [ -z "$USE_INIT_LOCATIONS" ]; then
exit 1
fi
+if [ -z "$RUN_IN_CI" ]; then
+ echo "Error: RUN_IN_CI environment variable is not set"
+ exit 1
+fi
+
# Construct command based on mode
if [ "$mode" = "prefill" ]; then
set -x
- # no expert locations collected for fp4 yet
+ if [[ "${RUN_IN_CI,,}" == "true" ]]; then
+ python3 -m pip install /configs/ai_dynamo_runtime-0.7.0-cp310-abi3-manylinux_2_28_aarch64.whl
+ python3 -m pip install /configs/ai_dynamo-0.7.0-py3-none-any.whl
+ fi
+ export TORCH_DISTRIBUTED_DEFAULT_TIMEOUT=1800
+
command_suffix=""
- if [[ "${USE_INIT_LOCATIONS,,}" == "true" ]]; then command_suffix=" "; fi
if [[ -n "${DUMP_CONFIG_PATH}" ]]; then command_suffix="${command_suffix} --dump-config-to ${DUMP_CONFIG_PATH}"; fi
- # we have to install pre-release cutedsl for a integer overflow fix
- python3 -m pip install --no-cache-dir --upgrade --pre nvidia-cutlass-dsl
-
- # set your own cache variables here
- export TORCH_DISTRIBUTED_DEFAULT_TIMEOUT=1800
- export SGLANG_DG_CACHE_DIR="/configs/dg-10212025"
- export FLASHINFER_WORKSPACE_BASE="/configs/flashinfer-cache"
-
+ PYTHONUNBUFFERED=1 \
DYN_SKIP_SGLANG_LOG_FORMATTING=1 \
SGLANG_NVFP4_CKPT_FP8_GEMM_IN_ATTN=1 \
SGLANG_PER_TOKEN_GROUP_QUANT_8BIT_V2=1 \
- SGL_JIT_DEEPGEMM_PRECOMPILE=0 \
SGLANG_DISAGGREGATION_HEARTBEAT_MAX_FAILURE=100000 \
SGLANG_DISAGGREGATION_BOOTSTRAP_TIMEOUT=100000 \
SGLANG_DISAGGREGATION_WAITING_TIMEOUT=100000 \
SGLANG_HACK_SEQ_BOOTSTRAP_ROOM=1 \
MC_TE_METRIC=true \
- SGLANG_MOONCAKE_CUSTOM_MEM_POOL=True \
MC_FORCE_MNNVL=1 \
NCCL_MNNVL_ENABLE=1 \
NCCL_CUMEM_ENABLE=1 \
+ SGLANG_MOONCAKE_CUSTOM_MEM_POOL=True \
SGLANG_USE_MESSAGE_QUEUE_BROADCASTER=0 \
SGLANG_DISABLE_TP_MEMORY_INBALANCE_CHECK=1 \
- PYTHONUNBUFFERED=1 \
python3 -m dynamo.sglang \
--served-model-name deepseek-ai/DeepSeek-R1 \
--model-path /model/ \
- --skip-tokenizer-init \
- --disaggregation-mode prefill \
+ --trust-remote-code \
+ --kv-cache-dtype fp8_e4m3 \
+ --attention-backend trtllm_mla \
+ --quantization modelopt_fp4 \
+ --moe-runner-backend flashinfer_cutlass \
+ --disable-radix-cache \
+ --disable-chunked-prefix-cache \
+ --stream-interval 50 \
--decode-log-interval 1000 \
- --max-running-requests 5632 \
+ --watchdog-timeout 1000000 \
--context-length 2176 \
- --disable-radix-cache \
--disable-shared-experts-fusion \
- --watchdog-timeout 1000000 \
- --disable-chunked-prefix-cache \
- --attention-backend trtllm_mla \
- --kv-cache-dtype fp8_e4m3 \
- --enable-single-batch-overlap \
- --chunked-prefill-size 65536 \
--eplb-algorithm deepseek \
- --trust-remote-code \
- --disable-cuda-graph \
+ --disaggregation-bootstrap-port 30001 \
+ --disaggregation-mode prefill \
--mem-fraction-static 0.84 \
--max-total-tokens 131072 \
- --max-prefill-tokens 16384 \
+ --max-prefill-tokens 32768 \
+ --chunked-prefill-size 65536 \
+ --enable-single-batch-overlap \
+ --max-running-requests 30000 \
--load-balance-method round_robin \
- --quantization modelopt_fp4 \
- --moe-runner-backend flashinfer_cutlass \
+ --disable-cuda-graph \
+ --enable-dp-attention \
+ --tp-size "$TOTAL_GPUS" \
+ --dp-size "$TOTAL_GPUS" \
+ --ep-size "$TOTAL_GPUS" \
--dist-init-addr "$HOST_IP_MACHINE:$PORT" \
- --disaggregation-bootstrap-port 30001 \
--nnodes "$TOTAL_NODES" \
--node-rank "$RANK" \
- --ep-size "$TOTAL_GPUS" \
- --tp-size "$TOTAL_GPUS" \
- --dp-size "$TOTAL_GPUS" \
- --enable-dp-attention \
- --host 0.0.0.0 \
- --stream-interval 50 \
- --log-level debug ${command_suffix}
-
-# For now we must keep SGLANG_DEEPEP_NUM_MAX_DISPATCH_TOKENS_PER_RANK and cuda-graph-bs at 1024 until
-# DeepEP merges in https://github.com/deepseek-ai/DeepEP/pull/440
-# the nvidia-cutlass-dsl install fixes https://github.com/flashinfer-ai/flashinfer/issues/1830#issuecomment-3380074018
-# which was previously limiting us to DISPATCH_TOKENS and cuda-graph-bs == 384
-# For now use 12 nodes for fp4 since flashinfer_cutedsl requires experts per gpu < 8
-# We have 288 (256 + 32 redundant) => 288/48 = 6
+ --host 0.0.0.0 ${command_suffix}
elif [ "$mode" = "decode" ]; then
set -x
- # no expert locations collected for fp4 yet
- command_suffix=""
- if [[ "${USE_INIT_LOCATIONS,,}" == "true" ]]; then command_suffix=" "; fi
- if [[ -n "${DUMP_CONFIG_PATH}" ]]; then command_suffix="${command_suffix} --dump-config-to ${DUMP_CONFIG_PATH}"; fi
-
- # set your own cache variables here
+ if [[ "${RUN_IN_CI,,}" == "true" ]]; then
+ python3 -m pip install /configs/ai_dynamo_runtime-0.7.0-cp310-abi3-manylinux_2_28_aarch64.whl
+ python3 -m pip install /configs/ai_dynamo-0.7.0-py3-none-any.whl
+ fi
export TORCH_DISTRIBUTED_DEFAULT_TIMEOUT=1800
- export SGLANG_DG_CACHE_DIR="/configs/dg-10212025"
- export FLASHINFER_WORKSPACE_BASE="/configs/flashinfer-cache"
- # we have to install pre-release cutedsl for a integer overflow fix
- python3 -m pip install --no-cache-dir --upgrade --pre nvidia-cutlass-dsl
+ command_suffix=""
+ if [[ -n "${DUMP_CONFIG_PATH}" ]]; then command_suffix="${command_suffix} --dump-config-to ${DUMP_CONFIG_PATH}"; fi
+ PYTHONUNBUFFERED=1 \
+ DYN_SKIP_SGLANG_LOG_FORMATTING=1 \
SGLANG_NVFP4_CKPT_FP8_GEMM_IN_ATTN=1 \
SGLANG_PER_TOKEN_GROUP_QUANT_8BIT_V2=1 \
- SGL_JIT_DEEPGEMM_PRECOMPILE=0 \
- MC_TE_METRIC=true \
SGLANG_DISAGGREGATION_HEARTBEAT_MAX_FAILURE=100000 \
SGLANG_DISAGGREGATION_BOOTSTRAP_TIMEOUT=100000 \
SGLANG_DISAGGREGATION_WAITING_TIMEOUT=100000 \
SGLANG_HACK_SEQ_BOOTSTRAP_ROOM=1 \
+ MC_TE_METRIC=true \
+ MC_FORCE_MNNVL=1 \
+ NCCL_MNNVL_ENABLE=1 \
+ NCCL_CUMEM_ENABLE=1 \
SGLANG_MOONCAKE_CUSTOM_MEM_POOL=True \
- SGLANG_DEEPEP_NUM_MAX_DISPATCH_TOKENS_PER_RANK=384 \
+ SGLANG_USE_MESSAGE_QUEUE_BROADCASTER=0 \
+ SGLANG_DISABLE_TP_MEMORY_INBALANCE_CHECK=1 \
+ SGLANG_DEEPEP_NUM_MAX_DISPATCH_TOKENS_PER_RANK=1024 \
SGLANG_CUTEDSL_MOE_NVFP4_DISPATCH=1 \
- SGLANG_FP4_GEMM_BACKEND=cutlass \
- DYN_SKIP_SGLANG_LOG_FORMATTING=1 \
- PYTHONUNBUFFERED=1 \
+ SGLANG_FLASHINFER_FP4_GEMM_BACKEND=cutlass \
python3 -m dynamo.sglang \
--served-model-name deepseek-ai/DeepSeek-R1 \
--model-path /model/ \
- --skip-tokenizer-init \
--trust-remote-code \
- --disaggregation-mode decode \
- --host 0.0.0.0 \
- --decode-log-interval 1 \
- --max-running-requests 67584 \
- --context-length 2176 \
+ --kv-cache-dtype fp8_e4m3 \
+ --attention-backend trtllm_mla \
+ --quantization modelopt_fp4 \
+ --moe-runner-backend flashinfer_cutedsl \
--disable-radix-cache \
- --disable-shared-experts-fusion \
- --watchdog-timeout 1000000 \
--disable-chunked-prefix-cache \
- --attention-backend trtllm_mla \
- --kv-cache-dtype fp8_e4m3 \
- --enable-dp-attention \
- --chunked-prefill-size 786432 \
+ --stream-interval 50 \
+ --decode-log-interval 1000 \
+ --watchdog-timeout 1000000 \
+ --context-length 2176 \
+ --disable-shared-experts-fusion \
+ --eplb-algorithm deepseek \
+ --disaggregation-bootstrap-port 30001 \
+ --disaggregation-mode decode \
--mem-fraction-static 0.83 \
+ --max-total-tokens 3122380 \
+ --chunked-prefill-size 786432 \
+ --max-running-requests 67584 \
+ --enable-single-batch-overlap \
--moe-a2a-backend deepep \
--deepep-mode low_latency \
--ep-dispatch-algorithm static \
- --cuda-graph-bs 384 \
- --num-reserved-decode-tokens 112 \
--ep-num-redundant-experts 32 \
- --eplb-algorithm deepseek \
+ --cuda-graph-bs 1 2 4 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168 176 184 192 200 208 216 224 232 240 248 256 264 272 280 288 296 304 312 320 328 336 344 352 360 368 376 384 416 448 480 512 544 576 608 640 672 704 736 768 1024 \
+ --num-reserved-decode-tokens 112 \
--moe-dense-tp-size 1 \
--enable-dp-lm-head \
--prefill-round-robin-balance \
- --max-total-tokens 3122380 \
- --quantization modelopt_fp4 \
- --moe-runner-backend flashinfer_cutedsl \
+ --enable-dp-attention \
+ --tp-size "$TOTAL_GPUS" \
+ --dp-size "$TOTAL_GPUS" \
+ --ep-size "$TOTAL_GPUS" \
--dist-init-addr "$HOST_IP_MACHINE:$PORT" \
- --disaggregation-bootstrap-port 30001 \
--nnodes "$TOTAL_NODES" \
--node-rank "$RANK" \
- --tp-size "$TOTAL_GPUS" \
- --ep-size "$TOTAL_GPUS" \
- --dp-size "$TOTAL_GPUS" \
- --enable-single-batch-overlap \
- --enable-dp-attention \
- --stream-interval 50 \
- --mem-fraction-static 0.82 ${command_suffix}
-fi
+ --host 0.0.0.0 ${command_suffix}
+fi
\ No newline at end of file
diff --git a/examples/backends/sglang/slurm_jobs/scripts/gb200-fp4/disagg/8k1k-low-latency.sh b/examples/backends/sglang/slurm_jobs/scripts/gb200-fp4/disagg/8k1k-low-latency.sh
new file mode 100755
index 0000000000..1d6007e13a
--- /dev/null
+++ b/examples/backends/sglang/slurm_jobs/scripts/gb200-fp4/disagg/8k1k-low-latency.sh
@@ -0,0 +1,181 @@
+#!/bin/bash
+# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-License-Identifier: Apache-2.0
+
+# Function to print usage
+print_usage() {
+ echo "Usage: $0 "
+ echo " mode: prefill or decode"
+ echo ""
+ echo "Examples:"
+ echo " $0 prefill"
+ echo " $0 decode"
+ exit 1
+}
+
+# Check if correct number of arguments provided
+if [ $# -ne 1 ]; then
+ echo "Error: Expected 1 argument, got $#"
+ print_usage
+fi
+
+# Parse arguments
+mode=$1
+
+# Validate mode argument
+if [ "$mode" != "prefill" ] && [ "$mode" != "decode" ]; then
+ echo "Error: mode must be 'prefill' or 'decode', got '$mode'"
+ print_usage
+fi
+
+echo "Mode: $mode"
+echo "Command: dynamo"
+
+# Check if required environment variables are set
+if [ -z "$HOST_IP_MACHINE" ]; then
+ echo "Error: HOST_IP_MACHINE environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$PORT" ]; then
+ echo "Error: PORT environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$TOTAL_GPUS" ]; then
+ echo "Error: TOTAL_GPUS environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$RANK" ]; then
+ echo "Error: RANK environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$TOTAL_NODES" ]; then
+ echo "Error: TOTAL_NODES environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$USE_INIT_LOCATIONS" ]; then
+ echo "Error: USE_INIT_LOCATIONS environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$RUN_IN_CI" ]; then
+ echo "Error: RUN_IN_CI environment variable is not set"
+ exit 1
+fi
+
+# Construct command based on mode
+if [ "$mode" = "prefill" ]; then
+ set -x
+ if [[ "${RUN_IN_CI,,}" == "true" ]]; then
+ python3 -m pip install /configs/ai_dynamo_runtime-0.7.0-cp310-abi3-manylinux_2_28_aarch64.whl
+ python3 -m pip install /configs/ai_dynamo-0.7.0-py3-none-any.whl
+ fi
+ export TORCH_DISTRIBUTED_DEFAULT_TIMEOUT=1800
+
+ command_suffix=""
+ if [[ -n "${DUMP_CONFIG_PATH}" ]]; then command_suffix="${command_suffix} --dump-config-to ${DUMP_CONFIG_PATH}"; fi
+
+ PYTHONUNBUFFERED=1 \
+ DYN_SKIP_SGLANG_LOG_FORMATTING=1 \
+ SGLANG_USE_MESSAGE_QUEUE_BROADCASTER=0 \
+ SGLANG_DISABLE_TP_MEMORY_INBALANCE_CHECK=1 \
+ SGLANG_DISAGGREGATION_HEARTBEAT_MAX_FAILURE=100000 \
+ SGLANG_DISAGGREGATION_BOOTSTRAP_TIMEOUT=100000 \
+ SGLANG_DISAGGREGATION_WAITING_TIMEOUT=100000 \
+ SGLANG_DECODE_BOOTSTRAP_TIMEOUT=1000 \
+ MC_FORCE_MNNVL=1 \
+ NCCL_MNNVL_ENABLE=1 \
+ NCCL_CUMEM_ENABLE=1 \
+ SGLANG_MOONCAKE_CUSTOM_MEM_POOL=True \
+ SGLANG_ENABLE_JIT_DEEPGEMM=false \
+ SGLANG_ENABLE_FLASHINFER_GEMM=true \
+ python3 -m dynamo.sglang \
+ --served-model-name deepseek-ai/DeepSeek-R1 \
+ --model-path /model/ \
+ --trust-remote-code \
+ --disable-radix-cache \
+ --kv-cache-dtype fp8_e4m3 \
+ --attention-backend trtllm_mla \
+ --quantization modelopt_fp4 \
+ --moe-runner-backend flashinfer_trtllm \
+ --stream-interval 50 \
+ --watchdog-timeout 1000000 \
+ --context-length 9600 \
+ --mem-fraction-static 0.95 \
+ --max-total-tokens 32768 \
+ --chunked-prefill-size 24576 \
+ --cuda-graph-max-bs 256 \
+ --max-running-requests 512 \
+ --scheduler-recv-interval 10 \
+ --enable-symm-mem \
+ --moe-dense-tp-size 1 \
+ --load-balance-method round_robin \
+ --disaggregation-bootstrap-port 30001 \
+ --disaggregation-mode prefill \
+ --dp-size 1 \
+ --tp-size "$TOTAL_GPUS" \
+ --ep-size 1 \
+ --dist-init-addr "$HOST_IP_MACHINE:$PORT" \
+ --nnodes "$TOTAL_NODES" \
+ --node-rank "$RANK" \
+ --host 0.0.0.0 ${command_suffix}
+
+elif [ "$mode" = "decode" ]; then
+ set -x
+ if [[ "${RUN_IN_CI,,}" == "true" ]]; then
+ python3 -m pip install /configs/ai_dynamo_runtime-0.7.0-cp310-abi3-manylinux_2_28_aarch64.whl
+ python3 -m pip install /configs/ai_dynamo-0.7.0-py3-none-any.whl
+ fi
+ export TORCH_DISTRIBUTED_DEFAULT_TIMEOUT=1800
+
+ command_suffix=""
+ if [[ -n "${DUMP_CONFIG_PATH}" ]]; then command_suffix="${command_suffix} --dump-config-to ${DUMP_CONFIG_PATH}"; fi
+
+ PYTHONUNBUFFERED=1 \
+ DYN_SKIP_SGLANG_LOG_FORMATTING=1 \
+ SGLANG_USE_MESSAGE_QUEUE_BROADCASTER=0 \
+ SGLANG_DISABLE_TP_MEMORY_INBALANCE_CHECK=1 \
+ SGLANG_DISAGGREGATION_HEARTBEAT_MAX_FAILURE=100000 \
+ SGLANG_DISAGGREGATION_BOOTSTRAP_TIMEOUT=100000 \
+ SGLANG_DISAGGREGATION_WAITING_TIMEOUT=100000 \
+ SGLANG_DECODE_BOOTSTRAP_TIMEOUT=1000 \
+ MC_FORCE_MNNVL=1 \
+ NCCL_MNNVL_ENABLE=1 \
+ NCCL_CUMEM_ENABLE=1 \
+ SGLANG_MOONCAKE_CUSTOM_MEM_POOL=True \
+ SGLANG_ENABLE_JIT_DEEPGEMM=false \
+ SGLANG_ENABLE_FLASHINFER_GEMM=true \
+ python3 -m dynamo.sglang \
+ --served-model-name deepseek-ai/DeepSeek-R1 \
+ --model-path /model/ \
+ --prefill-round-robin-balance \
+ --trust-remote-code \
+ --disable-radix-cache \
+ --kv-cache-dtype fp8_e4m3 \
+ --attention-backend trtllm_mla \
+ --quantization modelopt_fp4 \
+ --moe-runner-backend flashinfer_trtllm \
+ --disaggregation-bootstrap-port 30001 \
+ --disaggregation-mode decode \
+ --stream-interval 50 \
+ --watchdog-timeout 1000000 \
+ --context-length 9600 \
+ --mem-fraction-static 0.95 \
+ --chunked-prefill-size 8192 \
+ --cuda-graph-max-bs 256 \
+ --scheduler-recv-interval 10 \
+ --enable-symm-mem \
+ --moe-dense-tp-size 1 \
+ --dp-size 1 \
+ --tp-size "$TOTAL_GPUS" \
+ --ep-size 1 \
+ --dist-init-addr "$HOST_IP_MACHINE:$PORT" \
+ --nnodes "$TOTAL_NODES" \
+ --node-rank "$RANK" \
+ --host 0.0.0.0 ${command_suffix}
+fi
+
diff --git a/examples/backends/sglang/slurm_jobs/scripts/gb200-fp4/disagg/8k1k-max-tpt.sh b/examples/backends/sglang/slurm_jobs/scripts/gb200-fp4/disagg/8k1k-max-tpt.sh
new file mode 100755
index 0000000000..e7447fc5a4
--- /dev/null
+++ b/examples/backends/sglang/slurm_jobs/scripts/gb200-fp4/disagg/8k1k-max-tpt.sh
@@ -0,0 +1,198 @@
+#!/bin/bash
+# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-License-Identifier: Apache-2.0
+
+# Function to print usage
+print_usage() {
+ echo "Usage: $0 "
+ echo " mode: prefill or decode"
+ echo ""
+ echo "Examples:"
+ echo " $0 prefill"
+ echo " $0 decode"
+ exit 1
+}
+
+# Check if correct number of arguments provided
+if [ $# -ne 1 ]; then
+ echo "Error: Expected 1 argument, got $#"
+ print_usage
+fi
+
+# Parse arguments
+mode=$1
+
+# Validate mode argument
+if [ "$mode" != "prefill" ] && [ "$mode" != "decode" ]; then
+ echo "Error: mode must be 'prefill' or 'decode', got '$mode'"
+ print_usage
+fi
+
+echo "Mode: $mode"
+echo "Command: dynamo"
+
+# Check if required environment variables are set
+if [ -z "$HOST_IP_MACHINE" ]; then
+ echo "Error: HOST_IP_MACHINE environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$PORT" ]; then
+ echo "Error: PORT environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$TOTAL_GPUS" ]; then
+ echo "Error: TOTAL_GPUS environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$RANK" ]; then
+ echo "Error: RANK environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$TOTAL_NODES" ]; then
+ echo "Error: TOTAL_NODES environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$USE_INIT_LOCATIONS" ]; then
+ echo "Error: USE_INIT_LOCATIONS environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$RUN_IN_CI" ]; then
+ echo "Error: RUN_IN_CI environment variable is not set"
+ exit 1
+fi
+
+# Construct command based on mode
+if [ "$mode" = "prefill" ]; then
+ set -x
+ if [[ "${RUN_IN_CI,,}" == "true" ]]; then
+ python3 -m pip install /configs/ai_dynamo_runtime-0.7.0-cp310-abi3-manylinux_2_28_aarch64.whl
+ python3 -m pip install /configs/ai_dynamo-0.7.0-py3-none-any.whl
+ fi
+ export TORCH_DISTRIBUTED_DEFAULT_TIMEOUT=1800
+
+ command_suffix=""
+ if [[ -n "${DUMP_CONFIG_PATH}" ]]; then command_suffix="${command_suffix} --dump-config-to ${DUMP_CONFIG_PATH}"; fi
+
+ PYTHONUNBUFFERED=1 \
+ DYN_SKIP_SGLANG_LOG_FORMATTING=1 \
+ SGLANG_NVFP4_CKPT_FP8_GEMM_IN_ATTN=1 \
+ SGLANG_PER_TOKEN_GROUP_QUANT_8BIT_V2=1 \
+ SGLANG_DISAGGREGATION_HEARTBEAT_MAX_FAILURE=100000 \
+ SGLANG_DISAGGREGATION_BOOTSTRAP_TIMEOUT=100000 \
+ SGLANG_DISAGGREGATION_WAITING_TIMEOUT=100000 \
+ SGLANG_HACK_SEQ_BOOTSTRAP_ROOM=1 \
+ MC_TE_METRIC=true \
+ MC_FORCE_MNNVL=1 \
+ NCCL_MNNVL_ENABLE=1 \
+ NCCL_CUMEM_ENABLE=1 \
+ SGLANG_MOONCAKE_CUSTOM_MEM_POOL=True \
+ SGLANG_USE_MESSAGE_QUEUE_BROADCASTER=0 \
+ SGLANG_DISABLE_TP_MEMORY_INBALANCE_CHECK=1 \
+ python3 -m dynamo.sglang \
+ --served-model-name deepseek-ai/DeepSeek-R1 \
+ --model-path /model/ \
+ --trust-remote-code \
+ --kv-cache-dtype fp8_e4m3 \
+ --attention-backend trtllm_mla \
+ --quantization modelopt_fp4 \
+ --moe-runner-backend flashinfer_trtllm \
+ --disable-radix-cache \
+ --disable-chunked-prefix-cache \
+ --stream-interval 50 \
+ --decode-log-interval 1000 \
+ --watchdog-timeout 1000000 \
+ --context-length 9600 \
+ --disable-shared-experts-fusion \
+ --disaggregation-bootstrap-port 30001 \
+ --disaggregation-mode prefill \
+ --mem-fraction-static 0.95 \
+ --max-total-tokens 131072 \
+ --max-prefill-tokens 524288 \
+ --chunked-prefill-size 131072 \
+ --max-running-requests 30000 \
+ --load-balance-method round_robin \
+ --disable-cuda-graph \
+ --tp-size "$TOTAL_GPUS" \
+ --dp-size 1 \
+ --ep-size 1 \
+ --dist-init-addr "$HOST_IP_MACHINE:$PORT" \
+ --nnodes "$TOTAL_NODES" \
+ --node-rank "$RANK" \
+ --host 0.0.0.0 ${command_suffix}
+
+elif [ "$mode" = "decode" ]; then
+ set -x
+ if [[ "${RUN_IN_CI,,}" == "true" ]]; then
+ python3 -m pip install /configs/ai_dynamo_runtime-0.7.0-cp310-abi3-manylinux_2_28_aarch64.whl
+ python3 -m pip install /configs/ai_dynamo-0.7.0-py3-none-any.whl
+ fi
+ export TORCH_DISTRIBUTED_DEFAULT_TIMEOUT=1800
+
+ command_suffix=""
+ if [[ -n "${DUMP_CONFIG_PATH}" ]]; then command_suffix="${command_suffix} --dump-config-to ${DUMP_CONFIG_PATH}"; fi
+
+ PYTHONUNBUFFERED=1 \
+ DYN_SKIP_SGLANG_LOG_FORMATTING=1 \
+ SGLANG_NVFP4_CKPT_FP8_GEMM_IN_ATTN=1 \
+ SGLANG_PER_TOKEN_GROUP_QUANT_8BIT_V2=1 \
+ SGLANG_DISAGGREGATION_HEARTBEAT_MAX_FAILURE=100000 \
+ SGLANG_DISAGGREGATION_BOOTSTRAP_TIMEOUT=100000 \
+ SGLANG_DISAGGREGATION_WAITING_TIMEOUT=100000 \
+ SGLANG_HACK_SEQ_BOOTSTRAP_ROOM=1 \
+ MC_TE_METRIC=true \
+ MC_FORCE_MNNVL=1 \
+ NCCL_MNNVL_ENABLE=1 \
+ NCCL_CUMEM_ENABLE=1 \
+ SGLANG_MOONCAKE_CUSTOM_MEM_POOL=True \
+ SGLANG_USE_MESSAGE_QUEUE_BROADCASTER=0 \
+ SGLANG_DISABLE_TP_MEMORY_INBALANCE_CHECK=1 \
+ SGLANG_DEEPEP_NUM_MAX_DISPATCH_TOKENS_PER_RANK=512 \
+ SGLANG_CUTEDSL_MOE_NVFP4_DISPATCH=1 \
+ SGLANG_FLASHINFER_FP4_GEMM_BACKEND=cutlass \
+ python3 -m dynamo.sglang \
+ --served-model-name deepseek-ai/DeepSeek-R1 \
+ --model-path /model/ \
+ --trust-remote-code \
+ --kv-cache-dtype fp8_e4m3 \
+ --attention-backend trtllm_mla \
+ --quantization modelopt_fp4 \
+ --moe-runner-backend flashinfer_cutedsl \
+ --disable-radix-cache \
+ --disable-chunked-prefix-cache \
+ --stream-interval 50 \
+ --decode-log-interval 1000 \
+ --watchdog-timeout 1000000 \
+ --context-length 9600 \
+ --disable-shared-experts-fusion \
+ --eplb-algorithm deepseek \
+ --disaggregation-bootstrap-port 30001 \
+ --disaggregation-mode decode \
+ --mem-fraction-static 0.83 \
+ --max-total-tokens 524288 \
+ --chunked-prefill-size 24576 \
+ --max-running-requests 16384 \
+ --moe-a2a-backend deepep \
+ --deepep-mode low_latency \
+ --ep-dispatch-algorithm static \
+ --ep-num-redundant-experts 32 \
+ --cuda-graph-max-bs 512 \
+ --num-reserved-decode-tokens 112 \
+ --moe-dense-tp-size 1 \
+ --enable-dp-lm-head \
+ --prefill-round-robin-balance \
+ --enable-dp-attention \
+ --tp-size "$TOTAL_GPUS" \
+ --dp-size "$TOTAL_GPUS" \
+ --ep-size "$TOTAL_GPUS" \
+ --dist-init-addr "$HOST_IP_MACHINE:$PORT" \
+ --nnodes "$TOTAL_NODES" \
+ --node-rank "$RANK" \
+ --host 0.0.0.0 ${command_suffix}
+fi
+
diff --git a/examples/backends/sglang/slurm_jobs/scripts/gb200-fp4/disagg/8k1k-middle-curve.sh b/examples/backends/sglang/slurm_jobs/scripts/gb200-fp4/disagg/8k1k-middle-curve.sh
new file mode 100755
index 0000000000..e7447fc5a4
--- /dev/null
+++ b/examples/backends/sglang/slurm_jobs/scripts/gb200-fp4/disagg/8k1k-middle-curve.sh
@@ -0,0 +1,198 @@
+#!/bin/bash
+# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-License-Identifier: Apache-2.0
+
+# Function to print usage
+print_usage() {
+ echo "Usage: $0 "
+ echo " mode: prefill or decode"
+ echo ""
+ echo "Examples:"
+ echo " $0 prefill"
+ echo " $0 decode"
+ exit 1
+}
+
+# Check if correct number of arguments provided
+if [ $# -ne 1 ]; then
+ echo "Error: Expected 1 argument, got $#"
+ print_usage
+fi
+
+# Parse arguments
+mode=$1
+
+# Validate mode argument
+if [ "$mode" != "prefill" ] && [ "$mode" != "decode" ]; then
+ echo "Error: mode must be 'prefill' or 'decode', got '$mode'"
+ print_usage
+fi
+
+echo "Mode: $mode"
+echo "Command: dynamo"
+
+# Check if required environment variables are set
+if [ -z "$HOST_IP_MACHINE" ]; then
+ echo "Error: HOST_IP_MACHINE environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$PORT" ]; then
+ echo "Error: PORT environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$TOTAL_GPUS" ]; then
+ echo "Error: TOTAL_GPUS environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$RANK" ]; then
+ echo "Error: RANK environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$TOTAL_NODES" ]; then
+ echo "Error: TOTAL_NODES environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$USE_INIT_LOCATIONS" ]; then
+ echo "Error: USE_INIT_LOCATIONS environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$RUN_IN_CI" ]; then
+ echo "Error: RUN_IN_CI environment variable is not set"
+ exit 1
+fi
+
+# Construct command based on mode
+if [ "$mode" = "prefill" ]; then
+ set -x
+ if [[ "${RUN_IN_CI,,}" == "true" ]]; then
+ python3 -m pip install /configs/ai_dynamo_runtime-0.7.0-cp310-abi3-manylinux_2_28_aarch64.whl
+ python3 -m pip install /configs/ai_dynamo-0.7.0-py3-none-any.whl
+ fi
+ export TORCH_DISTRIBUTED_DEFAULT_TIMEOUT=1800
+
+ command_suffix=""
+ if [[ -n "${DUMP_CONFIG_PATH}" ]]; then command_suffix="${command_suffix} --dump-config-to ${DUMP_CONFIG_PATH}"; fi
+
+ PYTHONUNBUFFERED=1 \
+ DYN_SKIP_SGLANG_LOG_FORMATTING=1 \
+ SGLANG_NVFP4_CKPT_FP8_GEMM_IN_ATTN=1 \
+ SGLANG_PER_TOKEN_GROUP_QUANT_8BIT_V2=1 \
+ SGLANG_DISAGGREGATION_HEARTBEAT_MAX_FAILURE=100000 \
+ SGLANG_DISAGGREGATION_BOOTSTRAP_TIMEOUT=100000 \
+ SGLANG_DISAGGREGATION_WAITING_TIMEOUT=100000 \
+ SGLANG_HACK_SEQ_BOOTSTRAP_ROOM=1 \
+ MC_TE_METRIC=true \
+ MC_FORCE_MNNVL=1 \
+ NCCL_MNNVL_ENABLE=1 \
+ NCCL_CUMEM_ENABLE=1 \
+ SGLANG_MOONCAKE_CUSTOM_MEM_POOL=True \
+ SGLANG_USE_MESSAGE_QUEUE_BROADCASTER=0 \
+ SGLANG_DISABLE_TP_MEMORY_INBALANCE_CHECK=1 \
+ python3 -m dynamo.sglang \
+ --served-model-name deepseek-ai/DeepSeek-R1 \
+ --model-path /model/ \
+ --trust-remote-code \
+ --kv-cache-dtype fp8_e4m3 \
+ --attention-backend trtllm_mla \
+ --quantization modelopt_fp4 \
+ --moe-runner-backend flashinfer_trtllm \
+ --disable-radix-cache \
+ --disable-chunked-prefix-cache \
+ --stream-interval 50 \
+ --decode-log-interval 1000 \
+ --watchdog-timeout 1000000 \
+ --context-length 9600 \
+ --disable-shared-experts-fusion \
+ --disaggregation-bootstrap-port 30001 \
+ --disaggregation-mode prefill \
+ --mem-fraction-static 0.95 \
+ --max-total-tokens 131072 \
+ --max-prefill-tokens 524288 \
+ --chunked-prefill-size 131072 \
+ --max-running-requests 30000 \
+ --load-balance-method round_robin \
+ --disable-cuda-graph \
+ --tp-size "$TOTAL_GPUS" \
+ --dp-size 1 \
+ --ep-size 1 \
+ --dist-init-addr "$HOST_IP_MACHINE:$PORT" \
+ --nnodes "$TOTAL_NODES" \
+ --node-rank "$RANK" \
+ --host 0.0.0.0 ${command_suffix}
+
+elif [ "$mode" = "decode" ]; then
+ set -x
+ if [[ "${RUN_IN_CI,,}" == "true" ]]; then
+ python3 -m pip install /configs/ai_dynamo_runtime-0.7.0-cp310-abi3-manylinux_2_28_aarch64.whl
+ python3 -m pip install /configs/ai_dynamo-0.7.0-py3-none-any.whl
+ fi
+ export TORCH_DISTRIBUTED_DEFAULT_TIMEOUT=1800
+
+ command_suffix=""
+ if [[ -n "${DUMP_CONFIG_PATH}" ]]; then command_suffix="${command_suffix} --dump-config-to ${DUMP_CONFIG_PATH}"; fi
+
+ PYTHONUNBUFFERED=1 \
+ DYN_SKIP_SGLANG_LOG_FORMATTING=1 \
+ SGLANG_NVFP4_CKPT_FP8_GEMM_IN_ATTN=1 \
+ SGLANG_PER_TOKEN_GROUP_QUANT_8BIT_V2=1 \
+ SGLANG_DISAGGREGATION_HEARTBEAT_MAX_FAILURE=100000 \
+ SGLANG_DISAGGREGATION_BOOTSTRAP_TIMEOUT=100000 \
+ SGLANG_DISAGGREGATION_WAITING_TIMEOUT=100000 \
+ SGLANG_HACK_SEQ_BOOTSTRAP_ROOM=1 \
+ MC_TE_METRIC=true \
+ MC_FORCE_MNNVL=1 \
+ NCCL_MNNVL_ENABLE=1 \
+ NCCL_CUMEM_ENABLE=1 \
+ SGLANG_MOONCAKE_CUSTOM_MEM_POOL=True \
+ SGLANG_USE_MESSAGE_QUEUE_BROADCASTER=0 \
+ SGLANG_DISABLE_TP_MEMORY_INBALANCE_CHECK=1 \
+ SGLANG_DEEPEP_NUM_MAX_DISPATCH_TOKENS_PER_RANK=512 \
+ SGLANG_CUTEDSL_MOE_NVFP4_DISPATCH=1 \
+ SGLANG_FLASHINFER_FP4_GEMM_BACKEND=cutlass \
+ python3 -m dynamo.sglang \
+ --served-model-name deepseek-ai/DeepSeek-R1 \
+ --model-path /model/ \
+ --trust-remote-code \
+ --kv-cache-dtype fp8_e4m3 \
+ --attention-backend trtllm_mla \
+ --quantization modelopt_fp4 \
+ --moe-runner-backend flashinfer_cutedsl \
+ --disable-radix-cache \
+ --disable-chunked-prefix-cache \
+ --stream-interval 50 \
+ --decode-log-interval 1000 \
+ --watchdog-timeout 1000000 \
+ --context-length 9600 \
+ --disable-shared-experts-fusion \
+ --eplb-algorithm deepseek \
+ --disaggregation-bootstrap-port 30001 \
+ --disaggregation-mode decode \
+ --mem-fraction-static 0.83 \
+ --max-total-tokens 524288 \
+ --chunked-prefill-size 24576 \
+ --max-running-requests 16384 \
+ --moe-a2a-backend deepep \
+ --deepep-mode low_latency \
+ --ep-dispatch-algorithm static \
+ --ep-num-redundant-experts 32 \
+ --cuda-graph-max-bs 512 \
+ --num-reserved-decode-tokens 112 \
+ --moe-dense-tp-size 1 \
+ --enable-dp-lm-head \
+ --prefill-round-robin-balance \
+ --enable-dp-attention \
+ --tp-size "$TOTAL_GPUS" \
+ --dp-size "$TOTAL_GPUS" \
+ --ep-size "$TOTAL_GPUS" \
+ --dist-init-addr "$HOST_IP_MACHINE:$PORT" \
+ --nnodes "$TOTAL_NODES" \
+ --node-rank "$RANK" \
+ --host 0.0.0.0 ${command_suffix}
+fi
+
diff --git a/examples/backends/sglang/slurm_jobs/scripts/gb200-fp8/agg/default.sh b/examples/backends/sglang/slurm_jobs/scripts/gb200-fp8/agg/default.sh
deleted file mode 100755
index 84c06870b5..0000000000
--- a/examples/backends/sglang/slurm_jobs/scripts/gb200-fp8/agg/default.sh
+++ /dev/null
@@ -1,94 +0,0 @@
-#!/bin/bash
-# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
-# SPDX-License-Identifier: Apache-2.0
-
-# Simple agg script (not an optimized config)
-
-print_usage() {
- echo "Usage: $0"
- echo ""
- echo "This script runs aggregated mode (single dynamo.sglang instance)"
- exit 1
-}
-
-echo "Mode: aggregated"
-echo "Command: dynamo"
-
-# Check if required environment variables are set
-if [ -z "$HOST_IP_MACHINE" ]; then
- echo "Error: HOST_IP_MACHINE environment variable is not set"
- exit 1
-fi
-
-if [ -z "$PORT" ]; then
- echo "Error: PORT environment variable is not set"
- exit 1
-fi
-
-if [ -z "$TOTAL_GPUS" ]; then
- echo "Error: TOTAL_GPUS environment variable is not set"
- exit 1
-fi
-
-if [ -z "$RANK" ]; then
- echo "Error: RANK environment variable is not set"
- exit 1
-fi
-
-if [ -z "$TOTAL_NODES" ]; then
- echo "Error: TOTAL_NODES environment variable is not set"
- exit 1
-fi
-
-# Construct command suffix for config dump
-command_suffix=""
-if [[ -n "${DUMP_CONFIG_PATH}" ]]; then command_suffix="--dump-config-to ${DUMP_CONFIG_PATH}"; fi
-
-set -x
-export TORCH_DISTRIBUTED_DEFAULT_TIMEOUT=1800
-export SGLANG_DG_CACHE_DIR="/configs/dg-10212025"
-export FLASHINFER_WORKSPACE_BASE="/configs/flashinfer-cache"
-
-DYN_SKIP_SGLANG_LOG_FORMATTING=1 \
-MC_TE_METRIC=true \
-SGLANG_MOONCAKE_CUSTOM_MEM_POOL=True \
-MC_FORCE_MNNVL=1 \
-NCCL_MNNVL_ENABLE=1 \
-NCCL_CUMEM_ENABLE=1 \
-SGLANG_DISABLE_TP_MEMORY_INBALANCE_CHECK=1 \
-PYTHONUNBUFFERED=1 \
-python3 -m dynamo.sglang \
- --served-model-name deepseek-ai/DeepSeek-R1 \
- --model-path /model/ \
- --skip-tokenizer-init \
- --trust-remote-code \
- --dist-init-addr "$HOST_IP_MACHINE:$PORT" \
- --nnodes "$TOTAL_NODES" \
- --node-rank "$RANK" \
- --tp-size "$TOTAL_GPUS" \
- --dp-size "$TOTAL_GPUS" \
- --enable-dp-attention \
- --host 0.0.0.0 \
- --max-running-requests 30000 \
- --context-length 2200 \
- --disable-radix-cache \
- --moe-a2a-backend deepep \
- --load-balance-method round_robin \
- --deepep-mode normal \
- --ep-dispatch-algorithm dynamic \
- --moe-dense-tp-size 1 \
- --enable-dp-lm-head \
- --disable-shared-experts-fusion \
- --ep-num-redundant-experts 32 \
- --eplb-algorithm deepseek \
- --attention-backend trtllm_mla \
- --kv-cache-dtype fp8_e4m3 \
- --watchdog-timeout 1000000 \
- --disable-cuda-graph \
- --chunked-prefill-size 131072 \
- --max-total-tokens 524288 \
- --deepep-config /configs/deepep_config.json \
- --stream-interval 50 \
- --mem-fraction-static 0.75 ${command_suffix}
-
-
diff --git a/examples/backends/sglang/slurm_jobs/scripts/gb200-fp8/disagg/1p_4d.sh b/examples/backends/sglang/slurm_jobs/scripts/gb200-fp8/disagg/1k1k-low-latency.sh
similarity index 95%
rename from examples/backends/sglang/slurm_jobs/scripts/gb200-fp8/disagg/1p_4d.sh
rename to examples/backends/sglang/slurm_jobs/scripts/gb200-fp8/disagg/1k1k-low-latency.sh
index 3f193c273e..090e238d70 100755
--- a/examples/backends/sglang/slurm_jobs/scripts/gb200-fp8/disagg/1p_4d.sh
+++ b/examples/backends/sglang/slurm_jobs/scripts/gb200-fp8/disagg/1k1k-low-latency.sh
@@ -73,8 +73,8 @@ fi
if [ "$mode" = "prefill" ]; then
set -x
if [[ "${RUN_IN_CI,,}" == "true" ]]; then
- python3 -m pip install /configs/ai_dynamo_runtime-0.6.1-cp310-abi3-manylinux_2_28_aarch64.whl
- python3 -m pip install /configs/ai_dynamo-0.6.1-py3-none-any.whl
+ python3 -m pip install /configs/ai_dynamo_runtime-0.7.0-cp310-abi3-manylinux_2_28_aarch64.whl
+ python3 -m pip install /configs/ai_dynamo-0.7.0-py3-none-any.whl
fi
export TORCH_DISTRIBUTED_DEFAULT_TIMEOUT=1800
export SGLANG_DG_CACHE_DIR="/configs/dg-10212025"
@@ -131,8 +131,8 @@ if [ "$mode" = "prefill" ]; then
elif [ "$mode" = "decode" ]; then
set -x
if [[ "${RUN_IN_CI,,}" == "true" ]]; then
- python3 -m pip install /configs/ai_dynamo_runtime-0.6.1-cp310-abi3-manylinux_2_28_aarch64.whl
- python3 -m pip install /configs/ai_dynamo-0.6.1-py3-none-any.whl
+ python3 -m pip install /configs/ai_dynamo_runtime-0.7.0-cp310-abi3-manylinux_2_28_aarch64.whl
+ python3 -m pip install /configs/ai_dynamo-0.7.0-py3-none-any.whl
fi
export TORCH_DISTRIBUTED_DEFAULT_TIMEOUT=1800
export SGLANG_DG_CACHE_DIR="/configs/dg-10212025"
diff --git a/examples/backends/sglang/slurm_jobs/scripts/gb200-fp8/disagg/default.sh b/examples/backends/sglang/slurm_jobs/scripts/gb200-fp8/disagg/1k1k-max-tpt.sh
similarity index 96%
rename from examples/backends/sglang/slurm_jobs/scripts/gb200-fp8/disagg/default.sh
rename to examples/backends/sglang/slurm_jobs/scripts/gb200-fp8/disagg/1k1k-max-tpt.sh
index 7b0b0215fe..604e5c3a03 100755
--- a/examples/backends/sglang/slurm_jobs/scripts/gb200-fp8/disagg/default.sh
+++ b/examples/backends/sglang/slurm_jobs/scripts/gb200-fp8/disagg/1k1k-max-tpt.sh
@@ -71,8 +71,8 @@ fi
if [ "$mode" = "prefill" ]; then
set -x
if [[ "${RUN_IN_CI,,}" == "true" ]]; then
- python3 -m pip install /configs/ai_dynamo_runtime-0.6.1-cp310-abi3-manylinux_2_28_aarch64.whl
- python3 -m pip install /configs/ai_dynamo-0.6.1-py3-none-any.whl
+ python3 -m pip install /configs/ai_dynamo_runtime-0.7.0-cp310-abi3-manylinux_2_28_aarch64.whl
+ python3 -m pip install /configs/ai_dynamo-0.7.0-py3-none-any.whl
fi
export TORCH_DISTRIBUTED_DEFAULT_TIMEOUT=1800
export SGLANG_DG_CACHE_DIR="/configs/dg-10212025"
@@ -132,8 +132,8 @@ if [ "$mode" = "prefill" ]; then
elif [ "$mode" = "decode" ]; then
set -x
if [[ "${RUN_IN_CI,,}" == "true" ]]; then
- python3 -m pip install /configs/ai_dynamo_runtime-0.6.1-cp310-abi3-manylinux_2_28_aarch64.whl
- python3 -m pip install /configs/ai_dynamo-0.6.1-py3-none-any.whl
+ python3 -m pip install /configs/ai_dynamo_runtime-0.7.0-cp310-abi3-manylinux_2_28_aarch64.whl
+ python3 -m pip install /configs/ai_dynamo-0.7.0-py3-none-any.whl
fi
export TORCH_DISTRIBUTED_DEFAULT_TIMEOUT=1800
export SGLANG_DG_CACHE_DIR="/configs/dg-10212025"
diff --git a/examples/backends/sglang/slurm_jobs/scripts/gb200-fp8/disagg/8k1k-low-latency.sh b/examples/backends/sglang/slurm_jobs/scripts/gb200-fp8/disagg/8k1k-low-latency.sh
new file mode 100755
index 0000000000..93d3a68d92
--- /dev/null
+++ b/examples/backends/sglang/slurm_jobs/scripts/gb200-fp8/disagg/8k1k-low-latency.sh
@@ -0,0 +1,184 @@
+#!/bin/bash
+# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-License-Identifier: Apache-2.0
+
+# Function to print usage
+print_usage() {
+ echo "Usage: $0 "
+ echo " mode: prefill or decode"
+ echo ""
+ echo "Examples:"
+ echo " $0 prefill"
+ echo " $0 decode"
+ exit 1
+}
+
+# Check if correct number of arguments provided
+if [ $# -ne 1 ]; then
+ echo "Error: Expected 1 argument, got $#"
+ print_usage
+fi
+
+# Parse arguments
+mode=$1
+
+# Validate mode argument
+if [ "$mode" != "prefill" ] && [ "$mode" != "decode" ]; then
+ echo "Error: mode must be 'prefill' or 'decode', got '$mode'"
+ print_usage
+fi
+
+echo "Mode: $mode"
+echo "Command: dynamo"
+
+# Check if required environment variables are set
+if [ -z "$HOST_IP_MACHINE" ]; then
+ echo "Error: HOST_IP_MACHINE environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$PORT" ]; then
+ echo "Error: PORT environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$TOTAL_GPUS" ]; then
+ echo "Error: TOTAL_GPUS environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$RANK" ]; then
+ echo "Error: RANK environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$TOTAL_NODES" ]; then
+ echo "Error: TOTAL_NODES environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$USE_INIT_LOCATIONS" ]; then
+ echo "Error: USE_INIT_LOCATIONS environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$RUN_IN_CI" ]; then
+ echo "Error: RUN_IN_CI environment variable is not set"
+ exit 1
+fi
+
+# Construct command based on mode
+if [ "$mode" = "prefill" ]; then
+ set -x
+ if [[ "${RUN_IN_CI,,}" == "true" ]]; then
+ python3 -m pip install /configs/ai_dynamo_runtime-0.7.0-cp310-abi3-manylinux_2_28_aarch64.whl
+ python3 -m pip install /configs/ai_dynamo-0.7.0-py3-none-any.whl
+ fi
+ export TORCH_DISTRIBUTED_DEFAULT_TIMEOUT=1800
+ export SGLANG_DG_CACHE_DIR="/configs/dg-10212025"
+
+ command_suffix=""
+ if [[ -n "${DUMP_CONFIG_PATH}" ]]; then command_suffix="${command_suffix} --dump-config-to ${DUMP_CONFIG_PATH}"; fi
+
+ PYTHONUNBUFFERED=1 \
+ DYN_SKIP_SGLANG_LOG_FORMATTING=1 \
+ SGLANG_ENABLE_JIT_DEEPGEMM=false \
+ SGLANG_ENABLE_FLASHINFER_GEMM=1 \
+ SGLANG_DISAGGREGATION_HEARTBEAT_MAX_FAILURE=100000 \
+ SGLANG_DISAGGREGATION_BOOTSTRAP_TIMEOUT=100000 \
+ SGLANG_DISAGGREGATION_WAITING_TIMEOUT=100000 \
+ SGLANG_MOONCAKE_CUSTOM_MEM_POOL=True \
+ SGLANG_USE_MESSAGE_QUEUE_BROADCASTER=0 \
+ SGLANG_DISABLE_TP_MEMORY_INBALANCE_CHECK=1 \
+ MC_TE_METRIC=true \
+ MC_FORCE_MNNVL=1 \
+ NCCL_MNNVL_ENABLE=1 \
+ NCCL_CUMEM_ENABLE=1 \
+ python3 -m dynamo.sglang \
+ --served-model-name deepseek-ai/DeepSeek-R1 \
+ --model-path /model/ \
+ --trust-remote-code \
+ --kv-cache-dtype fp8_e4m3 \
+ --attention-backend trtllm_mla \
+ --quantization fp8 \
+ --moe-runner-backend flashinfer_trtllm \
+ --disable-radix-cache \
+ --watchdog-timeout 1000000 \
+ --context-length 9600 \
+ --disaggregation-mode prefill \
+ --mem-fraction-static 0.95 \
+ --max-total-tokens 32768 \
+ --chunked-prefill-size 24576 \
+ --cuda-graph-max-bs 512 \
+ --max-running-requests 512 \
+ --load-balance-method round_robin \
+ --scheduler-recv-interval 10 \
+ --enable-flashinfer-allreduce-fusion \
+ --moe-dense-tp-size 1 \
+ --tensor-parallel-size "$TOTAL_GPUS" \
+ --data-parallel-size 1 \
+ --expert-parallel-size 1 \
+ --dist-init-addr "$HOST_IP_MACHINE:$PORT" \
+ --disaggregation-bootstrap-port 30001 \
+ --nnodes "$TOTAL_NODES" \
+ --node-rank "$RANK" \
+ --host 0.0.0.0 ${command_suffix}
+
+elif [ "$mode" = "decode" ]; then
+ set -x
+ if [[ "${RUN_IN_CI,,}" == "true" ]]; then
+ python3 -m pip install /configs/ai_dynamo_runtime-0.7.0-cp310-abi3-manylinux_2_28_aarch64.whl
+ python3 -m pip install /configs/ai_dynamo-0.7.0-py3-none-any.whl
+ fi
+ export TORCH_DISTRIBUTED_DEFAULT_TIMEOUT=1800
+ export SGLANG_DG_CACHE_DIR="/configs/dg-10212025"
+
+ command_suffix=""
+ if [[ -n "${DUMP_CONFIG_PATH}" ]]; then command_suffix="${command_suffix} --dump-config-to ${DUMP_CONFIG_PATH}"; fi
+
+ PYTHONUNBUFFERED=1 \
+ DYN_SKIP_SGLANG_LOG_FORMATTING=1 \
+ SGLANG_ENABLE_JIT_DEEPGEMM=false \
+ SGLANG_ENABLE_FLASHINFER_GEMM=1 \
+ SGLANG_DISAGGREGATION_HEARTBEAT_MAX_FAILURE=100000 \
+ SGLANG_DISAGGREGATION_BOOTSTRAP_TIMEOUT=100000 \
+ SGLANG_DISAGGREGATION_WAITING_TIMEOUT=100000 \
+ SGLANG_DECODE_BOOTSTRAP_TIMEOUT=1000 \
+ SGLANG_HACK_SEQ_BOOTSTRAP_ROOM=1 \
+ SGLANG_MOONCAKE_CUSTOM_MEM_POOL=True \
+ SGLANG_USE_MESSAGE_QUEUE_BROADCASTER=0 \
+ SGLANG_DISABLE_TP_MEMORY_INBALANCE_CHECK=1 \
+ MC_TE_METRIC=true \
+ MC_FORCE_MNNVL=1 \
+ NCCL_MNNVL_ENABLE=1 \
+ NCCL_CUMEM_ENABLE=1 \
+ python3 -m dynamo.sglang \
+ --served-model-name deepseek-ai/DeepSeek-R1 \
+ --model-path /model/ \
+ --trust-remote-code \
+ --kv-cache-dtype fp8_e4m3 \
+ --attention-backend trtllm_mla \
+ --quantization fp8 \
+ --moe-runner-backend flashinfer_trtllm \
+ --disable-radix-cache \
+ --watchdog-timeout 1000000 \
+ --context-length 9600 \
+ --disaggregation-mode decode \
+ --mem-fraction-static 0.95 \
+ --chunked-prefill-size 8192 \
+ --cuda-graph-max-bs 512 \
+ --max-running-requests 512 \
+ --scheduler-recv-interval 10 \
+ --enable-flashinfer-allreduce-fusion \
+ --enable-symm-mem \
+ --moe-dense-tp-size 1 \
+ --prefill-round-robin-balance \
+ --tensor-parallel-size "$TOTAL_GPUS" \
+ --data-parallel-size 1 \
+ --expert-parallel-size 1 \
+ --dist-init-addr "$HOST_IP_MACHINE:$PORT" \
+ --disaggregation-bootstrap-port 30001 \
+ --nnodes "$TOTAL_NODES" \
+ --node-rank "$RANK" \
+ --host 0.0.0.0 ${command_suffix}
+fi
diff --git a/examples/backends/sglang/slurm_jobs/scripts/gb200-fp8/disagg/8k1k-max-tpt.sh b/examples/backends/sglang/slurm_jobs/scripts/gb200-fp8/disagg/8k1k-max-tpt.sh
new file mode 100755
index 0000000000..4a4c01493e
--- /dev/null
+++ b/examples/backends/sglang/slurm_jobs/scripts/gb200-fp8/disagg/8k1k-max-tpt.sh
@@ -0,0 +1,194 @@
+#!/bin/bash
+# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-License-Identifier: Apache-2.0
+
+# Function to print usage
+print_usage() {
+ echo "Usage: $0 "
+ echo " mode: prefill or decode"
+ echo ""
+ echo "Examples:"
+ echo " $0 prefill"
+ echo " $0 decode"
+ exit 1
+}
+
+# Check if correct number of arguments provided
+if [ $# -ne 1 ]; then
+ echo "Error: Expected 1 argument, got $#"
+ print_usage
+fi
+
+# Parse arguments
+mode=$1
+
+# Validate mode argument
+if [ "$mode" != "prefill" ] && [ "$mode" != "decode" ]; then
+ echo "Error: mode must be 'prefill' or 'decode', got '$mode'"
+ print_usage
+fi
+
+echo "Mode: $mode"
+echo "Command: dynamo"
+
+# Check if required environment variables are set
+if [ -z "$HOST_IP_MACHINE" ]; then
+ echo "Error: HOST_IP_MACHINE environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$PORT" ]; then
+ echo "Error: PORT environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$TOTAL_GPUS" ]; then
+ echo "Error: TOTAL_GPUS environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$RANK" ]; then
+ echo "Error: RANK environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$TOTAL_NODES" ]; then
+ echo "Error: TOTAL_NODES environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$USE_INIT_LOCATIONS" ]; then
+ echo "Error: USE_INIT_LOCATIONS environment variable is not set"
+ exit 1
+fi
+
+if [ -z "$RUN_IN_CI" ]; then
+ echo "Error: RUN_IN_CI environment variable is not set"
+ exit 1
+fi
+
+# Construct command based on mode
+if [ "$mode" = "prefill" ]; then
+ set -x
+ if [[ "${RUN_IN_CI,,}" == "true" ]]; then
+ python3 -m pip install /configs/ai_dynamo_runtime-0.7.0-cp310-abi3-manylinux_2_28_aarch64.whl
+ python3 -m pip install /configs/ai_dynamo-0.7.0-py3-none-any.whl
+ fi
+ export TORCH_DISTRIBUTED_DEFAULT_TIMEOUT=1800
+ export SGLANG_DG_CACHE_DIR="/configs/dg-10212025"
+
+ command_suffix=""
+ if [[ -n "${DUMP_CONFIG_PATH}" ]]; then command_suffix="${command_suffix} --dump-config-to ${DUMP_CONFIG_PATH}"; fi
+
+ PYTHONUNBUFFERED=1 \
+ DYN_SKIP_SGLANG_LOG_FORMATTING=1 \
+ MC_TE_METRIC=true \
+ SGLANG_DISAGGREGATION_HEARTBEAT_MAX_FAILURE=100000 \
+ SGLANG_DISAGGREGATION_BOOTSTRAP_TIMEOUT=100000 \
+ SGLANG_DISAGGREGATION_WAITING_TIMEOUT=100000 \
+ MC_FORCE_MNNVL=1 \
+ SGLANG_MOONCAKE_CUSTOM_MEM_POOL=True \
+ NCCL_MNNVL_ENABLE=1 \
+ NCCL_CUMEM_ENABLE=1 \
+ SGLANG_USE_MESSAGE_QUEUE_BROADCASTER=0 \
+ SGLANG_DISABLE_TP_MEMORY_INBALANCE_CHECK=1 \
+ python3 -m dynamo.sglang \
+ --served-model-name deepseek-ai/DeepSeek-R1 \
+ --model-path /model/ \
+ --trust-remote-code \
+ --tp-size "$TOTAL_GPUS" \
+ --dp-size "$TOTAL_GPUS" \
+ --ep-size "$TOTAL_GPUS" \
+ --enable-dp-attention \
+ --attention-backend trtllm_mla \
+ --kv-cache-dtype fp8_e4m3 \
+ --disable-radix-cache \
+ --stream-interval 50 \
+ --max-running-requests 30000 \
+ --context-length 9300 \
+ --watchdog-timeout 1000000 \
+ --disable-shared-experts-fusion \
+ --eplb-algorithm deepseek \
+ --disaggregation-bootstrap-port 30001 \
+ --disaggregation-mode prefill \
+ --mem-fraction-static 0.80 \
+ --max-total-tokens 524288 \
+ --chunked-prefill-size 131072 \
+ --load-balance-method round_robin \
+ --disable-cuda-graph \
+ --moe-a2a-backend deepep \
+ --deepep-mode normal \
+ --ep-dispatch-algorithm dynamic \
+ --moe-dense-tp-size 1 \
+ --enable-dp-lm-head \
+ --ep-num-redundant-experts 32 \
+ --deepep-config /configs/deepep_config.json \
+ --dist-init-addr "$HOST_IP_MACHINE:$PORT" \
+ --nnodes "$TOTAL_NODES" \
+ --node-rank "$RANK" \
+ --host 0.0.0.0 ${command_suffix}
+
+elif [ "$mode" = "decode" ]; then
+ set -x
+ if [[ "${RUN_IN_CI,,}" == "true" ]]; then
+ python3 -m pip install /configs/ai_dynamo_runtime-0.7.0-cp310-abi3-manylinux_2_28_aarch64.whl
+ python3 -m pip install /configs/ai_dynamo-0.7.0-py3-none-any.whl
+ fi
+ export TORCH_DISTRIBUTED_DEFAULT_TIMEOUT=1800
+ export SGLANG_DG_CACHE_DIR="/configs/dg-10212025"
+
+ command_suffix=""
+ if [[ -n "${DUMP_CONFIG_PATH}" ]]; then command_suffix="${command_suffix} --dump-config-to ${DUMP_CONFIG_PATH}"; fi
+
+ PYTHONUNBUFFERED=1 \
+ DYN_SKIP_SGLANG_LOG_FORMATTING=1 \
+ SGLANG_DEEPEP_NUM_MAX_DISPATCH_TOKENS_PER_RANK=256 \
+ MC_TE_METRIC=true \
+ SGLANG_DISAGGREGATION_HEARTBEAT_MAX_FAILURE=100000 \
+ SGLANG_DISAGGREGATION_BOOTSTRAP_TIMEOUT=100000 \
+ SGLANG_DISAGGREGATION_WAITING_TIMEOUT=100000 \
+ SGLANG_DECODE_BOOTSTRAP_TIMEOUT=1000 \
+ SGLANG_HACK_SEQ_BOOTSTRAP_ROOM=1 \
+ SGLANG_MOONCAKE_CUSTOM_MEM_POOL=True \
+ MC_FORCE_MNNVL=1 \
+ NCCL_MNNVL_ENABLE=1 \
+ NCCL_CUMEM_ENABLE=1 \
+ SGLANG_USE_MESSAGE_QUEUE_BROADCASTER=0 \
+ SGLANG_DISABLE_TP_MEMORY_INBALANCE_CHECK=1 \
+ python3 -m dynamo.sglang \
+ --served-model-name deepseek-ai/DeepSeek-R1 \
+ --model-path /model/ \
+ --skip-tokenizer-init \
+ --trust-remote-code \
+ --tp-size "$TOTAL_GPUS" \
+ --dp-size "$TOTAL_GPUS" \
+ --ep-size "$TOTAL_GPUS" \
+ --enable-dp-attention \
+ --attention-backend trtllm_mla \
+ --kv-cache-dtype fp8_e4m3 \
+ --disable-radix-cache \
+ --stream-interval 50 \
+ --decode-log-interval 1000 \
+ --max-running-requests 8192 \
+ --context-length 9300 \
+ --watchdog-timeout 1000000 \
+ --disable-shared-experts-fusion \
+ --eplb-algorithm deepseek \
+ --disaggregation-bootstrap-port 30001 \
+ --disaggregation-mode decode \
+ --mem-fraction-static 0.82 \
+ --chunked-prefill-size 36864 \
+ --moe-a2a-backend deepep \
+ --deepep-mode low_latency \
+ --ep-dispatch-algorithm static \
+ --moe-dense-tp-size 1 \
+ --enable-dp-lm-head \
+ --prefill-round-robin-balance \
+ --ep-num-redundant-experts 32 \
+ --deepep-config /configs/deepep_config.json \
+ --cuda-graph-max-bs 256 \
+ --dist-init-addr "$HOST_IP_MACHINE:$PORT" \
+ --nnodes "$TOTAL_NODES" \
+ --node-rank "$RANK" \
+ --host 0.0.0.0 ${command_suffix}
+fi
diff --git a/examples/backends/sglang/slurm_jobs/scripts/vllm/benchmark_serving.py b/examples/backends/sglang/slurm_jobs/scripts/vllm/benchmark_serving.py
index f9c67be7bc..a5962afe17 100644
--- a/examples/backends/sglang/slurm_jobs/scripts/vllm/benchmark_serving.py
+++ b/examples/backends/sglang/slurm_jobs/scripts/vllm/benchmark_serving.py
@@ -8,7 +8,6 @@
vLLM OpenAI API server
vllm serve \
--swap-space 16 \
- --disable-log-requests
(TGI backend)
./launch_tgi_server.sh
diff --git a/examples/backends/sglang/slurm_jobs/scripts/worker_setup.py b/examples/backends/sglang/slurm_jobs/scripts/worker_setup.py
index 2260713e5d..59fd8f3f17 100644
--- a/examples/backends/sglang/slurm_jobs/scripts/worker_setup.py
+++ b/examples/backends/sglang/slurm_jobs/scripts/worker_setup.py
@@ -373,7 +373,7 @@ def setup_frontend_worker(
# All frontends run the ingress server
frontend_cmd = "python3 -m dynamo.frontend --http-port=8000"
if run_in_ci:
- frontend_cmd = "python3 -m pip install /configs/ai_dynamo_runtime-0.6.1-cp310-abi3-manylinux_2_28_aarch64.whl && python3 -m pip install /configs/ai_dynamo-0.6.1-py3-none-any.whl && python3 -m dynamo.frontend --http-port=8000"
+ frontend_cmd = "python3 -m pip install /configs/ai_dynamo_runtime-0.7.0-cp310-abi3-manylinux_2_28_aarch64.whl && python3 -m pip install /configs/ai_dynamo-0.7.0-py3-none-any.whl && python3 -m dynamo.frontend --http-port=8000"
return run_command(frontend_cmd)
diff --git a/examples/backends/sglang/slurm_jobs/submit_disagg.sh b/examples/backends/sglang/slurm_jobs/submit_disagg.sh
index 62e4221e96..47501ba426 100755
--- a/examples/backends/sglang/slurm_jobs/submit_disagg.sh
+++ b/examples/backends/sglang/slurm_jobs/submit_disagg.sh
@@ -48,7 +48,6 @@ check_env MODEL_PATH
check_env CONFIG_DIR
check_env CONTAINER_IMAGE
-GPU_TYPE="gb200-fp8"
GPUS_PER_NODE=4
: "${NETWORK_INTERFACE:=enP6p9s0np0}"
@@ -62,7 +61,8 @@ ISL=$6
OSL=$7
CONCURRENCIES=$8
REQUEST_RATE=$9
-SCRIPT_VARIANT=${10}
+GPU_TYPE=${10}
+SCRIPT_VARIANT=${11}
RETRIES=1 # defaults to retry the job 1 time to avoid transient errors
@@ -86,7 +86,7 @@ command=(
--model-dir $MODEL_PATH --config-dir $CONFIG_DIR
--container-image $CONTAINER_IMAGE
- --gpu-type $GPU_TYPE --gpus-per-node $GPUS_PER_NODE --network-interface $NETWORK_INTERFACE
+ --gpus-per-node $GPUS_PER_NODE --network-interface $NETWORK_INTERFACE
--prefill-nodes $PREFILL_NODES --prefill-workers $PREFILL_WORKERS
--decode-nodes $DECODE_NODES --decode-workers $DECODE_WORKERS
@@ -96,6 +96,8 @@ command=(
--retries $RETRIES
+ --gpu-type $GPU_TYPE
+
--run-in-ci
${SCRIPT_VARIANT_ARGS[@]}
)
diff --git a/examples/backends/sglang/test_sglang_profile.py b/examples/backends/sglang/test_sglang_profile.py
new file mode 100644
index 0000000000..a2d75d491b
--- /dev/null
+++ b/examples/backends/sglang/test_sglang_profile.py
@@ -0,0 +1,296 @@
+# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-License-Identifier: Apache-2.0
+
+"""
+Test script for /engine/start_profile and /engine/stop_profile routes.
+
+This script demonstrates the new custom engine route registration feature.
+It starts a simple sglang server with dynamo and tests the profiling endpoints.
+
+Usage:
+ python test_sglang_profile.py
+"""
+
+import os
+import signal
+import subprocess
+import sys
+import time
+from pathlib import Path
+
+import requests
+
+# Configuration
+MODEL = "Qwen/Qwen3-0.6B" # Small model for quick testing
+HOST = "127.0.0.1"
+PORT = 30000
+SYSTEM_PORT = 9090
+PROFILER_OUTPUT_DIR = "/tmp/dynamo_profiler_test"
+
+
+def cleanup_output_dir():
+ """Clean up the profiler output directory"""
+ import shutil
+
+ if os.path.exists(PROFILER_OUTPUT_DIR):
+ shutil.rmtree(PROFILER_OUTPUT_DIR)
+ os.makedirs(PROFILER_OUTPUT_DIR, exist_ok=True)
+
+
+def start_frontend():
+ """Start the Dynamo frontend (HTTP server)"""
+ print("\nStarting Dynamo frontend...")
+ print(f" - Frontend HTTP: http://{HOST}:{PORT}")
+
+ cmd = [
+ "python",
+ "-m",
+ "dynamo.frontend",
+ "--http-port",
+ str(PORT),
+ ]
+
+ print(f"Command: {' '.join(cmd)}")
+ print("(Output will appear below)\n")
+
+ process = subprocess.Popen(cmd)
+
+ # Wait for frontend to be ready
+ max_wait = 30
+ start_time = time.time()
+ frontend_ready = False
+
+ while time.time() - start_time < max_wait:
+ try:
+ # Check /health endpoint first
+ response = requests.get(f"http://{HOST}:{PORT}/health", timeout=1)
+ if response.status_code == 200:
+ print("โ Frontend is ready!")
+ frontend_ready = True
+ break
+ except requests.exceptions.RequestException:
+ pass
+
+ if process.poll() is not None:
+ print("โ Frontend process died!")
+ sys.exit(1)
+
+ time.sleep(1)
+
+ if not frontend_ready:
+ print("โ Frontend failed to start in time!")
+ process.kill()
+ sys.exit(1)
+
+ return process
+
+
+def start_sglang_backend():
+ """Start the sglang backend (inference engine)"""
+ print("\nStarting SGLang backend...")
+ print(f" - Model: {MODEL}")
+ print(f" - System server: http://{HOST}:{SYSTEM_PORT}")
+
+ # Set environment variables
+ env = os.environ.copy()
+ env["SGLANG_TORCH_PROFILER_DIR"] = PROFILER_OUTPUT_DIR
+ env["DYN_SYSTEM_PORT"] = str(SYSTEM_PORT)
+
+ cmd = [
+ "python",
+ "-m",
+ "dynamo.sglang",
+ "--model-path",
+ MODEL,
+ "--tp",
+ "1",
+ "--mem-fraction-static",
+ "0.8",
+ ]
+
+ print(f"Command: {' '.join(cmd)}")
+ print("(Output will appear below)")
+ print("\nWaiting for backend to start...\n")
+
+ process = subprocess.Popen(cmd, env=env)
+
+ # Wait for backend to be ready (check system server health)
+ max_wait = 120 # 2 minutes
+ start_time = time.time()
+ backend_ready = False
+
+ while time.time() - start_time < max_wait:
+ try:
+ # Check system server health endpoint
+ response = requests.get(f"http://{HOST}:{SYSTEM_PORT}/health", timeout=1)
+ if response.status_code == 200:
+ print("โ Backend is ready!")
+ backend_ready = True
+ break
+ except requests.exceptions.RequestException:
+ pass
+
+ # Check if process has died
+ if process.poll() is not None:
+ print("โ Backend process died!")
+ sys.exit(1)
+
+ time.sleep(2)
+
+ if not backend_ready:
+ print("โ Backend failed to start in time!")
+ process.kill()
+ sys.exit(1)
+
+ return process
+
+
+def test_profiling_endpoints():
+ """Test the /engine/start_profile and /engine/stop_profile endpoints"""
+ base_url = f"http://{HOST}:{SYSTEM_PORT}"
+
+ print("\n" + "=" * 60)
+ print("Testing /engine/start_profile and /engine/stop_profile")
+ print("=" * 60)
+
+ # Test 1: Start profiling with parameters (no num_steps so we control stop manually)
+ print("\n1. Starting profiling with parameters...")
+ response = requests.post(
+ f"{base_url}/engine/start_profile",
+ json={
+ "output_dir": PROFILER_OUTPUT_DIR,
+ "activities": ["CPU", "GPU"],
+ "with_stack": True,
+ "record_shapes": True,
+ },
+ )
+ print(f" Status: {response.status_code}")
+ print(f" Response: {response.json()}")
+ assert response.status_code == 200, f"Expected 200, got {response.status_code}"
+ assert response.json()["status"] == "ok", "Expected status 'ok'"
+
+ # Check available models
+ print("\n2. Checking available models...")
+ response = requests.get(f"http://{HOST}:{PORT}/v1/models")
+ if response.status_code == 200:
+ models = response.json()
+ print(f" Available models: {models}")
+
+ # Make a few inference requests to generate profiling data
+ print("\n3. Making inference requests...")
+ inference_url = f"http://{HOST}:{PORT}/v1/completions"
+ for i in range(3):
+ response = requests.post(
+ inference_url,
+ json={
+ "model": MODEL,
+ "prompt": f"Hello, this is test request {i+1}. ",
+ "max_tokens": 10,
+ "temperature": 0.8,
+ },
+ )
+ print(f" Request {i+1}: {response.status_code}")
+ if response.status_code != 200:
+ print(f" Response: {response.text[:200]}")
+ time.sleep(0.5)
+
+ # Test 2: Stop profiling
+ print("\n4. Stopping profiling...")
+ response = requests.post(f"{base_url}/engine/stop_profile")
+ print(f" Status: {response.status_code}")
+ print(f" Response: {response.json()}")
+ assert response.status_code == 200, f"Expected 200, got {response.status_code}"
+ assert response.json()["status"] == "ok", "Expected status 'ok'"
+
+ # Test 3: Test with empty body (GET-like POST)
+ print("\n5. Starting profiling with empty body...")
+ response = requests.post(f"{base_url}/engine/start_profile")
+ print(f" Status: {response.status_code}")
+ print(f" Response: {response.json()}")
+ assert response.status_code == 200, f"Expected 200, got {response.status_code}"
+
+ # Test 4: Test invalid route
+ print("\n6. Testing invalid route...")
+ response = requests.post(f"{base_url}/engine/nonexistent_route")
+ print(f" Status: {response.status_code}")
+ print(f" Response: {response.json()}")
+ assert response.status_code == 404, f"Expected 404, got {response.status_code}"
+
+ # Stop profiling again
+ response = requests.post(f"{base_url}/engine/stop_profile")
+
+ print("\n" + "=" * 60)
+ print("โ All tests passed!")
+ print("=" * 60)
+
+ # Check if profiling files were created
+ print(f"\nChecking profiler output directory: {PROFILER_OUTPUT_DIR}")
+ if os.path.exists(PROFILER_OUTPUT_DIR):
+ files = list(Path(PROFILER_OUTPUT_DIR).rglob("*"))
+ if files:
+ print(f"โ Found {len(files)} files in output directory")
+ for f in files[:5]: # Show first 5 files
+ print(f" - {f}")
+ else:
+ print("โ No files found (profiling may not have run long enough)")
+ else:
+ print("โ Output directory not created")
+
+
+def main():
+ """Main test function"""
+ frontend_process = None
+ backend_process = None
+ try:
+ # Clean up output directory
+ cleanup_output_dir()
+
+ # Start frontend first
+ frontend_process = start_frontend()
+
+ # Start backend
+ backend_process = start_sglang_backend()
+
+ # Run tests
+ print("\n" + "=" * 60)
+ print("Both frontend and backend are ready!")
+ print("=" * 60)
+ time.sleep(2) # Give everything a moment to fully settle
+ test_profiling_endpoints()
+
+ print("\nโ Test completed successfully!")
+
+ except KeyboardInterrupt:
+ print("\nโ Interrupted by user")
+ except Exception as e:
+ print(f"\nโ Test failed: {e}")
+ import traceback
+
+ traceback.print_exc()
+ sys.exit(1)
+ finally:
+ # Cleanup
+ print("\nShutting down servers...")
+ if backend_process:
+ print(" Stopping backend...")
+ backend_process.send_signal(signal.SIGTERM)
+ try:
+ backend_process.wait(timeout=10)
+ except subprocess.TimeoutExpired:
+ print(" Force killing backend...")
+ backend_process.kill()
+
+ if frontend_process:
+ print(" Stopping frontend...")
+ frontend_process.send_signal(signal.SIGTERM)
+ try:
+ frontend_process.wait(timeout=10)
+ except subprocess.TimeoutExpired:
+ print(" Force killing frontend...")
+ frontend_process.kill()
+
+ print("โ Servers stopped")
+
+
+if __name__ == "__main__":
+ main()
diff --git a/examples/backends/vllm/deploy/agg_kvbm.yaml b/examples/backends/vllm/deploy/agg_kvbm.yaml
index 62e28386aa..5d84638769 100644
--- a/examples/backends/vllm/deploy/agg_kvbm.yaml
+++ b/examples/backends/vllm/deploy/agg_kvbm.yaml
@@ -40,9 +40,6 @@ spec:
args:
- --model
- Qwen/Qwen3-8B
- - --gpu-memory-utilization
- - "0.45"
- - --disable-log-requests
- --max-model-len
- "32000"
- --enforce-eager
diff --git a/examples/backends/vllm/deploy/disagg_kvbm.yaml b/examples/backends/vllm/deploy/disagg_kvbm.yaml
index f4315a13cd..45b62f5617 100644
--- a/examples/backends/vllm/deploy/disagg_kvbm.yaml
+++ b/examples/backends/vllm/deploy/disagg_kvbm.yaml
@@ -33,9 +33,6 @@ spec:
args:
- --model
- Qwen/Qwen3-8B
- - --gpu-memory-utilization
- - "0.3"
- - --disable-log-requests
- --max-model-len
- "32000"
- --enforce-eager
@@ -66,9 +63,6 @@ spec:
- --model
- Qwen/Qwen3-8B
- --is-prefill-worker
- - --gpu-memory-utilization
- - "0.3"
- - --disable-log-requests
- --max-model-len
- "32000"
- --enforce-eager
diff --git a/examples/backends/vllm/deploy/disagg_kvbm_2p2d.yaml b/examples/backends/vllm/deploy/disagg_kvbm_2p2d.yaml
index 1aa5281d09..d4203aafea 100644
--- a/examples/backends/vllm/deploy/disagg_kvbm_2p2d.yaml
+++ b/examples/backends/vllm/deploy/disagg_kvbm_2p2d.yaml
@@ -33,9 +33,6 @@ spec:
args:
- --model
- Qwen/Qwen3-8B
- - --gpu-memory-utilization
- - "0.3"
- - --disable-log-requests
- --max-model-len
- "32000"
- --enforce-eager
@@ -66,9 +63,6 @@ spec:
- --model
- Qwen/Qwen3-8B
- --is-prefill-worker
- - --gpu-memory-utilization
- - "0.3"
- - --disable-log-requests
- --max-model-len
- "32000"
- --enforce-eager
diff --git a/examples/backends/vllm/deploy/disagg_kvbm_tp2.yaml b/examples/backends/vllm/deploy/disagg_kvbm_tp2.yaml
index 439b17a91f..141ca375fa 100644
--- a/examples/backends/vllm/deploy/disagg_kvbm_tp2.yaml
+++ b/examples/backends/vllm/deploy/disagg_kvbm_tp2.yaml
@@ -37,7 +37,6 @@ spec:
- Qwen/Qwen3-8B
- --gpu-memory-utilization
- "0.23"
- - --disable-log-requests
- --max-model-len
- "32000"
- --enforce-eager
@@ -72,7 +71,6 @@ spec:
- --is-prefill-worker
- --gpu-memory-utilization
- "0.23"
- - --disable-log-requests
- --max-model-len
- "32000"
- --enforce-eager
diff --git a/examples/backends/vllm/deploy/lora/README.md b/examples/backends/vllm/deploy/lora/README.md
new file mode 100644
index 0000000000..425a2434a1
--- /dev/null
+++ b/examples/backends/vllm/deploy/lora/README.md
@@ -0,0 +1,297 @@
+# LoRA Deployment with MinIO on Kubernetes
+
+This guide explains how to deploy LoRA-enabled vLLM inference with S3-compatible storage backend on Kubernetes.
+
+## Overview
+
+This deployment pattern enables dynamic LoRA adapter loading from S3-compatible storage (MinIO) in a Kubernetes environment:
+
+## Prerequisites
+
+- Kubernetes cluster with GPU support
+- Helm 3.x installed
+- `kubectl` configured to access your cluster
+- Dynamo Cloud Platform installed ([Installation Guide](../../../../../docs/kubernetes/installation_guide.md))
+- HuggingFace token for downloading Base and LoRA adapters
+
+## Files in This Directory
+
+| File | Description |
+|------|-------------|
+| `agg_lora.yaml` | DynamoGraphDeployment for vLLM with LoRA support |
+| `minio-secret.yaml` | Kubernetes secret for MinIO credentials |
+| `sync-lora-job.yaml` | Job to download LoRA from HuggingFace and upload to MinIO |
+| `lora-model.yaml` | DynamoModel CRD for registering LoRA adapters |
+
+---
+
+## Step 1: Set Up Environment Variables
+
+```bash
+export NAMESPACE=dynamo # Your Dynamo namespace
+export HF_TOKEN=your_hf_token # Your HuggingFace token
+```
+
+---
+
+## Step 2: Create Secrets
+
+### Create HuggingFace Token Secret
+
+```bash
+kubectl create secret generic hf-token-secret \
+ --from-literal=HF_TOKEN=${HF_TOKEN} \
+ -n ${NAMESPACE}
+```
+
+### Create MinIO Credentials Secret
+
+in this example, we are using the default credentials for MinIO.
+You can change the credentials to point to your own S3 compatible storage.
+
+```bash
+kubectl apply -f minio-secret.yaml -n ${NAMESPACE}
+```
+
+---
+
+## Step 3: Install MinIO
+
+### Add MinIO Helm Repository
+
+```bash
+helm repo add minio https://charts.min.io/
+helm repo update
+```
+
+### Deploy MinIO
+
+```bash
+helm install minio minio/minio \
+ --namespace ${NAMESPACE} \
+ --set rootUser=minioadmin \
+ --set rootPassword=minioadmin \
+ --set mode=standalone \
+ --set replicas=1 \
+ --set persistence.enabled=true \
+ --set persistence.size=10Gi \
+ --set resources.requests.memory=512Mi \
+ --set service.type=ClusterIP \
+ --set consoleService.type=ClusterIP
+```
+
+### Verify MinIO Installation
+
+```bash
+kubectl get pods -n ${NAMESPACE} | grep minio
+kubectl get svc -n ${NAMESPACE} | grep minio
+```
+
+Expected output:
+```
+minio-xxxx-xxxx 1/1 Running 0 1m
+```
+
+### (Optional) Access MinIO Console
+
+```bash
+kubectl port-forward svc/minio-console -n ${NAMESPACE} 9001:9001 9000:9000
+```
+
+Open http://localhost:9001 in your browser:
+- Username: `minioadmin`
+- Password: `minioadmin`
+
+---
+
+## Step 4: Upload LoRA Adapters to MinIO
+
+Use the provided Kubernetes Job to download a LoRA adapter from HuggingFace and upload it to MinIO:
+
+```bash
+kubectl apply -f sync-lora-job.yaml -n ${NAMESPACE}
+```
+
+### Monitor the Job
+
+```bash
+# Watch job progress
+kubectl get jobs -n ${NAMESPACE} -w
+
+# Check job logs
+kubectl logs job/sync-hf-lora-to-minio -n ${NAMESPACE} -f
+```
+
+Wait for the job to complete successfully.
+
+### Verify Upload (Optional)
+
+```bash
+# Port-forward MinIO API
+kubectl port-forward svc/minio -n ${NAMESPACE} 9000:9000 &
+
+# Check uploaded files
+export AWS_ACCESS_KEY_ID=minioadmin
+export AWS_SECRET_ACCESS_KEY=minioadmin
+export AWS_ENDPOINT_URL=http://localhost:9000
+aws s3 ls s3://my-loras/ --recursive
+```
+
+### Customizing the LoRA Adapter
+
+To upload a different LoRA adapter, edit `sync-lora-job.yaml` and change the `MODEL_NAME` environment variable:
+
+```yaml
+env:
+- name: MODEL_NAME
+ value: your-org/your-lora-adapter
+```
+
+---
+
+## Step 5: Deploy vLLM with LoRA Support
+
+### Update the Image (if needed)
+
+Edit `agg_lora.yaml` to use your container image:
+
+```bash
+# Using yq to update the image
+export FRAMEWORK_RUNTIME_IMAGE=your-registry/your-image:tag
+yq '.spec.services.[].extraPodSpec.mainContainer.image = env(FRAMEWORK_RUNTIME_IMAGE)' agg_lora.yaml > agg_lora_updated.yaml
+```
+
+### Deploy the LoRA-enabled vLLM Graph
+
+```bash
+kubectl apply -f agg_lora.yaml -n ${NAMESPACE}
+```
+
+### Verify Deployment
+
+```bash
+# Check pods
+kubectl get pods -n ${NAMESPACE}
+
+# Watch worker logs
+kubectl logs -f deployment/vllm-agg-lora-vllmdecode-worker -n ${NAMESPACE}
+```
+
+Wait for the worker to show "Application startup complete".
+
+
+## Step 6: Using DynamoModel CRD
+
+The `lora-model.yaml` file demonstrates how to register a LoRA adapter using the DynamoModel Custom Resource:
+
+```bash
+kubectl apply -f lora-model.yaml -n ${NAMESPACE}
+```
+
+This creates a declarative way to manage LoRA adapters in your cluster.
+
+---
+
+## Configuration Reference
+
+### Environment Variables
+
+| Variable | Description | Default |
+|----------|-------------|---------|
+| `AWS_ENDPOINT` | MinIO/S3 endpoint URL | `http://minio:9000` |
+| `AWS_ACCESS_KEY_ID` | MinIO access key | From secret |
+| `AWS_SECRET_ACCESS_KEY` | MinIO secret key | From secret |
+| `AWS_REGION` | AWS region (required for S3 SDK) | `us-east-1` |
+| `AWS_ALLOW_HTTP` | Allow HTTP connections | `true` |
+| `DYN_LORA_ENABLED` | Enable LoRA support | `true` |
+| `DYN_LORA_PATH` | Local cache path for LoRA files | `/tmp/dynamo_loras_minio` |
+| `BUCKET_NAME` | MinIO bucket name | `my-loras` |
+
+### vLLM LoRA Arguments
+
+| Argument | Description |
+|----------|-------------|
+| `--enable-lora` | Enable LoRA adapter support |
+| `--max-lora-rank` | Maximum LoRA rank (must be >= your LoRA's rank) |
+| `--max-loras` | Maximum number of LoRAs to load simultaneously |
+
+---
+
+## Cleanup
+
+### Remove vLLM Deployment
+
+```bash
+kubectl delete -f agg_lora.yaml -n ${NAMESPACE}
+```
+
+### Remove Sync Job
+
+```bash
+kubectl delete -f sync-lora-job.yaml -n ${NAMESPACE}
+```
+
+### Remove MinIO
+
+```bash
+helm uninstall minio -n ${NAMESPACE}
+```
+
+### Remove Secrets
+
+```bash
+kubectl delete -f minio-secret.yaml -n ${NAMESPACE}
+kubectl delete secret hf-token-secret -n ${NAMESPACE}
+```
+
+---
+
+## Troubleshooting
+
+### LoRA Fails to Load
+
+1. **Check MinIO connectivity from worker**:
+ ```bash
+ kubectl exec -it deployment/vllm-agg-lora-vllmdecode-worker -n ${NAMESPACE} -- \
+ curl http://minio:9000/minio/health/live
+ ```
+
+2. **Verify LoRA exists in MinIO**:
+ ```bash
+ kubectl port-forward svc/minio -n ${NAMESPACE} 9000:9000 &
+ aws --endpoint-url=http://localhost:9000 s3 ls s3://my-loras/ --recursive
+ ```
+
+3. **Check worker logs**:
+ ```bash
+ kubectl logs deployment/vllm-agg-lora-vllmdecode-worker -n ${NAMESPACE}
+ ```
+
+### Sync Job Fails
+
+1. **Check job logs**:
+ ```bash
+ kubectl logs job/sync-hf-lora-to-minio -n ${NAMESPACE}
+ ```
+
+2. **Verify HuggingFace token**:
+ ```bash
+ kubectl get secret hf-token-secret -n ${NAMESPACE} -o yaml
+ ```
+
+3. **Check MinIO is accessible**:
+ ```bash
+ kubectl get svc minio -n ${NAMESPACE}
+ ```
+
+### MinIO Connection Refused
+
+- Ensure MinIO pods are running: `kubectl get pods -n ${NAMESPACE} | grep minio`
+- Check MinIO service: `kubectl get svc minio -n ${NAMESPACE}`
+- Verify the `AWS_ENDPOINT` URL matches the service name
+
+## Further Reading
+
+- [vLLM Deployment Guide](../README.md) - Other deployment patterns
+- [Dynamo Kubernetes Guide](../../../../../docs/kubernetes/README.md) - Platform setup
+- [Installation Guide](../../../../../docs/kubernetes/installation_guide.md) - Platform installation
diff --git a/examples/backends/vllm/deploy/lora/agg_lora.yaml b/examples/backends/vllm/deploy/lora/agg_lora.yaml
new file mode 100644
index 0000000000..8c446beb69
--- /dev/null
+++ b/examples/backends/vllm/deploy/lora/agg_lora.yaml
@@ -0,0 +1,70 @@
+# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-License-Identifier: Apache-2.0
+apiVersion: nvidia.com/v1alpha1
+kind: DynamoGraphDeployment
+metadata:
+ name: vllm-agg-lora
+spec:
+ services:
+ Frontend:
+ dynamoNamespace: vllm-agg-lora
+ componentType: frontend
+ replicas: 1
+ extraPodSpec:
+ mainContainer:
+ image: nvcr.io/nvidian/dynamo-dev/biswa:7e499b5c460f1883a9945d221123e0760051210f-39500608-vllm-amd64
+ VllmDecodeWorker:
+ envFromSecret: hf-token-secret
+ dynamoNamespace: vllm-agg-lora
+ componentType: worker
+ subComponentType: decode
+ replicas: 1
+ resources:
+ limits:
+ gpu: "1"
+ modelRef:
+ name: Qwen/Qwen3-0.6B
+ extraPodSpec:
+ mainContainer:
+ image: nvcr.io/nvidian/dynamo-dev/biswa:7e499b5c460f1883a9945d221123e0760051210f-39500608-vllm-amd64
+ workingDir: /workspace/examples/backends/vllm
+ env:
+ - name: DYN_LORA_ENABLED
+ value: "true"
+ - name: DYN_LORA_PATH
+ value: "/tmp/dynamo_loras_minio"
+ - name: DYN_SYSTEM_ENABLED
+ value: "true"
+ - name: DYN_SYSTEM_PORT
+ value: "9090"
+ - name: AWS_ENDPOINT
+ value: "http://minio:9000"
+ - name: AWS_ACCESS_KEY_ID
+ valueFrom:
+ secretKeyRef:
+ name: minio-secret
+ key: AWS_ACCESS_KEY_ID
+ - name: AWS_SECRET_ACCESS_KEY
+ valueFrom:
+ secretKeyRef:
+ name: minio-secret
+ key: AWS_SECRET_ACCESS_KEY
+ - name: AWS_REGION
+ value: "us-east-1"
+ - name: AWS_ALLOW_HTTP
+ value: "true"
+ - name: BUCKET_NAME
+ value: "my-loras"
+ command:
+ - python3
+ - -m
+ - dynamo.vllm
+ args:
+ - --model
+ - Qwen/Qwen3-0.6B
+ - --connector
+ - none
+ - --enable-lora
+ - --max-lora-rank
+ - "64"
+ - --enforce-eager
diff --git a/examples/backends/vllm/deploy/lora/lora-model.yaml b/examples/backends/vllm/deploy/lora/lora-model.yaml
new file mode 100644
index 0000000000..f8c7a48f2f
--- /dev/null
+++ b/examples/backends/vllm/deploy/lora/lora-model.yaml
@@ -0,0 +1,12 @@
+# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-License-Identifier: Apache-2.0
+apiVersion: nvidia.com/v1alpha1
+kind: DynamoModel
+metadata:
+ name: codelion-recovery-lora
+spec:
+ modelName: codelion/Qwen3-0.6B-accuracy-recovery-lora
+ baseModelName: Qwen/Qwen3-0.6B
+ modelType: lora
+ source:
+ uri: s3://my-loras/codelion/Qwen3-0.6B-accuracy-recovery-lora
\ No newline at end of file
diff --git a/examples/backends/vllm/deploy/lora/minio-secret.yaml b/examples/backends/vllm/deploy/lora/minio-secret.yaml
new file mode 100644
index 0000000000..7b14fc5574
--- /dev/null
+++ b/examples/backends/vllm/deploy/lora/minio-secret.yaml
@@ -0,0 +1,10 @@
+# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-License-Identifier: Apache-2.0
+apiVersion: v1
+kind: Secret
+type: Opaque
+metadata:
+ name: minio-secret
+stringData:
+ AWS_ACCESS_KEY_ID: minioadmin
+ AWS_SECRET_ACCESS_KEY: minioadmin
diff --git a/examples/backends/vllm/deploy/lora/sync-lora-job.yaml b/examples/backends/vllm/deploy/lora/sync-lora-job.yaml
new file mode 100644
index 0000000000..37779fff0c
--- /dev/null
+++ b/examples/backends/vllm/deploy/lora/sync-lora-job.yaml
@@ -0,0 +1,38 @@
+# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-License-Identifier: Apache-2.0
+apiVersion: batch/v1
+kind: Job
+metadata:
+ name: sync-hf-lora-to-minio
+spec:
+ template:
+ spec:
+ containers:
+ - name: uploader
+ image: python:3.10-slim
+ command:
+ - /bin/sh
+ - -c
+ - |
+ set -eux
+ pip install --no-cache-dir huggingface-hub awscli
+ hf download $MODEL_NAME --local-dir /tmp/lora
+ rm -rf /tmp/lora/.cache
+ aws --endpoint-url=http://minio:9000 s3 mb s3://$LORA_ROOT_PATH || true
+ aws --endpoint-url=http://minio:9000 s3 sync /tmp/lora s3://$LORA_ROOT_PATH/$MODEL_NAME
+ envFrom:
+ - secretRef:
+ name: hf-token-secret
+ - secretRef:
+ name: minio-secret
+ env:
+ - name: AWS_REGION # set this to your aws region
+ value: us-east-1
+ - name: AWS_ALLOW_HTTP # remove/disable this if you are using a S3 endpoint or secure MinIO
+ value: "true"
+ - name: LORA_ROOT_PATH
+ value: "my-loras"
+ - name: MODEL_NAME
+ value: codelion/Qwen3-0.6B-accuracy-recovery-lora
+ restartPolicy: Never
+ backoffLimit: 3
\ No newline at end of file
diff --git a/examples/backends/vllm/launch/agg_multimodal.sh b/examples/backends/vllm/launch/agg_multimodal.sh
index d016980331..0bcf5edfcf 100755
--- a/examples/backends/vllm/launch/agg_multimodal.sh
+++ b/examples/backends/vllm/launch/agg_multimodal.sh
@@ -18,6 +18,8 @@ trap 'echo Cleaning up...; kill 0' EXIT
MODEL_NAME="Qwen/Qwen2.5-VL-7B-Instruct"
# Parse command line arguments
+# Extra arguments are passed through to the vLLM worker
+EXTRA_ARGS=()
while [[ $# -gt 0 ]]; do
case $1 in
--model)
@@ -25,16 +27,18 @@ while [[ $# -gt 0 ]]; do
shift 2
;;
-h|--help)
- echo "Usage: $0 [OPTIONS]"
+ echo "Usage: $0 [OPTIONS] [-- EXTRA_VLLM_ARGS]"
echo "Options:"
- echo " --model Specify the VLM model to use (default: $MODEL_NAME)"
- echo " -h, --help Show this help message"
+ echo " --model Specify the VLM model to use (default: $MODEL_NAME)"
+ echo " -h, --help Show this help message"
+ echo ""
+ echo "Any additional arguments are passed through to the vLLM worker."
+ echo "Example: $0 --model Qwen/Qwen3-VL-30B-A3B-Instruct-FP8 --dyn-tool-call-parser hermes"
exit 0
;;
*)
- echo "Unknown option: $1"
- echo "Use --help for usage information"
- exit 1
+ EXTRA_ARGS+=("$1")
+ shift
;;
esac
done
@@ -48,20 +52,21 @@ export DYN_REQUEST_PLANE=tcp
# dynamo.frontend accepts either --http-port flag or DYN_HTTP_PORT env var (defaults to 8000)
python -m dynamo.frontend &
-# Configure GPU memory optimization for specific models
-EXTRA_ARGS=""
+# Configure GPU memory optimization for specific models (if no extra args override)
+MODEL_SPECIFIC_ARGS=""
if [[ "$MODEL_NAME" == "Qwen/Qwen2.5-VL-7B-Instruct" ]]; then
- EXTRA_ARGS="--gpu-memory-utilization 0.85 --max-model-len 4096"
+ MODEL_SPECIFIC_ARGS="--gpu-memory-utilization 0.85 --max-model-len 4096"
elif [[ "$MODEL_NAME" == "llava-hf/llava-1.5-7b-hf" ]]; then
- EXTRA_ARGS="--gpu-memory-utilization 0.85 --max-model-len 2048"
+ MODEL_SPECIFIC_ARGS="--gpu-memory-utilization 0.85 --max-model-len 2048"
fi
# Start vLLM worker with vision model
# Multimodal data (images) are decoded in the backend worker using ImageLoader
# --enforce-eager: Quick deployment (remove for production)
# --connector none: No KV transfer needed for aggregated serving
+# Extra args from command line come last to allow overrides
DYN_SYSTEM_PORT=${DYN_SYSTEM_PORT:-8081} \
- python -m dynamo.vllm --enable-multimodal --model $MODEL_NAME --enforce-eager --connector none $EXTRA_ARGS
+ python -m dynamo.vllm --enable-multimodal --model $MODEL_NAME --enforce-eager --connector none $MODEL_SPECIFIC_ARGS "${EXTRA_ARGS[@]}"
# Wait for all background processes to complete
wait
diff --git a/examples/backends/vllm/launch/agg_multimodal_epd.sh b/examples/backends/vllm/launch/agg_multimodal_epd.sh
index a94ab3c1f4..faf26ff1ea 100755
--- a/examples/backends/vllm/launch/agg_multimodal_epd.sh
+++ b/examples/backends/vllm/launch/agg_multimodal_epd.sh
@@ -80,7 +80,7 @@ python -m dynamo.vllm --multimodal-processor --enable-multimodal --model $MODEL_
# run E/P/D workers
CUDA_VISIBLE_DEVICES=0 python -m dynamo.vllm --multimodal-encode-worker --enable-multimodal --model $MODEL_NAME &
-CUDA_VISIBLE_DEVICES=1 python -m dynamo.vllm --multimodal-worker --enable-multimodal --model $MODEL_NAME $EXTRA_ARGS &
+CUDA_VISIBLE_DEVICES=1 python -m dynamo.vllm --multimodal-worker --enable-multimodal --enable-mm-embeds --model $MODEL_NAME $EXTRA_ARGS &
# Wait for all background processes to complete
wait
diff --git a/examples/backends/vllm/launch/agg_spec_decoding.sh b/examples/backends/vllm/launch/agg_spec_decoding.sh
new file mode 100755
index 0000000000..7a30e69342
--- /dev/null
+++ b/examples/backends/vllm/launch/agg_spec_decoding.sh
@@ -0,0 +1,29 @@
+#!/bin/bash
+# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-License-Identifier: Apache-2.0
+set -e
+trap 'echo Cleaning up...; kill 0' EXIT
+
+
+# ---------------------------
+# 1. Frontend (Ingress)
+# ---------------------------
+python -m dynamo.frontend --http-port=8000 &
+
+
+# ---------------------------
+# 2. Speculative Main Worker
+# ---------------------------
+# This runs the main model with EAGLE as the draft model for speculative decoding
+DYN_SYSTEM_ENABLED=true DYN_SYSTEM_PORT=8081 \
+CUDA_VISIBLE_DEVICES=0 python -m dynamo.vllm \
+ --model meta-llama/Meta-Llama-3.1-8B-Instruct \
+ --enforce-eager \
+ --speculative_config '{
+ "model": "yuhuili/EAGLE3-LLaMA3.1-Instruct-8B",
+ "draft_tensor_parallel_size": 1,
+ "num_speculative_tokens": 2,
+ "method": "eagle"
+ }' \
+ --connector none \
+ --gpu-memory-utilization 0.8
\ No newline at end of file
diff --git a/examples/backends/vllm/launch/disagg_multimodal_epd.sh b/examples/backends/vllm/launch/disagg_multimodal_epd.sh
index 75b30abb8e..0e253c12be 100755
--- a/examples/backends/vllm/launch/disagg_multimodal_epd.sh
+++ b/examples/backends/vllm/launch/disagg_multimodal_epd.sh
@@ -81,23 +81,20 @@ python -m dynamo.vllm --multimodal-processor --enable-multimodal --model $MODEL_
# Configure GPU memory optimization for specific models
EXTRA_ARGS=""
-if [[ "$MODEL_NAME" == "Qwen/Qwen2.5-VL-7B-Instruct" ]]; then
- EXTRA_ARGS="--gpu-memory-utilization 0.85 --max-model-len 2048"
-fi
# Start encode worker
-echo "Starting encode worker on GPU 1..."
-VLLM_NIXL_SIDE_CHANNEL_PORT=20097 CUDA_VISIBLE_DEVICES=1 python -m dynamo.vllm --multimodal-encode-worker --enable-multimodal --model $MODEL_NAME $EXTRA_ARGS --kv-events-config '{"publisher":"zmq","topic":"kv-events","endpoint":"tcp://*:20080"}' &
+echo "Starting encode worker on GPU 0..."
+VLLM_NIXL_SIDE_CHANNEL_PORT=20097 CUDA_VISIBLE_DEVICES=0 python -m dynamo.vllm --multimodal-encode-worker --enable-multimodal --model $MODEL_NAME $EXTRA_ARGS --kv-events-config '{"publisher":"zmq","topic":"kv-events","endpoint":"tcp://*:20080"}' &
# Start prefill worker
-echo "Starting prefill worker on GPU 2..."
+echo "Starting prefill worker on GPU 1..."
VLLM_NIXL_SIDE_CHANNEL_PORT=20098 \
-CUDA_VISIBLE_DEVICES=2 python -m dynamo.vllm --multimodal-worker --is-prefill-worker --enable-multimodal --model $MODEL_NAME $EXTRA_ARGS --kv-events-config '{"publisher":"zmq","topic":"kv-events","endpoint":"tcp://*:20081"}' &
+CUDA_VISIBLE_DEVICES=1 python -m dynamo.vllm --multimodal-worker --is-prefill-worker --enable-multimodal --enable-mm-embeds --model $MODEL_NAME $EXTRA_ARGS --kv-events-config '{"publisher":"zmq","topic":"kv-events","endpoint":"tcp://*:20081"}' &
# Start decode worker
-echo "Starting decode worker on GPU 3..."
+echo "Starting decode worker on GPU 2..."
VLLM_NIXL_SIDE_CHANNEL_PORT=20099 \
-CUDA_VISIBLE_DEVICES=3 python -m dynamo.vllm --multimodal-decode-worker --enable-multimodal --model $MODEL_NAME $EXTRA_ARGS --kv-events-config '{"publisher":"zmq","topic":"kv-events","endpoint":"tcp://*:20082"}' &
+CUDA_VISIBLE_DEVICES=2 python -m dynamo.vllm --multimodal-decode-worker --enable-multimodal --model $MODEL_NAME $EXTRA_ARGS --kv-events-config '{"publisher":"zmq","topic":"kv-events","endpoint":"tcp://*:20082"}' &
echo "=================================================="
echo "All components started. Waiting for initialization..."
diff --git a/examples/backends/vllm/launch/lora/agg_lora_s3.sh b/examples/backends/vllm/launch/lora/agg_lora.sh
similarity index 57%
rename from examples/backends/vllm/launch/lora/agg_lora_s3.sh
rename to examples/backends/vllm/launch/lora/agg_lora.sh
index f2444abf51..4bd578613d 100755
--- a/examples/backends/vllm/launch/lora/agg_lora_s3.sh
+++ b/examples/backends/vllm/launch/lora/agg_lora.sh
@@ -4,14 +4,6 @@
set -e
trap 'echo Cleaning up...; kill 0' EXIT
-# Follow the README.md instructions to setup MinIO or upload the LoRA to s3/minio
-# Adjust these values to match your local MinIO or S3 setup
-
-
-# load math lora to minio
-# LORA_NAME=Neural-Hacker/Qwen3-Math-Reasoning-LoRA HF_LORA_REPO=Neural-Hacker/Qwen3-Math-Reasoning-LoRA ./setup_minio.sh
-
-
export AWS_ENDPOINT=http://localhost:9000
export AWS_ACCESS_KEY_ID=minioadmin
export AWS_SECRET_ACCESS_KEY=minioadmin
@@ -21,8 +13,6 @@ export AWS_ALLOW_HTTP=true
# Dynamo LoRA Configuration
export DYN_LORA_ENABLED=true
export DYN_LORA_PATH=/tmp/dynamo_loras_minio
-export DYN_LOG=debug
-# export DYN_LOG_LEVEL=debug
mkdir -p $DYN_LORA_PATH
@@ -35,7 +25,7 @@ DYN_SYSTEM_ENABLED=true DYN_SYSTEM_PORT=8081 \
python -m dynamo.vllm --model Qwen/Qwen3-0.6B --enforce-eager \
--connector none \
--enable-lora \
- --max-lora-rank 32
+ --max-lora-rank 64
################################## Example Usage ##################################
@@ -43,35 +33,30 @@ DYN_SYSTEM_ENABLED=true DYN_SYSTEM_PORT=8081 \
curl http://localhost:8000/v1/models | jq .
# Load LoRA using s3 uri
-curl -X POST http://localhost:8081/v1/loras \
- -H "Content-Type: application/json" \
- -d '{
- "lora_name": "Neural-Hacker/Qwen3-Math-Reasoning-LoRA",
- "source": {
- "uri": "s3://my-loras/Neural-Hacker/Qwen3-Math-Reasoning-LoRA"
- }
- }'
+curl -s -X POST http://localhost:8081/v1/loras \
+ -H "Content-Type: application/json" \
+ -d '{"lora_name": "codelion/Qwen3-0.6B-accuracy-recovery-lora",
+ "source": {"uri": "s3://my-loras/codelion/Qwen3-0.6B-accuracy-recovery-lora"}}' | jq .
# Test LoRA inference
curl -X POST http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
- "model": "Neural-Hacker/Qwen3-Math-Reasoning-LoRA",
- "messages": [{"role": "user", "content": "Solve (x*x - x + 1 = 0) for x"}],
+ "model": "codelion/Qwen3-0.6B-accuracy-recovery-lora",
+ "messages": [{"role": "user", "content": "What is deep learning?"}],
"max_tokens": 300,
"temperature": 0.0
}'
-# Find the minimum possible value of \( x^2 + y^2 \) given that \( x \) and \( y \) are real numbers satisfying \( xy(x^2 - y^2) = x^2 + y^2 \) and \( x \neq 0 \)
# Test base model inference (for comparison)
curl -X POST http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "Qwen/Qwen3-0.6B",
- "messages": [{"role": "user", "content": "Solve (x*x - x + 1 = 0) for x"}],
+ "messages": [{"role": "user", "content": "What is deep learning?"}],
"max_tokens": 300,
"temperature": 0.0
}'
# Unload LoRA
-curl -X DELETE http://localhost:8081/v1/loras/Neural-Hacker/Qwen3-Math-Reasoning-LoRA
+curl -X DELETE http://localhost:8081/v1/loras/codelion/Qwen3-0.6B-accuracy-recovery-lora
diff --git a/examples/backends/vllm/launch/lora/agg_lora_router.sh b/examples/backends/vllm/launch/lora/agg_lora_router.sh
new file mode 100755
index 0000000000..370301f7be
--- /dev/null
+++ b/examples/backends/vllm/launch/lora/agg_lora_router.sh
@@ -0,0 +1,122 @@
+#!/bin/bash
+# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-License-Identifier: Apache-2.0
+set -e
+trap 'echo Cleaning up...; kill 0' EXIT
+
+export AWS_ENDPOINT=http://localhost:9000
+export AWS_ACCESS_KEY_ID=minioadmin
+export AWS_SECRET_ACCESS_KEY=minioadmin
+export AWS_REGION=us-east-1
+export AWS_ALLOW_HTTP=true
+
+# Dynamo LoRA Configuration
+export DYN_LORA_ENABLED=true
+export DYN_LORA_PATH=/tmp/dynamo_loras_minio
+
+mkdir -p $DYN_LORA_PATH
+
+# Set deterministic hash for KV event IDs
+export PYTHONHASHSEED=0
+
+# Common configuration
+MODEL="Qwen/Qwen3-0.6B"
+BLOCK_SIZE=64
+
+# run frontend + KV router
+# dynamo.frontend accepts either --http-port flag or DYN_HTTP_PORT env var (defaults to 8000)
+python -m dynamo.frontend \
+ --router-mode kv \
+ --router-reset-states &
+
+# run workers
+# --enforce-eager is added for quick deployment. for production use, need to remove this flag
+DYN_SYSTEM_ENABLED=true DYN_SYSTEM_PORT=8082 \
+CUDA_VISIBLE_DEVICES=0 python3 -m dynamo.vllm \
+ --model $MODEL \
+ --block-size $BLOCK_SIZE \
+ --enforce-eager \
+ --connector none \
+ --enable-lora \
+ --max-lora-rank 64 \
+ --kv-events-config '{"publisher":"zmq","topic":"kv-events","endpoint":"tcp://*:20080","enable_kv_cache_events":true}' &
+
+DYN_SYSTEM_ENABLED=true DYN_SYSTEM_PORT=8081 \
+VLLM_NIXL_SIDE_CHANNEL_PORT=20097 \
+CUDA_VISIBLE_DEVICES=1 python3 -m dynamo.vllm \
+ --model $MODEL \
+ --block-size $BLOCK_SIZE \
+ --enforce-eager \
+ --connector none \
+ --enable-lora \
+ --max-lora-rank 64 \
+ --kv-events-config '{"publisher":"zmq","topic":"kv-events","endpoint":"tcp://*:20081","enable_kv_cache_events":true}'
+
+# below commands are not executed automatically in the script because previous backend launch command is blocking.
+
+################################## Example Usage ##################################
+
+# Check available models
+curl http://localhost:8000/v1/models | jq .
+
+# Load LoRA to instances using s3 uri
+curl -s -X POST http://localhost:8081/v1/loras \
+ -H "Content-Type: application/json" \
+ -d '{"lora_name": "codelion/Qwen3-0.6B-accuracy-recovery-lora",
+ "source": {"uri": "s3://my-loras/codelion/Qwen3-0.6B-accuracy-recovery-lora"}}' | jq .
+
+curl -s -X POST http://localhost:8082/v1/loras \
+ -H "Content-Type: application/json" \
+ -d '{"lora_name": "codelion/Qwen3-0.6B-accuracy-recovery-lora",
+ "source": {"uri": "s3://my-loras/codelion/Qwen3-0.6B-accuracy-recovery-lora"}}' | jq .
+
+ # Test LoRA inference
+curl localhost:8000/v1/chat/completions \
+ -H "Content-Type: application/json" \
+ -d '{
+ "model": "codelion/Qwen3-0.6B-accuracy-recovery-lora",
+ "messages": [
+ {
+ "role": "user",
+ "content": "In the heart of Eldoria, an ancient land of boundless magic and mysterious creatures, lies the long-forgotten city of Aeloria. Once a beacon of knowledge and power, Aeloria was buried beneath the shifting sands of time, lost to the world for centuries. You are an intrepid explorer, known for your unparalleled curiosity and courage, who has stumbled upon an ancient map hinting at ests that Aeloria holds a secret so profound that it has the potential to reshape the very fabric of reality. Your journey will take you through treacherous deserts, enchanted forests, and across perilous mountain ranges. Your Task: Character Background: Develop a detailed background for your character. Describe their motivations for seeking out Aeloria, their skills and weaknesses, and any personal connections to the ancient city or its legends. Are they driven by a quest for knowledge, a search for lost familt clue is hidden."
+ }
+ ],
+ "stream": false,
+ "max_tokens": 30
+ }' | jq .
+
+
+ # Sample output after running above curl request twice.
+ # usage.prompt_tokens_details.cached_tokens is the number of tokens that were cached from the previous request.
+{
+ "id": "chatcmpl-0cf880c2-fe98-45c4-9c76-84c3ad1a56cc",
+ "choices": [
+ {
+ "index": 0,
+ "message": {
+ "content": "\nOkay, so I need to develop a character background for a character named Elara. Let me start by understanding the requirements. The user wants",
+ "role": "assistant",
+ "reasoning_content": null
+ },
+ "finish_reason": "length"
+ }
+ ],
+ "created": 1765230243,
+ "model": "codelion/Qwen3-0.6B-accuracy-recovery-lora",
+ "object": "chat.completion",
+ "usage": {
+ "prompt_tokens": 196,
+ "completion_tokens": 30,
+ "total_tokens": 226,
+ "prompt_tokens_details": {
+ "audio_tokens": null,
+ "cached_tokens": 192 # tokens that were cached from the previous request.
+ }
+ },
+ "nvext": {
+ "worker_id": {
+ "prefill_worker_id": 7587891281668871552,
+ "decode_worker_id": 7587891281668871552
+ }
+ }
+}
\ No newline at end of file
diff --git a/examples/backends/vllm/launch/lora/setup_minio.sh b/examples/backends/vllm/launch/lora/setup_minio.sh
index fded31795d..0b1668f231 100755
--- a/examples/backends/vllm/launch/lora/setup_minio.sh
+++ b/examples/backends/vllm/launch/lora/setup_minio.sh
@@ -20,8 +20,8 @@ MINIO_SECRET_KEY="minioadmin"
BUCKET_NAME="my-loras"
# Default LoRA to download (can be overridden)
-HF_LORA_REPO="${HF_LORA_REPO:-Neural-Hacker/Qwen3-Math-Reasoning-LoRA}"
-LORA_NAME="${LORA_NAME:-Neural-Hacker/Qwen3-Math-Reasoning-LoRA}"
+HF_LORA_REPO="${HF_LORA_REPO:-codelion/Qwen3-0.6B-accuracy-recovery-lora}"
+LORA_NAME="${LORA_NAME:-codelion/Qwen3-0.6B-accuracy-recovery-lora}"
# TEMP_DIR will be created using mktemp when needed
TEMP_DIR=""
@@ -63,8 +63,8 @@ show_help() {
echo " --help, -h Show this help message"
echo ""
echo "Environment Variables:"
- echo " HF_LORA_REPO Hugging Face repository (default: ${HF_LORA_REPO:-Neural-Hacker/Qwen3-Math-Reasoning-LoRA})"
- echo " LORA_NAME Local name for the LoRA (default: ${LORA_NAME:-Neural-Hacker/Qwen3-Math-Reasoning-LoRA})"
+ echo " HF_LORA_REPO Hugging Face repository (default: ${HF_LORA_REPO:-codelion/Qwen3-0.6B-accuracy-recovery-lora})"
+ echo " LORA_NAME Local name for the LoRA (default: ${LORA_NAME:-codelion/Qwen3-0.6B-accuracy-recovery-lora})"
echo ""
echo "Examples:"
echo " $0 # Full setup"
@@ -173,6 +173,7 @@ download_lora_from_hf() {
print_success "LoRA downloaded to ${TEMP_DIR}"
+ rm -rf "${TEMP_DIR}/.cache"
# List downloaded files
echo "Downloaded files:"
ls -lh "${TEMP_DIR}"
diff --git a/examples/multimodal/components/audio_encode_worker.py b/examples/multimodal/components/audio_encode_worker.py
index 29a80f6d89..4384ec2e9c 100644
--- a/examples/multimodal/components/audio_encode_worker.py
+++ b/examples/multimodal/components/audio_encode_worker.py
@@ -25,7 +25,7 @@
import uvloop
from transformers import AutoProcessor, Qwen2AudioForConditionalGeneration
from vllm.engine.arg_utils import AsyncEngineArgs
-from vllm.utils import FlexibleArgumentParser
+from vllm.utils.argparse_utils import FlexibleArgumentParser
import dynamo.nixl_connect as connect
from dynamo.runtime import Client, DistributedRuntime, dynamo_worker
@@ -168,7 +168,7 @@ async def generate(
with torch.no_grad():
audio_embeddings = self.get_audio_embeddings(audio_features)
descriptor = connect.Descriptor(audio_embeddings)
- with self._connector.create_readable(descriptor) as readable:
+ with await self._connector.create_readable(descriptor) as readable:
request.serialized_request = readable.metadata()
# Clear the audio URL as hint that the audio is passed as embeddings.
request.multimodal_input.audio_url = None
@@ -201,7 +201,6 @@ async def async_init(self, runtime: DistributedRuntime):
# Create and initialize a dynamo connector for this worker.
# We'll needs this to move data between this worker and remote workers efficiently.
self._connector = connect.Connector()
- await self._connector.initialize()
logger.info("Startup completed.")
diff --git a/examples/multimodal/components/encode_worker.py b/examples/multimodal/components/encode_worker.py
index 42f8c7263e..282e785037 100644
--- a/examples/multimodal/components/encode_worker.py
+++ b/examples/multimodal/components/encode_worker.py
@@ -12,7 +12,7 @@
import uvloop
from transformers import AutoImageProcessor
from vllm.engine.arg_utils import AsyncEngineArgs
-from vllm.utils import FlexibleArgumentParser
+from vllm.utils.argparse_utils import FlexibleArgumentParser
import dynamo.nixl_connect as connect
from dynamo.runtime import Client, DistributedRuntime, dynamo_worker
@@ -125,7 +125,7 @@ async def generate(
request.embeddings_shape = tuple(embeddings.shape)
descriptor = connect.Descriptor(embeddings)
- with self._connector.create_readable(descriptor) as readable:
+ with await self._connector.create_readable(descriptor) as readable:
request.serialized_request = readable.metadata()
# Clear the image URL as hint that the image is passed as embeddings.
request.multimodal_input.image_url = None
@@ -158,7 +158,6 @@ async def async_init(self, runtime: DistributedRuntime):
# Create and initialize a dynamo connector for this worker.
# We'll needs this to move data between this worker and remote workers efficiently.
self._connector = connect.Connector()
- await self._connector.initialize()
logger.info("Startup completed.")
diff --git a/examples/multimodal/components/processor.py b/examples/multimodal/components/processor.py
index 7bc1be7b25..ede65cc975 100644
--- a/examples/multimodal/components/processor.py
+++ b/examples/multimodal/components/processor.py
@@ -17,8 +17,8 @@
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.entrypoints.openai.protocol import ChatCompletionRequest, CompletionRequest
from vllm.outputs import RequestOutput
-from vllm.transformers_utils.tokenizer import AnyTokenizer
-from vllm.utils import FlexibleArgumentParser
+from vllm.tokenizers import TokenizerLike as AnyTokenizer
+from vllm.utils.argparse_utils import FlexibleArgumentParser
from dynamo.llm import ModelInput, ModelType, register_llm
from dynamo.runtime import Client, DistributedRuntime, dynamo_worker
diff --git a/examples/multimodal/components/publisher.py b/examples/multimodal/components/publisher.py
index c1937fd6c6..19fe18ccff 100644
--- a/examples/multimodal/components/publisher.py
+++ b/examples/multimodal/components/publisher.py
@@ -38,6 +38,8 @@ def record(
scheduler_stats: Optional[SchedulerStats],
iteration_stats: Optional[IterationStats],
engine_idx: int = 0,
+ *args,
+ **kwargs,
):
pass
@@ -74,6 +76,8 @@ def record(
scheduler_stats: SchedulerStats,
iteration_stats: Optional[IterationStats],
engine_idx: int = 0,
+ *args,
+ **kwargs,
):
# request_total_slots and kv_total_blocks are properties of model + gpu
# we should only publish them once, not every metric update
diff --git a/examples/multimodal/components/video_encode_worker.py b/examples/multimodal/components/video_encode_worker.py
index 58f6700019..9602c6ed39 100644
--- a/examples/multimodal/components/video_encode_worker.py
+++ b/examples/multimodal/components/video_encode_worker.py
@@ -16,7 +16,7 @@
import torch
import uvloop
from vllm.engine.arg_utils import AsyncEngineArgs
-from vllm.utils import FlexibleArgumentParser
+from vllm.utils.argparse_utils import FlexibleArgumentParser
import dynamo.nixl_connect as connect
from dynamo.runtime import Client, DistributedRuntime, dynamo_worker
@@ -153,7 +153,7 @@ async def generate(
request.embeddings_shape = tuple(tensor_for_descriptor.shape)
descriptor = connect.Descriptor(tensor_for_descriptor)
- with self._connector.create_readable(descriptor) as readable:
+ with await self._connector.create_readable(descriptor) as readable:
request.serialized_request = readable.metadata()
# Clear the image URL as hint that the image is passed as embeddings.
request.multimodal_input.video_url = None
@@ -199,7 +199,6 @@ async def async_init(self, runtime: DistributedRuntime):
# Create and initialize a dynamo connector for this worker.
# We'll needs this to move data between this worker and remote workers efficiently.
self._connector = connect.Connector()
- await self._connector.initialize()
logger.info("Startup completed.")
diff --git a/examples/multimodal/components/worker.py b/examples/multimodal/components/worker.py
index 4e3b7ba43e..d5efa22a85 100644
--- a/examples/multimodal/components/worker.py
+++ b/examples/multimodal/components/worker.py
@@ -15,7 +15,7 @@
from vllm.distributed.kv_events import ZmqEventPublisher
from vllm.inputs.data import TokensPrompt
from vllm.usage.usage_lib import UsageContext
-from vllm.utils import FlexibleArgumentParser
+from vllm.utils.argparse_utils import FlexibleArgumentParser
from vllm.v1.engine.async_llm import AsyncLLM
import dynamo.nixl_connect as connect
@@ -251,7 +251,6 @@ async def async_init(self, runtime: DistributedRuntime):
# We'll needs this to move data between this worker and remote workers efficiently.
parsed_namespace, _, _ = parse_endpoint(self.endpoint)
self._connector = connect.Connector()
- await self._connector.initialize()
self.image_loader = ImageLoader()
diff --git a/examples/multimodal/launch/audio_agg.sh b/examples/multimodal/launch/audio_agg.sh
index 3f1af408b1..0ea01066f0 100755
--- a/examples/multimodal/launch/audio_agg.sh
+++ b/examples/multimodal/launch/audio_agg.sh
@@ -91,7 +91,7 @@ python3 components/processor.py --model $MODEL_NAME --prompt-template "$PROMPT_T
# run E/P/D workers
CUDA_VISIBLE_DEVICES=0 python3 components/audio_encode_worker.py --model $MODEL_NAME &
-VLLM_NIXL_SIDE_CHANNEL_PORT=20097 CUDA_VISIBLE_DEVICES=1 python3 components/worker.py --model $MODEL_NAME --worker-type prefill &
+VLLM_NIXL_SIDE_CHANNEL_PORT=20097 CUDA_VISIBLE_DEVICES=0 python3 components/worker.py --model $MODEL_NAME --worker-type prefill &
# Wait for all background processes to complete
wait
diff --git a/examples/multimodal/utils/args.py b/examples/multimodal/utils/args.py
index 3fe10ee0b1..df6ce698da 100644
--- a/examples/multimodal/utils/args.py
+++ b/examples/multimodal/utils/args.py
@@ -159,6 +159,8 @@ def overwrite_args(config):
"enable_prefix_caching": True,
# KV routing relies on logging KV metrics
"disable_log_stats": False,
+ # Enable multimodal embeddings input
+ "enable_mm_embeds": True,
# Always setting up kv transfer for disagg
"kv_transfer_config": KVTransferConfig(
kv_connector="NixlConnector", kv_role="kv_both"
diff --git a/examples/multimodal/utils/chat_processor.py b/examples/multimodal/utils/chat_processor.py
index fe8d95dc81..3a693131d9 100644
--- a/examples/multimodal/utils/chat_processor.py
+++ b/examples/multimodal/utils/chat_processor.py
@@ -28,9 +28,22 @@
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
from vllm.entrypoints.openai.serving_completion import OpenAIServingCompletion
from vllm.entrypoints.openai.serving_engine import RequestPrompt
+from vllm.entrypoints.openai.serving_models import BaseModelPath, OpenAIServingModels
from vllm.inputs.data import TokensPrompt
from vllm.sampling_params import SamplingParams
-from vllm.transformers_utils.tokenizer import AnyTokenizer
+from vllm.tokenizers import TokenizerLike as AnyTokenizer
+
+
+class StubEngineClient:
+ """
+ Stub EngineClient for preprocessing-only use of OpenAIServingChat/Completion.
+ Provides the minimal attributes required by OpenAIServingModels.
+ """
+
+ def __init__(self, model_config: ModelConfig):
+ self.model_config = model_config
+ self.input_processor = None
+ self.io_processor = None
@runtime_checkable
@@ -120,12 +133,19 @@ class ChatProcessor:
def __init__(self, tokenizer: AnyTokenizer, model_config: ModelConfig):
self.tokenizer = tokenizer
self.model_config = model_config
+ # Create stub engine client and models for preprocessing-only usage
+ stub_engine = StubEngineClient(model_config)
+ serving_models = OpenAIServingModels(
+ engine_client=stub_engine,
+ base_model_paths=[
+ BaseModelPath(name=model_config.model, model_path=model_config.model)
+ ],
+ )
self.openai_serving = OpenAIServingChat(
- engine_client=None,
- model_config=model_config,
- models=None,
- request_logger=None,
+ engine_client=stub_engine,
+ models=serving_models,
response_role="assistant",
+ request_logger=None,
chat_template=None,
chat_template_content_format="auto",
)
@@ -186,7 +206,6 @@ async def stream_response(
conversation,
self.tokenizer,
request_metadata,
- enable_force_include_usage=False,
):
if raw_response.startswith("data: [DONE]"):
yield raw_response
@@ -220,7 +239,6 @@ async def stream_response(
conversation,
self.tokenizer,
request_metadata,
- enable_force_include_usage=False,
):
if raw_response.startswith("data: [DONE]"):
break
@@ -267,10 +285,17 @@ class CompletionsProcessor:
def __init__(self, tokenizer: AnyTokenizer, model_config: ModelConfig):
self.tokenizer = tokenizer
self.model_config = model_config
+ # Create stub engine client and models for preprocessing-only usage
+ stub_engine = StubEngineClient(model_config)
+ serving_models = OpenAIServingModels(
+ engine_client=stub_engine,
+ base_model_paths=[
+ BaseModelPath(name=model_config.model, model_path=model_config.model)
+ ],
+ )
self.openai_serving = OpenAIServingCompletion(
- engine_client=None,
- model_config=model_config,
- models=None,
+ engine_client=stub_engine,
+ models=serving_models,
request_logger=None,
)
diff --git a/examples/multimodal/utils/protocol.py b/examples/multimodal/utils/protocol.py
index c31dd82799..a724b8720d 100644
--- a/examples/multimodal/utils/protocol.py
+++ b/examples/multimodal/utils/protocol.py
@@ -26,7 +26,7 @@
from vllm.multimodal.inputs import MultiModalUUIDDict # noqa: F401
from vllm.outputs import CompletionOutput
from vllm.sampling_params import SamplingParams
-from vllm.sequence import RequestMetrics
+from vllm.v1.metrics.stats import RequestStateStats
import dynamo.nixl_connect as connect
@@ -166,7 +166,7 @@ class MyRequestOutput(BaseModel):
https://github.com/vllm-project/vllm/blob/a4c402a756fa3213caf9d2cde0e4ceb2d57727f2/vllm/outputs.py#L85
This class is used to serialize the RequestOutput and any recursively defined types
- We can do this because PromptLogprobs, RequestMetrics, and CompletionOutput are all serializable dataclasses
+ We can do this because PromptLogprobs, RequestStateStats, and CompletionOutput are all serializable dataclasses
"""
model_config = ConfigDict(arbitrary_types_allowed=True)
@@ -177,7 +177,7 @@ class MyRequestOutput(BaseModel):
prompt_logprobs: Optional[PromptLogprobs] = None
outputs: List[CompletionOutput]
finished: bool
- metrics: Optional[RequestMetrics] = None
+ metrics: Optional[RequestStateStats] = None
kv_transfer_params: Optional[dict[str, Any]] = None
# lora_request: Optional[LoRARequest] = None
# encoder_prompt: Optional[str] = None
diff --git a/lib/bindings/c/src/lib.rs b/lib/bindings/c/src/lib.rs
index 1eee40eb69..498b21dd39 100644
--- a/lib/bindings/c/src/lib.rs
+++ b/lib/bindings/c/src/lib.rs
@@ -1031,7 +1031,7 @@ pub async fn create_worker_selection_pipeline_chat(
// Create worker monitor if busy_threshold is set
// Note: C bindings don't register with ModelManager, so HTTP endpoint won't see this
- let worker_monitor = busy_threshold.map(|t| KvWorkerMonitor::new(Arc::new(client.clone()), t));
+ let worker_monitor = busy_threshold.map(|t| KvWorkerMonitor::new(client.clone(), t));
let engine = build_routed_pipeline::<
NvCreateChatCompletionRequest,
diff --git a/lib/bindings/kvbm/python/kvbm/vllm_integration/connector/dynamo_connector.py b/lib/bindings/kvbm/python/kvbm/vllm_integration/connector/dynamo_connector.py
index 8d06db7055..bfe371b41e 100644
--- a/lib/bindings/kvbm/python/kvbm/vllm_integration/connector/dynamo_connector.py
+++ b/lib/bindings/kvbm/python/kvbm/vllm_integration/connector/dynamo_connector.py
@@ -23,6 +23,7 @@
from vllm.config import VllmConfig
from vllm.forward_context import ForwardContext
from vllm.v1.core.kv_cache_manager import KVCacheBlocks
+ from vllm.v1.kv_cache_interface import KVCacheConfig
from vllm.v1.request import Request
@@ -40,8 +41,15 @@ def __init__(self, metadata: bytes):
class DynamoConnector(KVConnectorBase_V1):
- def __init__(self, vllm_config: "VllmConfig", role: KVConnectorRole):
- super().__init__(vllm_config=vllm_config, role=role)
+ def __init__(
+ self,
+ vllm_config: "VllmConfig",
+ role: KVConnectorRole,
+ kv_cache_config: Optional["KVCacheConfig"] = None,
+ ):
+ super().__init__(
+ vllm_config=vllm_config, role=role, kv_cache_config=kv_cache_config
+ )
assert vllm_config.kv_transfer_config is not None
assert vllm_config.kv_transfer_config.engine_id is not None
@@ -90,13 +98,19 @@ def request_finished(
def register_kv_caches(self, kv_caches: dict[str, torch.Tensor]):
self._worker.register_kv_caches(kv_caches)
+ @override
def bind_connector_metadata(
self, connector_metadata: DynamoConnectorMetadata
) -> None:
+ # Must call super() to set _connector_metadata so has_connector_metadata() returns True
+ # This is required for save_kv_layer to be called during the forward pass
+ super().bind_connector_metadata(connector_metadata)
assert isinstance(connector_metadata.metadata, bytes)
self._worker.bind_connector_metadata(connector_metadata.metadata)
+ @override
def clear_connector_metadata(self) -> None:
+ super().clear_connector_metadata()
self._worker.clear_connector_metadata()
@override
diff --git a/lib/bindings/kvbm/python/kvbm/vllm_integration/connector/pd_connector.py b/lib/bindings/kvbm/python/kvbm/vllm_integration/connector/pd_connector.py
index ceea2917ba..461815a7e7 100644
--- a/lib/bindings/kvbm/python/kvbm/vllm_integration/connector/pd_connector.py
+++ b/lib/bindings/kvbm/python/kvbm/vllm_integration/connector/pd_connector.py
@@ -4,7 +4,10 @@
from typing import TYPE_CHECKING, Optional, Type
from kvbm.vllm_integration.connector.dynamo_connector import DynamoConnector
-from vllm.distributed.kv_transfer.kv_connector.v1.base import KVConnectorRole
+from vllm.distributed.kv_transfer.kv_connector.v1.base import (
+ KVConnectorHandshakeMetadata,
+ KVConnectorRole,
+)
from vllm.distributed.kv_transfer.kv_connector.v1.multi_connector import (
MultiConnector,
MultiKVConnectorMetadata,
@@ -29,6 +32,7 @@
LMCacheConnectorV1,
)
from vllm.v1.core.kv_cache_manager import KVCacheBlocks
+ from vllm.v1.kv_cache_interface import KVCacheConfig
from vllm.v1.request import Request
@@ -46,8 +50,15 @@ class PdConnector(MultiConnector):
- The second connector must be NIXL and will be used by decode worker to get KV blocks from prefill worker.
"""
- def __init__(self, vllm_config: "VllmConfig", role: KVConnectorRole):
- super().__init__(vllm_config=vllm_config, role=role)
+ def __init__(
+ self,
+ vllm_config: "VllmConfig",
+ role: KVConnectorRole,
+ kv_cache_config: "KVCacheConfig",
+ ):
+ super().__init__(
+ vllm_config=vllm_config, role=role, kv_cache_config=kv_cache_config
+ )
if len(self._connectors) != 2:
raise ValueError(
f"PdConnector requires exactly two connectors (got {len(self._connectors)})"
@@ -76,6 +87,18 @@ def __init__(self, vllm_config: "VllmConfig", role: KVConnectorRole):
# Worker-side methods
# ==============================
+ def set_xfer_handshake_metadata(
+ self, metadata: dict[int, KVConnectorHandshakeMetadata]
+ ) -> None:
+ """
+ Propagate handshake metadata to child connectors.
+
+ This is required for NIXL connector to start its handshake listener
+ which decode workers connect to for KV transfer coordination.
+ """
+ for c in self._connectors:
+ c.set_xfer_handshake_metadata(metadata)
+
def bind_connector_metadata(self, connector_metadata: PdConnectorMetadata) -> None:
assert isinstance(connector_metadata, PdConnectorMetadata)
if connector_metadata.extra_async_saves:
diff --git a/lib/bindings/kvbm/python/kvbm/vllm_integration/connector_worker.py b/lib/bindings/kvbm/python/kvbm/vllm_integration/connector_worker.py
index 3d2532602d..ef791d36ed 100644
--- a/lib/bindings/kvbm/python/kvbm/vllm_integration/connector_worker.py
+++ b/lib/bindings/kvbm/python/kvbm/vllm_integration/connector_worker.py
@@ -14,7 +14,7 @@
from vllm.config import VllmConfig
from vllm.distributed.kv_transfer.kv_connector.v1.base import KVConnectorMetadata
from vllm.model_executor.models.utils import extract_layer_index
-from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE
+from vllm.utils.torch_utils import STR_DTYPE_TO_TORCH_DTYPE
if TYPE_CHECKING:
from vllm.attention.backends.abstract import AttentionMetadata
diff --git a/lib/bindings/kvbm/src/block_manager/vllm/connector/leader.rs b/lib/bindings/kvbm/src/block_manager/vllm/connector/leader.rs
index 3b6151f7b9..2523a67a68 100644
--- a/lib/bindings/kvbm/src/block_manager/vllm/connector/leader.rs
+++ b/lib/bindings/kvbm/src/block_manager/vllm/connector/leader.rs
@@ -526,22 +526,33 @@ impl Leader for KvConnectorLeader {
// remove the request from the inflight requests
self.inflight_requests.remove(&request_id);
- // if the slot has finished, we can return false to vllm, indicating all gpu blocks are free to be reused
- // otherwise, we return true, which means there are still outstanding operations on gpu blocks which
- // must be awaited before the gpu blocks can be reused. if we return true, then it is the worker side
- // of the connector api which will be used to inform vllm that the request is finished.
+ // Return value semantics:
+ // - `false`: Tells vLLM all GPU blocks are free and the request can be fully cleaned up.
+ // vLLM will immediately remove the request from its internal hash table.
+ // - `true`: Tells vLLM there are outstanding async operations on GPU blocks.
+ // The worker side of the connector API will later call `finish_requests()`
+ // to notify vLLM when the request is truly complete.
+ //
+ // TODO(jthomson04): This is a temporary fix to ensure vLLM 0.11.2 compatibility.
+ // IMPORTANT: We must ALWAYS return `true` here, even when the slot is already Finished.
+ //
+ // Why? If we return `false`, vLLM removes the request from `self.requests` immediately.
+ // However, our worker connector may still report completion later via `finish_requests()`.
+ // When that happens, vLLM's scheduler.py has an assertion `req_id in self.requests`
+ // that will fail because the request was already removed from the hash table.
+ //
+ // By always returning `true`, we ensure vLLM keeps the request in its hash table until
+ // our worker explicitly signals completion, avoiding the race condition.
+ //
+ // If the slot is already Finished (no pending operations), we clean it up from our side
+ // but still return `true` so vLLM waits for the worker's completion signal.
if let SlotState::Finished = slot.state() {
- // All operations complete - safe to remove slot and tell vLLM blocks are free
self.slot_manager().remove_slot(&request_id)?;
- Ok(false)
} else {
debug_assert!(matches!(slot.state(), SlotState::Finishing));
- // Still has pending operations - keep slot alive for worker to process
- // Don't remove slot here. Worker needs it to process the finish event.
- // Worker will remove it after verifying all operations are complete.
- // The lock on the slot prevents new operations from being created in offload_blocks()
- Ok(true)
}
+
+ Ok(true)
}
fn has_slot(&self, request_id: String) -> bool {
diff --git a/lib/bindings/kvbm/src/block_manager/vllm/connector/worker.rs b/lib/bindings/kvbm/src/block_manager/vllm/connector/worker.rs
index 1b12d28cad..a80760973c 100644
--- a/lib/bindings/kvbm/src/block_manager/vllm/connector/worker.rs
+++ b/lib/bindings/kvbm/src/block_manager/vllm/connector/worker.rs
@@ -278,11 +278,6 @@ impl Worker for KvConnectorWorker {
self.maybe_finished_onboarding.insert(request_id);
}
- // delay offloading operations until the end of the forward pass
- debug_assert!(
- self.offloading_operations.is_empty(),
- "offloading operations should be empty"
- );
self.offloading_operations = offloading_operations;
Ok(())
@@ -304,15 +299,34 @@ impl Worker for KvConnectorWorker {
/// Trigger block-wise completion signals afer last layer.
fn save_kv_layer(&mut self, _layer_name: String) -> anyhow::Result<()> {
self.layers_complete += 1;
+ tracing::debug!(
+ iteration = self.iteration,
+ layers_complete = self.layers_complete,
+ total_layers = self.kv_cache_layers.len(),
+ pending_offload_ops = self.offloading_operations.len(),
+ "save_kv_layer called"
+ );
if self.layers_complete == self.kv_cache_layers.len() {
let offloading_operations = std::mem::take(&mut self.offloading_operations);
+ tracing::info!(
+ iteration = self.iteration,
+ num_operations = offloading_operations.len(),
+ "All layers complete, enqueuing {} offload operations",
+ offloading_operations.len()
+ );
+
// block on the the completion of the last layer
// todo(ryan): capture the context, pass this to the scheduler to do the await on another thread
// or put the event on a stream and use stream waits to keep it all on device.
event_sync_blocking(self.layer_events[self.layers_complete - 1]);
- for operation in offloading_operations {
- self.connector.enqueue_request(operation);
+ for operation in &offloading_operations {
+ tracing::debug!(
+ request_id = %operation.request_id,
+ operation_id = %operation.uuid,
+ "Enqueuing offload operation to scheduler"
+ );
+ self.connector.enqueue_request(operation.clone());
}
}
Ok(())
diff --git a/lib/bindings/python/pyproject.toml b/lib/bindings/python/pyproject.toml
index a27b20bdda..69ef03ffec 100644
--- a/lib/bindings/python/pyproject.toml
+++ b/lib/bindings/python/pyproject.toml
@@ -26,7 +26,7 @@ license = { text = "Apache-2.0" }
license-files = ["LICENSE"]
requires-python = ">=3.10"
dependencies = [
- "pydantic>=2.10.6,<=2.11.7",
+ "pydantic>=2.10.6,<=2.13",
"uvloop>=0.21.0",
]
classifiers = [
diff --git a/lib/bindings/python/rust/lib.rs b/lib/bindings/python/rust/lib.rs
index d8f2e785c3..78e04725f6 100644
--- a/lib/bindings/python/rust/lib.rs
+++ b/lib/bindings/python/rust/lib.rs
@@ -276,6 +276,8 @@ fn register_llm<'p>(
ModelInput::Tensor => llm_rs::model_type::ModelInput::Tensor,
};
+ let is_tensor_based = model_type.inner.supports_tensor();
+
let model_type_obj = model_type.inner;
let inner_path = model_path.to_string();
@@ -323,7 +325,33 @@ fn register_llm<'p>(
.or_else(|| Some(source_path.clone()));
pyo3_async_runtimes::tokio::future_into_py(py, async move {
- // Resolve the model path (local or fetch from HuggingFace)
+ // For TensorBased models, skip HuggingFace downloads and register directly
+ if is_tensor_based {
+ let model_name = model_name.unwrap_or_else(|| source_path.clone());
+ let mut card = llm_rs::model_card::ModelDeploymentCard::with_name_only(&model_name);
+ card.model_type = model_type_obj;
+ card.model_input = model_input;
+ card.user_data = user_data_json;
+
+ if let Some(cfg) = runtime_config {
+ card.runtime_config = cfg.inner;
+ }
+
+ // Register the Model Deployment Card via discovery interface
+ let discovery = endpoint.inner.drt().discovery();
+ let spec = rs::discovery::DiscoverySpec::from_model(
+ endpoint.inner.component().namespace().name().to_string(),
+ endpoint.inner.component().name().to_string(),
+ endpoint.inner.name().to_string(),
+ &card,
+ )
+ .map_err(to_pyerr)?;
+ discovery.register(spec).await.map_err(to_pyerr)?;
+
+ return Ok(());
+ }
+
+ // For non-TensorBased models, resolve the model path (local or fetch from HuggingFace)
let model_path = if fs::exists(&source_path)? {
PathBuf::from(&source_path)
} else {
@@ -596,6 +624,84 @@ impl DistributedRuntime {
CancellationToken { inner }
}
+ /// Register an async Python callback for /engine/{route_name}
+ ///
+ /// Args:
+ /// route_name: Route path (e.g., "start_profile" โ /engine/start_profile)
+ /// callback: Async function with signature: async def(body: dict) -> dict
+ ///
+ /// Example:
+ /// ```python
+ /// async def start_profile(body: dict) -> dict:
+ /// await engine.start_profile(**body)
+ /// return {"status": "ok"}
+ ///
+ /// runtime.register_engine_route("start_profile", start_profile)
+ /// ```
+ #[pyo3(signature = (route_name, callback))]
+ fn register_engine_route(
+ &self,
+ py: Python<'_>,
+ route_name: String,
+ callback: PyObject,
+ ) -> PyResult<()> {
+ // Capture TaskLocals at registration time when Python's event loop is running.
+ // This is needed because later, when the callback is invoked from an HTTP request,
+ // we'll be on a Rust thread without a running Python event loop.
+ let locals =
+ Arc::new(pyo3_async_runtimes::tokio::get_current_locals(py).map_err(to_pyerr)?);
+ let callback = Arc::new(callback);
+
+ // Wrap Python async callback in Rust async closure
+ let rust_callback: rs::engine_routes::EngineRouteCallback =
+ Arc::new(move |body: serde_json::Value| {
+ let callback = callback.clone();
+ let locals = locals.clone();
+
+ // Return a boxed future
+ Box::pin(async move {
+ // Acquire GIL to call Python callback and convert coroutine to future
+ let py_future = Python::with_gil(|py| {
+ // Convert body to Python dict
+ let py_body = pythonize::pythonize(py, &body).map_err(|e| {
+ anyhow::anyhow!("Failed to convert request body to Python: {}", e)
+ })?;
+
+ // Call Python async function to get a coroutine
+ let coroutine = callback.call1(py, (py_body,)).map_err(|e| {
+ anyhow::anyhow!("Failed to call Python callback: {}", e)
+ })?;
+
+ // Use the TaskLocals captured at registration time
+ pyo3_async_runtimes::into_future_with_locals(
+ &locals,
+ coroutine.into_bound(py),
+ )
+ .map_err(|e| {
+ anyhow::anyhow!("Failed to convert coroutine to future: {}", e)
+ })
+ })?;
+
+ // Await the Python coroutine (GIL is released during await)
+ let py_result = py_future
+ .await
+ .map_err(|e| anyhow::anyhow!("Python callback failed: {}", e))?;
+
+ // Convert result back to serde_json::Value
+ Python::with_gil(|py| {
+ pythonize::depythonize::(py_result.bind(py))
+ .map_err(|e| anyhow::anyhow!("Failed to serialize response: {}", e))
+ })
+ })
+ });
+
+ self.inner
+ .engine_routes()
+ .register(&route_name, rust_callback);
+ tracing::debug!("Registered engine route: /engine/{}", route_name);
+ Ok(())
+ }
+
// This is used to pass the DistributedRuntime from the dynamo-runtime bindings
// to the KVBM bindings, since KVBM cannot directly use the struct from this cdylib.
// TODO: Create a separate crate "dynamo-python" so that all binding crates can import
diff --git a/lib/bindings/python/rust/llm/kv.rs b/lib/bindings/python/rust/llm/kv.rs
index 986a95464d..e4802083ba 100644
--- a/lib/bindings/python/rust/llm/kv.rs
+++ b/lib/bindings/python/rust/llm/kv.rs
@@ -21,7 +21,7 @@ use rs::traits::events::EventSubscriber;
use tracing;
use llm_rs::kv_router::protocols::*;
-use llm_rs::kv_router::publisher::{KvEventSourceConfig, create_stored_blocks};
+use llm_rs::kv_router::publisher::{KvEventSourceConfig, create_stored_blocks, start_zmq_listener};
use llm_rs::protocols::common::{OutputOptions, SamplingOptions, StopConditions};
#[pyfunction]
@@ -106,6 +106,9 @@ pub struct ZmqKvEventPublisherConfig {
pub zmq_endpoint: String,
#[pyo3(get, set)]
pub zmq_topic: String,
+ #[pyo3(get, set)]
+ pub enable_local_indexer: bool, // whether the underlying KvEventPublisher publishes to
+ // both global and worker-local KvIndexers
}
#[pymethods]
@@ -115,19 +118,22 @@ impl ZmqKvEventPublisherConfig {
worker_id,
kv_block_size,
zmq_endpoint = "tcp://127.0.0.1:5557".to_string(),
- zmq_topic = "".to_string()
+ zmq_topic = "".to_string(),
+ enable_local_indexer = false
))]
pub fn new(
worker_id: WorkerId,
kv_block_size: usize,
zmq_endpoint: String,
zmq_topic: String,
+ enable_local_indexer: bool,
) -> Self {
Self {
worker_id,
kv_block_size,
zmq_endpoint,
zmq_topic,
+ enable_local_indexer,
}
}
}
@@ -141,13 +147,14 @@ pub(crate) struct ZmqKvEventPublisher {
impl ZmqKvEventPublisher {
#[new]
fn new(component: Component, config: ZmqKvEventPublisherConfig) -> PyResult {
- let inner = llm_rs::kv_router::publisher::KvEventPublisher::new(
+ let inner = llm_rs::kv_router::publisher::KvEventPublisher::new_with_local_indexer(
component.inner,
config.kv_block_size as u32,
Some(KvEventSourceConfig::Zmq {
endpoint: config.zmq_endpoint,
topic: config.zmq_topic,
}),
+ config.enable_local_indexer,
)
.map_err(to_pyerr)?;
Ok(Self { inner })
@@ -179,7 +186,7 @@ impl ZmqKvEventListener {
let (tx, rx) = tokio::sync::mpsc::unbounded_channel::();
let shutdown_token = tokio_util::sync::CancellationToken::new();
- tokio::spawn(llm_rs::kv_router::publisher::start_zmq_listener(
+ tokio::spawn(start_zmq_listener(
zmq_endpoint,
zmq_topic,
tx,
diff --git a/lib/bindings/python/rust/llm/local_model.rs b/lib/bindings/python/rust/llm/local_model.rs
index 15fb24f373..3917c7a089 100644
--- a/lib/bindings/python/rust/llm/local_model.rs
+++ b/lib/bindings/python/rust/llm/local_model.rs
@@ -49,6 +49,11 @@ impl ModelRuntimeConfig {
self.inner.data_parallel_size = data_parallel_size;
}
+ #[setter]
+ fn set_enable_local_indexer(&mut self, enable_local_indexer: bool) {
+ self.inner.enable_local_indexer = enable_local_indexer;
+ }
+
fn set_engine_specific(&mut self, key: &str, value: String) -> PyResult<()> {
let value: serde_json::Value = serde_json::from_str(&value).map_err(to_pyerr)?;
self.inner
@@ -103,6 +108,11 @@ impl ModelRuntimeConfig {
self.inner.reasoning_parser.clone()
}
+ #[getter]
+ fn enable_local_indexer(&self) -> bool {
+ self.inner.enable_local_indexer
+ }
+
#[getter]
fn runtime_data(&self, py: Python<'_>) -> PyResult {
let dict = PyDict::new(py);
diff --git a/lib/bindings/python/src/dynamo/_core.pyi b/lib/bindings/python/src/dynamo/_core.pyi
index 22841ef6e4..1a0d1913aa 100644
--- a/lib/bindings/python/src/dynamo/_core.pyi
+++ b/lib/bindings/python/src/dynamo/_core.pyi
@@ -5,6 +5,7 @@ from typing import (
Any,
AsyncGenerator,
AsyncIterator,
+ Awaitable,
Callable,
Dict,
List,
@@ -57,6 +58,32 @@ class DistributedRuntime:
"""
...
+ def register_engine_route(
+ self,
+ route_name: str,
+ callback: Callable[[dict], Awaitable[dict]],
+ ) -> None:
+ """
+ Register an async callback for /engine/{route_name} on the system status server.
+
+ Args:
+ route_name: The route path (e.g., "start_profile" creates /engine/start_profile)
+ callback: Async function with signature: async def(body: dict) -> dict
+
+ Example:
+ async def start_profile(body: dict) -> dict:
+ await engine.start_profile(**body)
+ return {"status": "ok", "message": "Profiling started"}
+
+ runtime.register_engine_route("start_profile", start_profile)
+
+ The callback receives the JSON request body as a dict and should return
+ a dict that will be serialized as the JSON response.
+
+ For GET requests or empty bodies, an empty dict {} is passed.
+ """
+ ...
+
class CancellationToken:
def cancel(self) -> None:
"""
@@ -433,6 +460,7 @@ class ModelRuntimeConfig:
max_num_batched_tokens: int | None
tool_call_parser: str | None
reasoning_parser: str | None
+ enable_local_indexer: bool
runtime_data: dict[str, Any]
tensor_model_config: Any | None
@@ -816,7 +844,8 @@ class ZmqKvEventPublisherConfig:
worker_id: int,
kv_block_size: int,
zmq_endpoint: str = "tcp://127.0.0.1:5557",
- zmq_topic: str = ""
+ zmq_topic: str = "",
+ enable_local_indexer: bool = False
) -> None:
"""
Configuration for the ZmqKvEventPublisher.
@@ -825,6 +854,7 @@ class ZmqKvEventPublisherConfig:
:param kv_block_size: The block size for the key-value store.
:param zmq_endpoint: The ZeroMQ endpoint. Defaults to "tcp://127.0.0.1:5557".
:param zmq_topic: The ZeroMQ topic to subscribe to. Defaults to an empty string.
+ :param enable_local_indexer: Whether to enable the worker-local KV indexer. Defaults to False.
"""
...
@@ -1077,6 +1107,10 @@ async def register_llm(
Providing only one of these parameters will raise a ValueError.
- `lora_name`: The served model name for the LoRA model
- `base_model_path`: Path to the base model that the LoRA extends
+
+ For TensorBased models (using ModelInput.Tensor), HuggingFace downloads are skipped
+ and a minimal model card is registered directly. Use model_path as the display name
+ for these models.
"""
...
diff --git a/lib/bindings/python/src/dynamo/nixl_connect/__init__.py b/lib/bindings/python/src/dynamo/nixl_connect/__init__.py
index 59c7f31e48..6b7678ffbb 100644
--- a/lib/bindings/python/src/dynamo/nixl_connect/__init__.py
+++ b/lib/bindings/python/src/dynamo/nixl_connect/__init__.py
@@ -69,15 +69,15 @@ class AbstractOperation(ABC):
def __init__(
self,
- connector: Connector,
+ connection: Connection,
operation_kind: OperationKind,
local_descriptors: Descriptor | list[Descriptor],
remote_descriptors: Optional[Descriptor | list[Descriptor]],
notification_key: Optional[str],
) -> None:
- if not isinstance(connector, Connector):
+ if not isinstance(connection, Connection):
raise TypeError(
- "Argument `connector` must be `dynamo.nixl_connect.Connector`."
+ "Argument `connection` must be `dynamo.nixl_connect.Connection`."
)
if (
operation_kind is not OperationKind.READ
@@ -126,7 +126,7 @@ def __init__(
self._notification_key: str = (
"" if notification_key is None else notification_key
)
- self._connector: Connector = connector
+ self._connection: Connection = connection
self._operation_kind: OperationKind = operation_kind
self._local_desc_list: Descriptor | list[Descriptor] = local_descriptors
self._local_desc_tlist: Optional[list[tuple[int, int, int]]] = None
@@ -141,9 +141,15 @@ def __init__(
# Note: Only local descriptors should be registered with NIXL,
if isinstance(local_descriptors, list):
for d in local_descriptors:
- d.register_memory(self._connector)
+ d.register_with_connector(self._connection)
+ logger.debug(
+ f"dynamo.nixl_connect.{self.__class__.__name__}: Registered descriptor {d} with connector {self._connection}."
+ )
else:
- local_descriptors.register_memory(self._connector)
+ local_descriptors.register_with_connector(self._connection)
+ logger.debug(
+ f"dynamo.nixl_connect.{self.__class__.__name__}: Registered descriptor {local_descriptors} with connector {self._connection}."
+ )
# Record local descriptors.
device_kind, desc_tlist = self._create_desc_tlist(local_descriptors)
@@ -166,14 +172,32 @@ def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
self._release()
def _release(self) -> None:
- pass
+ """
+ Private method to release resources.
+ """
+ # Deregister local descriptors from NIXL, allowing them to reused by a future operation.
+ if isinstance(self._local_desc_list, list):
+ for d in self._local_desc_list:
+ if d.is_registered:
+ d.deregister_with_connector(self._connection)
+ else:
+ logger.debug(
+ f"dynamo.nixl_connect.{self.__class__.__name__}: Descriptor {d} was not registered, skipping deregistration."
+ )
+ else:
+ if self._local_desc_list.is_registered:
+ self._local_desc_list.deregister_with_connector(self._connection)
+ else:
+ logger.debug(
+ f"dynamo.nixl_connect.{self.__class__.__name__}: Descriptor {self._local_desc_list} was not registered, skipping deregistration."
+ )
@property
- def connector(self) -> Connector:
+ def connection(self) -> Connection:
"""
- Gets the local associated with this operation.
+ Gets the local connection associated with this operation.
"""
- return self._connector
+ return self._connection
@property
def operation_kind(self) -> OperationKind:
@@ -230,7 +254,7 @@ def __init__(
remote_descriptors: Descriptor | list[Descriptor],
notification_key: str,
) -> None:
- if not isinstance(remote, Remote) or remote._connector is None:
+ if not isinstance(remote, Remote) or remote._connection is None:
raise TypeError(
"Argument `remote` must be valid `dynamo.nixl_connect.Remote`."
)
@@ -303,7 +327,7 @@ def __init__(
self._status = OperationStatus.UNINITIALIZED
super().__init__(
- remote.connector,
+ remote.connection,
operation_kind,
local_descriptors,
remote_descriptors,
@@ -317,21 +341,21 @@ def __init__(
self._remote_xfer_descs: Optional[nixl_bindings.nixlXferDList] = None
self._xfer_hndl: Optional[nixl_api.nixl_xfer_handle] = None
- self._local_xfer_descs = self._connector._nixl.get_xfer_descs(
+ self._local_xfer_descs = self._connection._nixl.get_xfer_descs(
descs=self._local_desc_tlist,
mem_type=str(self._local_device_kind),
)
logger.debug(
f"dynamo.nixl_connect.{self.__class__.__name__}: Created local NIXL transfer descriptors: {self._local_xfer_descs}"
)
- self._remote_xfer_descs = self._connector._nixl.get_xfer_descs(
+ self._remote_xfer_descs = self._connection._nixl.get_xfer_descs(
descs=self._remote_desc_tlist,
mem_type=str(self._remote_device_kind),
)
logger.debug(
f"dynamo.nixl_connect.{self.__class__.__name__}: Created remote NIXL transfer descriptors: {self._remote_xfer_descs}"
)
- self._xfer_hndl = self._connector._nixl.initialize_xfer(
+ self._xfer_hndl = self._connection._nixl.initialize_xfer(
operation=str(operation_kind),
local_descs=self._local_xfer_descs,
remote_descs=self._remote_xfer_descs,
@@ -380,7 +404,7 @@ def _release(self) -> None:
logger.debug(
f"dynamo.nixl_connect.{self.__class__.__name__}: NIXL transfer handle {self._xfer_hndl} released."
)
- self._connector._nixl.release_xfer_handle(self._xfer_hndl)
+ self._connection._nixl.release_xfer_handle(self._xfer_hndl)
except Exception as e:
logger.error(
f"dynamo.nixl_connect.{self.__class__.__name__}: Failed to release resources: {e}"
@@ -413,7 +437,7 @@ def _cancel_(self) -> None:
)
# NIXL will cancel the transfer if it is in progress when the handle is released.
- self._connector._nixl.release_xfer_handle(self._xfer_hndl)
+ self._connection._nixl.release_xfer_handle(self._xfer_hndl)
self._status = OperationStatus.CANCELLED
self._xfer_hndl = None
@@ -467,7 +491,7 @@ def status(self) -> OperationStatus:
old_status = self._status
if self._status == OperationStatus.UNINITIALIZED:
- state = self._connector._nixl.transfer(
+ state = self._connection._nixl.transfer(
self._xfer_hndl,
self._notification_key.encode("utf-8"),
)
@@ -481,7 +505,7 @@ def status(self) -> OperationStatus:
else:
self._status = OperationStatus.INITIALIZED
else:
- state = self._connector._nixl.check_xfer_state(self._xfer_hndl)
+ state = self._connection._nixl.check_xfer_state(self._xfer_hndl)
logger.debug(
f"dynamo.nixl_connect.{self.__class__.__name__}: NIXL reported transfer state: {state}"
)
@@ -500,6 +524,90 @@ def status(self) -> OperationStatus:
return self._status
+class Connection:
+ def __init__(self, connector: Connector, number: int):
+ """
+ Creates a new Connection instance.
+
+ Parameters
+ ----------
+ connector : Connector
+ The connector associated with this connection.
+ number : int
+ The connection number.
+ Used to create a unique name for the connection.
+
+ Raises
+ ------
+ TypeError
+ When `connector` is provided and not of type `dynamo.nixl_connect.Connector`.
+ TypeError
+ When `number` is provided and not of type `int`.
+ ValueError
+ When `number` is provided and not greater than 0.
+ """
+ if not isinstance(connector, Connector):
+ raise TypeError(
+ "Argument `connector` must be `dynamo.nixl_connect.Connector`."
+ )
+ if not isinstance(number, int):
+ raise TypeError("Argument `number` must be of type `int`.")
+ if number <= 0:
+ raise ValueError("Argument `number` must be greater than 0.")
+
+ self._connector: Connector = connector
+ self._is_initialized = False
+ self._name = f"{connector.name}-{number}"
+ self._nixl = nixl_api.nixl_agent(self._name)
+
+ logger.debug(
+ f"dynamo.nixl_connect.{self.__class__.__name__}: Created {self.__repr__()}."
+ )
+
+ def __repr__(self) -> str:
+ return str(
+ f"{self.__class__.__name__}("
+ f"is_initialized={self._is_initialized}, "
+ f"name='{self._name}'"
+ ")"
+ )
+
+ def __str__(self) -> str:
+ return self._name
+
+ @property
+ def connector(self) -> Connector:
+ """
+ Get the connector associated with this connection.
+ """
+ return self._connector
+
+ @property
+ def metadata(self) -> bytes:
+ """
+ Get the metadata of the connection.
+ """
+ return self._nixl.get_agent_metadata()
+
+ @property
+ def name(self) -> str | None:
+ """
+ Get the name of the connection.
+ """
+ return self._name
+
+ async def initialize(self) -> None:
+ # Only initialize the connection once.
+ if self._is_initialized:
+ return
+
+ self._is_initialized = True
+ # This method is a no-op for now, in the future it may be used to initialize the connection.
+ logger.debug(
+ f"dynamo.nixl_connect.{self.__class__.__name__}: Initialized {{ name: '{self._name}' }} completed."
+ )
+
+
class Connector:
"""
Core class for managing the connection between workers in a distributed environment.
@@ -529,28 +637,42 @@ def __init__(
if not isinstance(worker_id, str) or len(worker_id) == 0:
raise TypeError("Argument `worker_id` must be a non-empty `str` or `None`.")
+ self._connection_count: int = 0
self._worker_id = worker_id
- self._is_initialized = False
- self._nixl = nixl_api.nixl_agent(self._worker_id)
self._hostname = socket.gethostname()
- self._agent_metadata: Optional[bytes] = None
logger.debug(
f"dynamo.nixl_connect.{self.__class__.__name__}: Created {self.__repr__()}."
)
+ def __eq__(self, other: Any) -> bool:
+ if not isinstance(other, Connector):
+ return False
+ return self._worker_id == other._worker_id
+
+ def __ne__(self, value: object) -> bool:
+ if not isinstance(value, Connector):
+ return True
+ return self._worker_id != value._worker_id
+
def __repr__(self) -> str:
return str(
f"{self.__class__.__name__}("
f"worker_id='{self._worker_id}', "
- f"hostname={self._hostname}, "
- f"metadata=<{0 if self._agent_metadata is None else len(self._agent_metadata)} bytes>"
+ f"hostname={self._hostname}"
")"
)
def __str__(self) -> str:
return self._worker_id
+ @property
+ def hostname(self) -> str:
+ """
+ Get the name of the current worker's host.
+ """
+ return self._hostname
+
@cached_property
def is_cuda_available(self) -> bool:
# Note: `cuda.is_available` initializes CUDA
@@ -562,13 +684,6 @@ def is_cuda_available(self) -> bool:
except CUDARuntimeError:
return False
- @property
- def metadata(self) -> bytes:
- """
- Get the metadata of the worker.
- """
- return self._nixl.get_agent_metadata()
-
@property
def name(self) -> str | None:
"""
@@ -620,12 +735,8 @@ async def begin_read(
"Cannot create a `dynamo.nixl_connect.ReadOperation` to read from a remote `dynamo.nixl_connect.WritableOperation`."
)
- if not self._is_initialized:
- raise RuntimeError(
- "Connector not initialized. Call `initialize()` before calling this method."
- )
-
- op = ReadOperation(self, remote_metadata, local_descriptors)
+ conn = await self._create_connection()
+ op = ReadOperation(conn, remote_metadata, local_descriptors)
return op
async def begin_write(
@@ -655,22 +766,18 @@ async def begin_write(
raise TypeError(
"Argument `local_descriptors` must be `Descriptor` or `list[Descriptor]`."
)
- if remote_metadata.operation_kind != OperationKind.WRITE:
+ if remote_metadata.operation_kind != OperationKind.WRITE.value:
raise RuntimeError(
"Cannot create a `WriteOperation` to write to a remote `ReadableOperation`."
)
if not isinstance(remote_metadata.nixl_metadata, str):
raise TypeError("Argument `remote_metadata.nixl_metadata` must be `str`.")
- if not self._is_initialized:
- raise RuntimeError(
- "Connector not initialized. Call `initialize()` before calling this method."
- )
-
- op = WriteOperation(self, local_descriptors, remote_metadata)
+ conn = await self._create_connection()
+ op = WriteOperation(conn, local_descriptors, remote_metadata)
return op
- def create_readable(
+ async def create_readable(
self,
local_descriptors: Descriptor | list[Descriptor],
) -> ReadableOperation:
@@ -682,15 +789,11 @@ def create_readable(
ReadableOperation
A readable operation that can be used to transfer data from a remote worker.
"""
- if not self._is_initialized:
- raise RuntimeError(
- "Connector not initialized. Call `initialize()` before calling this method."
- )
-
- op = ReadableOperation(self, local_descriptors)
+ conn = await self._create_connection()
+ op = ReadableOperation(conn, local_descriptors)
return op
- def create_writable(
+ async def create_writable(
self,
local_descriptors: Descriptor | list[Descriptor],
) -> WritableOperation:
@@ -702,25 +805,27 @@ def create_writable(
WritableOperation
A writable operation that can be used to transfer data to a remote worker.
"""
- if not self._is_initialized:
- raise RuntimeError(
- "Connector not initialized. Call `initialize()` before calling this method."
- )
-
- op = WritableOperation(self, local_descriptors)
+ conn = await self._create_connection()
+ op = WritableOperation(conn, local_descriptors)
return op
async def initialize(self) -> None:
- # Only initialize the connector once.
- if self._is_initialized:
- return
-
- self._is_initialized = True
- # This method is a no-op for now, in the future it may be used to initialize the connector.
+ """
+ Deprecated method.
+ """
logger.debug(
- f"dynamo.nixl_connect.{self.__class__.__name__}: Initialized {{ name: '{self._worker_id}' }} completed."
+ f"dynamo.nixl_connect.{self.__class__.__name__}: Initialized {{ name: '{self._worker_id}' }} (This method is deprecated)."
)
+ async def _create_connection(self) -> Connection:
+ """
+ Private method to create a new connection.
+ """
+ self._connection_count += 1
+ conn = Connection(self, self._connection_count)
+ await conn.initialize()
+ return conn
+
class Descriptor:
"""
@@ -784,7 +889,8 @@ def __init__(
# Member fields for managing NIXL memory registration.
# Note: ONLY local descriptors should be registered with NIXL,
# remote descriptors do not have a valid memory address and registration will fault.
- self._connector: Optional[Connector] = None
+
+ self._connection: Optional[Connection] = None
self._nixl_hndl: Optional[nixl_bindings.nixlRegDList] = None
# Initially `None` cached serialized descriptor reference, populated when `get_metadata()` is called.
@@ -865,10 +971,11 @@ def __init__(
raise TypeError(TYPE_ERROR_MESSAGE)
def __del__(self) -> None:
- if self._nixl_hndl is not None and self._connector is not None:
- # Unregister the memory with NIXL.
- self._connector._nixl.deregister_memory(self._nixl_hndl)
+ if not (self._nixl_hndl is None or self._connection is None):
+ # Deregister the memory with NIXL.
+ self._connection._nixl.deregister_memory(self._nixl_hndl)
self._nixl_hndl = None
+ self._connection = None
if self._data_ref is not None:
# Release the reference to the data.
@@ -891,6 +998,13 @@ def device(self) -> Device:
"""
return self._data_device
+ @property
+ def is_registered(self) -> bool:
+ """
+ Gets whether the descriptor is registered with NIXL.
+ """
+ return self._connection is not None and self._nixl_hndl is not None
+
@property
def ptr(self) -> int:
"""
@@ -927,6 +1041,7 @@ def from_serialized(
return serialized.to_descriptor()
+ @property
def metadata(self) -> SerializedDescriptor:
"""
Serializes the descriptor into a `SerializedDescriptor` object.
@@ -936,37 +1051,75 @@ def metadata(self) -> SerializedDescriptor:
device=f"{self._data_device}",
ptr=self._data_ptr,
size=self._data_size,
- )
+ ) # type: ignore[operator]
return self._serialized
- def register_memory(
+ def deregister_with_connector(self, connection: Connection) -> None:
+ """
+ Deregisters the memory of the descriptor with NIXL.
+ """
+ if not isinstance(connection, Connection):
+ raise TypeError(
+ "Argument `connection` must be `dynamo.nixl_connect.Connection`."
+ )
+ if connection != self._connection:
+ raise RuntimeError(
+ "Descriptor can only be deregistered from the connection it was registered with. "
+ f"Existing connection: {self._connection.name if self._connection is not None else None}, requested connection: {connection.name}."
+ )
+ return
+
+ if self._nixl_hndl is None:
+ logger.warning(
+ f"dynamo.nixl_connect.{self.__class__.__name__}: Request to deregister Descriptor {self.__repr__()} cannot be completed because the Descriptor is not registered."
+ )
+ return
+
+ connection._nixl.deregister_memory(self._nixl_hndl)
+ self._nixl_hndl = None
+ self._connection = None
+ logger.debug(
+ f"dynamo.nixl_connect.{self.__class__.__name__}: Deregistered {self.__repr__()} with NIXL."
+ )
+
+ def register_with_connector(
self,
- connector: Connector,
+ connection: Connection,
) -> None:
"""
Registers the memory of the descriptor with NIXL.
"""
- if not isinstance(connector, Connector):
+ if not isinstance(connection, Connection):
raise TypeError(
- "Argument `connector` must be `dynamo.nixl_connect.Connector`."
+ "Argument `connection` must be `dynamo.nixl_connect.Connection`."
)
if self._data_ptr == 0:
raise ValueError("Cannot register memory with a null pointer.")
+ if self._connection is not None:
+ if self._connection != connection:
+ raise RuntimeError(
+ "Descriptor cannot be registered with more than one connection. "
+ f"Existing connection: {self._connection.name}, new connection: {connection.name}."
+ )
+ # Descriptor is already registered with this connection.
+ return
- if not (self._nixl_hndl is None and self._connector is None):
+ # When the descriptor is already registered with NIXL, just return.
+ if self._nixl_hndl is not None:
return
# Register the memory with NIXL.
- self._connector = connector
+ self._connection = connection
+
if isinstance(self._data_ref, torch.Tensor):
- self._nixl_hndl = connector._nixl.register_memory(self._data_ref)
+ self._nixl_hndl = connection._nixl.register_memory(self._data_ref)
else:
mem_type = str(self._data_device.kind)
reg_list = [
(self._data_ptr, self._data_size, self._data_device.id, mem_type)
]
- self._nixl_hndl = connector._nixl.register_memory(reg_list, mem_type)
+ self._nixl_hndl = connection._nixl.register_memory(reg_list, mem_type)
logger.debug(
f"dynamo.nixl_connect.{self.__class__.__name__}: Registered {self.__repr__()} with NIXL."
@@ -1173,7 +1326,7 @@ class PassiveOperation(AbstractOperation):
def __init__(
self,
- connector: Connector,
+ connection: Connection,
operation_kind: OperationKind,
local_descriptors: Descriptor | list[Descriptor],
) -> None:
@@ -1188,7 +1341,7 @@ def __init__(
self._status = OperationStatus.UNINITIALIZED
super().__init__(
- connector,
+ connection,
operation_kind,
local_descriptors,
None,
@@ -1240,12 +1393,12 @@ def metadata(self, hex_encode: bool = False) -> RdmaMetadata:
# When we've not yet cached the serialized request, we need to generate one before returning it.
# Handle both cases: multiple and single descriptors.
if isinstance(self._local_desc_list, list):
- descriptors = [desc.metadata() for desc in self._local_desc_list]
+ descriptors = [desc.metadata for desc in self._local_desc_list]
else:
- descriptors = [self._local_desc_list.metadata()]
+ descriptors = [self._local_desc_list.metadata]
- original_len = len(self._connector.metadata)
- nixl_metadata = self._connector.metadata
+ original_len = len(self._connection.metadata)
+ nixl_metadata = self._connection.metadata
nixl_metadata = zlib.compress(nixl_metadata, level=6)
compressed_len = len(nixl_metadata)
logger.debug(
@@ -1283,7 +1436,7 @@ def status(self) -> OperationStatus:
old_status = self._status
# Query NIXL for any notifications.
- notifications = self._connector._nixl.update_notifs()
+ notifications = self._connection._nixl.update_notifs()
if isinstance(notifications, dict):
remote_state = OperationStatus.IN_PROGRESS
@@ -1309,7 +1462,7 @@ def status(self) -> OperationStatus:
if remote_state == OperationStatus.COMPLETE:
self._status = remote_state
logger.debug(
- f"dynamo.nixl_connect.{self.__class__.__name__}: {{ remote: '{self._connector.name}' status: '{old_status}' => '{self._status}' }}."
+ f"dynamo.nixl_connect.{self.__class__.__name__}: {{ remote: '{self._connection.name}' status: '{old_status}' => '{self._status}' }}."
)
return self._status
@@ -1330,7 +1483,7 @@ class ReadOperation(ActiveOperation):
def __init__(
self,
- connector: Connector,
+ connection: Connection,
remote_metadata: RdmaMetadata,
local_descriptors: Descriptor | list[Descriptor],
) -> None:
@@ -1341,16 +1494,16 @@ def __init__(
Parameters
----------
- connector : Connector
- Connector instance to use for the operation.
+ connection : Connection
+ Connection instance to use for the operation.
remote_metadata : RdmaMetadata
Serialized request from the remote worker.
local_descriptors : Descriptor | list[Descriptor]
Local descriptor(s) to to receive the data from the remote worker.
"""
- if not isinstance(connector, Connector):
+ if not isinstance(connection, Connection):
raise TypeError(
- "Argument `connector` must be `dynamo.nixl_connect.Connector`."
+ "Argument `connection` must be `dynamo.nixl_connect.Connection`."
)
if not isinstance(remote_metadata, RdmaMetadata):
raise TypeError(
@@ -1359,7 +1512,7 @@ def __init__(
if remote_metadata.operation_kind != OperationKind.READ.value:
raise ValueError("Argument `remote_metadata` must be of kind `READ`.")
- remote = Remote(connector, remote_metadata.nixl_metadata)
+ remote = Remote(connection, remote_metadata.nixl_metadata)
remote_descriptors = remote_metadata.to_descriptors()
if not (
@@ -1435,10 +1588,10 @@ class ReadableOperation(PassiveOperation):
def __init__(
self,
- connector: Connector,
+ connection: Connection,
local_descriptors: Descriptor | list[Descriptor],
) -> None:
- super().__init__(connector, OperationKind.READ, local_descriptors)
+ super().__init__(connection, OperationKind.READ, local_descriptors)
logger.debug(
f"dynamo.nixl_connect.{self.__class__.__name__}: Created {self.__repr__()}"
)
@@ -1510,17 +1663,19 @@ class Remote:
def __init__(
self,
- connector: Connector,
+ connection: Connection,
nixl_metadata: bytes | str,
) -> None:
- if not isinstance(connector, Connector):
- raise TypeError("Argument `local` must be `dynamo.nixl_connect.Connector`.")
+ if not isinstance(connection, Connection):
+ raise TypeError(
+ "Argument `connection` must be `dynamo.nixl_connect.Connection`."
+ )
if not (isinstance(nixl_metadata, bytes) or isinstance(nixl_metadata, str)):
raise TypeError("Argument `nixl_metadata` must be `bytes` or `str`.")
if len(nixl_metadata) == 0:
raise ValueError("Argument `nixl_metadata` cannot be empty.")
- self._connector = connector
+ self._connection = connection
# When `nixl_metadata` is a string, it is assumed to have come from a remote worker
# via a `RdmaMetadata` object and therefore can assumed be a b64-encoded, compressed
@@ -1535,7 +1690,7 @@ def __init__(
# Decompress the NIXL metadata.
nixl_metadata = zlib.decompress(nixl_metadata)
- self._name = connector._nixl.add_remote_agent(nixl_metadata)
+ self._name = connection._nixl.add_remote_agent(nixl_metadata)
if isinstance(self._name, bytes):
self._name = self._name.decode("utf-8")
@@ -1559,7 +1714,7 @@ def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
self._release()
def __repr__(self) -> str:
- return f"Remote(name={self._name}, connector={self._connector.name})"
+ return f"Remote(name={self._name}, connection={self._connection.name})"
def __str__(self) -> str:
return self._name
@@ -1568,19 +1723,19 @@ def _release(self) -> None:
"""
Private method for releasing NIXL resources. Not intended for public use.
"""
- # We have to unregister the remote agent from NIXL because we cannot know if the remote worker has updated its descriptors or not, and
+ # We have to deregister the remote agent from NIXL because we cannot know if the remote worker has updated its descriptors or not, and
# NIXL will return an error if we attempt to register a remote agent with the same name but different descriptors (aka conn_info).
- self._connector._nixl.remove_remote_agent(self._name)
+ self._connection._nixl.remove_remote_agent(self._name)
logger.debug(
- f'dynamo.nixl_connect.{self.__class__.__name__}: Unregistered NIXL remote {{ name: "{self._name}" }}.'
+ f'dynamo.nixl_connect.{self.__class__.__name__}: Deregistered NIXL remote {{ name: "{self._name}" }}.'
)
@property
- def connector(self) -> Connector:
+ def connection(self) -> Connection:
"""
- Gets the local connector associated with this remote worker.
+ Gets the local connection associated with this remote worker.
"""
- return self._connector
+ return self._connection
@property
def name(self) -> str:
@@ -1647,7 +1802,7 @@ class WritableOperation(PassiveOperation):
def __init__(
self,
- connector: Connector,
+ connection: Connection,
local_descriptors: Descriptor | list[Descriptor],
) -> None:
"""
@@ -1656,18 +1811,18 @@ def __init__(
Parameters
----------
- connector : Connector
- Connector instance to use for the operation.
+ connection : Connection
+ Connection instance to use for the operation.
local_descriptors : Descriptor | list[Descriptor]
Descriptors to receive data from a remote worker.
Raises
TypeError
- When `local` is not a `dynamo.nixl_connect.Connector`.
+ When `connection` is not a `dynamo.nixl_connect.Connection`.
TypeError
When `local_descriptors` is not a `dynamo.nixl_connect.Descriptor` or `list[dynamo.nixl_connect.Descriptor]`.
"""
- super().__init__(connector, OperationKind.WRITE, local_descriptors)
+ super().__init__(connection, OperationKind.WRITE, local_descriptors)
logger.debug(
f"dynamo.nixl_connect.{self.__class__.__name__}: Created {self.__repr__()}"
)
@@ -1703,7 +1858,7 @@ class WriteOperation(ActiveOperation):
def __init__(
self,
- connector: Connector,
+ connection: Connection,
local_descriptors: Descriptor | list[Descriptor],
remote_metadata: RdmaMetadata,
) -> None:
@@ -1714,8 +1869,8 @@ def __init__(
Parameters
----------
- connector : Connector
- Connector instance to use for the operation.
+ connection : Connection
+ Connection instance to use for the operation.
local_descriptors : Descriptor | list[Descriptor]
Local descriptor(s) to send from, to the remote worker.
remote_metadata : RdmaMetadata
@@ -1733,9 +1888,9 @@ def __init__(
TypeError
When `local_descriptors` is not a `dynamo.nixl_connect.Descriptor` or `list[dynamo.nixl_connect.Descriptor]`.
"""
- if not isinstance(connector, Connector):
+ if not isinstance(connection, Connection):
raise TypeError(
- "Argument `connector` must be `dynamo.nixl_connect.Connector`."
+ "Argument `connection` must be `dynamo.nixl_connect.Connection`."
)
if not isinstance(remote_metadata, RdmaMetadata):
raise TypeError(
@@ -1744,7 +1899,7 @@ def __init__(
if remote_metadata.operation_kind != OperationKind.WRITE.value:
raise ValueError("Argument `remote_metadata` must be of kind `WRITE`.")
- remote = Remote(connector, remote_metadata.nixl_metadata)
+ remote = Remote(connection, remote_metadata.nixl_metadata)
remote_descriptors = remote_metadata.to_descriptors()
super().__init__(
diff --git a/lib/bindings/python/src/dynamo/prometheus_names.py b/lib/bindings/python/src/dynamo/prometheus_names.py
index 615edad127..c17985c33a 100644
--- a/lib/bindings/python/src/dynamo/prometheus_names.py
+++ b/lib/bindings/python/src/dynamo/prometheus_names.py
@@ -55,6 +55,8 @@ class frontend_service:
INPUT_SEQUENCE_TOKENS = "input_sequence_tokens"
# Output sequence length in tokens
OUTPUT_SEQUENCE_TOKENS = "output_sequence_tokens"
+ # Number of cached tokens (prefix cache hits) per request
+ CACHED_TOKENS = "cached_tokens"
# Total number of output tokens generated (counter that updates in real-time)
OUTPUT_TOKENS_TOTAL = "output_tokens_total"
# Time to first token in seconds
@@ -93,6 +95,10 @@ class kvbm:
ONBOARD_BLOCKS_D2D = "onboard_blocks_d2d"
# The number of matched tokens
MATCHED_TOKENS = "matched_tokens"
+ # Host cache hit rate (0.0-1.0) from the sliding window
+ HOST_CACHE_HIT_RATE = "host_cache_hit_rate"
+ # Disk cache hit rate (0.0-1.0) from the sliding window
+ DISK_CACHE_HIT_RATE = "disk_cache_hit_rate"
class kvrouter:
diff --git a/lib/bindings/python/tests/cancellation/test_cancellation.py b/lib/bindings/python/tests/cancellation/test_cancellation.py
index 42d29d8930..1aff5e10ae 100644
--- a/lib/bindings/python/tests/cancellation/test_cancellation.py
+++ b/lib/bindings/python/tests/cancellation/test_cancellation.py
@@ -165,6 +165,7 @@ async def client(runtime, namespace):
@pytest.mark.forked
@pytest.mark.asyncio
+@pytest.mark.parametrize("request_plane", ["nats", "tcp"], indirect=True)
async def test_client_context_cancel(temp_file_store, server, client):
_, handler = server
context = Context()
@@ -198,6 +199,7 @@ async def test_client_context_cancel(temp_file_store, server, client):
@pytest.mark.forked
@pytest.mark.asyncio
+@pytest.mark.parametrize("request_plane", ["nats", "tcp"], indirect=True)
async def test_client_loop_break(temp_file_store, server, client):
_, handler = server
stream = await client.generate("_generate_until_context_cancelled")
@@ -230,6 +232,7 @@ async def test_client_loop_break(temp_file_store, server, client):
@pytest.mark.forked
@pytest.mark.asyncio
+@pytest.mark.parametrize("request_plane", ["nats", "tcp"], indirect=True)
async def test_server_context_cancel(temp_file_store, server, client):
_, handler = server
stream = await client.generate("_generate_and_cancel_context")
@@ -254,6 +257,7 @@ async def test_server_context_cancel(temp_file_store, server, client):
@pytest.mark.forked
@pytest.mark.asyncio
+@pytest.mark.parametrize("request_plane", ["nats", "tcp"], indirect=True)
async def test_server_raise_cancelled(temp_file_store, server, client):
_, handler = server
stream = await client.generate("_generate_and_raise_cancelled")
@@ -282,6 +286,7 @@ async def test_server_raise_cancelled(temp_file_store, server, client):
@pytest.mark.forked
@pytest.mark.asyncio
+@pytest.mark.parametrize("request_plane", ["nats", "tcp"], indirect=True)
async def test_client_context_already_cancelled(temp_file_store, server, client):
_, handler = server
context = Context()
@@ -304,6 +309,7 @@ async def test_client_context_already_cancelled(temp_file_store, server, client)
@pytest.mark.forked
@pytest.mark.asyncio
+@pytest.mark.parametrize("request_plane", ["nats", "tcp"], indirect=True)
async def test_client_context_cancel_before_await_request(
temp_file_store, server, client
):
diff --git a/lib/bindings/python/tests/conftest.py b/lib/bindings/python/tests/conftest.py
index 9d5f33a932..b234e405bb 100644
--- a/lib/bindings/python/tests/conftest.py
+++ b/lib/bindings/python/tests/conftest.py
@@ -402,8 +402,34 @@ def temp_file_store():
yield tmpdir
+@pytest.fixture
+def store_kv(request):
+ """
+ KV store for runtime. Defaults to "file".
+
+ To iterate over multiple stores in a test:
+ @pytest.mark.parametrize("store_kv", ["file", "etcd"], indirect=True)
+ async def test_example(runtime):
+ ...
+ """
+ return getattr(request, "param", "file")
+
+
+@pytest.fixture
+def request_plane(request):
+ """
+ Request plane for runtime. Defaults to "nats".
+
+ To iterate over multiple transports in a test:
+ @pytest.mark.parametrize("request_plane", ["tcp", "nats"], indirect=True)
+ async def test_example(runtime):
+ ...
+ """
+ return getattr(request, "param", "nats")
+
+
@pytest.fixture(scope="function", autouse=False)
-async def runtime(request):
+async def runtime(request, store_kv, request_plane):
"""
Create a DistributedRuntime for testing.
@@ -413,6 +439,14 @@ async def runtime(request):
Without @pytest.mark.forked in isolated mode, you will get "Worker already initialized"
errors when multiple tests try to create runtimes in the same process.
+
+ The store_kv and request_plane can be customized by overriding their fixtures
+ or using @pytest.mark.parametrize with indirect=True:
+
+ @pytest.mark.forked
+ @pytest.mark.parametrize("store_kv", ["etcd"], indirect=True)
+ async def test_with_etcd(runtime):
+ ...
"""
# Check if the test is marked with @pytest.mark.forked (only in isolated mode)
if ENABLE_ISOLATED_ETCD_AND_NATS:
@@ -435,6 +469,6 @@ async def test_my_test(runtime):
)
loop = asyncio.get_running_loop()
- runtime = DistributedRuntime(loop, "file", "nats")
+ runtime = DistributedRuntime(loop, store_kv, request_plane)
yield runtime
runtime.shutdown()
diff --git a/lib/bindings/python/tests/test_kv_bindings.py b/lib/bindings/python/tests/test_kv_bindings.py
index 1ff9245b9e..c3f24ff4ed 100644
--- a/lib/bindings/python/tests/test_kv_bindings.py
+++ b/lib/bindings/python/tests/test_kv_bindings.py
@@ -36,8 +36,8 @@ async def distributed_runtime():
runtime.shutdown()
-@pytest.mark.asyncio
-async def test_radix_tree_binding(distributed_runtime):
+@pytest.mark.timeout(5) # Expected: ~1s, timeout set to 5x for safety
+def test_radix_tree_binding():
"""Test RadixTree binding directly with store event and find matches"""
import json
@@ -102,13 +102,12 @@ async def test_radix_tree_binding(distributed_runtime):
)
-@pytest.mark.asyncio
+@pytest.mark.timeout(5) # Expected: ~1s, timeout set to 5x for safety
@pytest.mark.parametrize("num_threads", [2, 3, 5, 128])
@pytest.mark.parametrize("prepopulate_worker_ids", [True, False])
@pytest.mark.parametrize("expiration_duration_secs", [None])
@pytest.mark.parametrize("is_threaded", [True, False])
-async def test_radix_tree_thread_safety(
- distributed_runtime,
+def test_radix_tree_thread_safety(
num_threads,
prepopulate_worker_ids,
expiration_duration_secs,
@@ -205,6 +204,7 @@ def worker(worker_id, prepopulate_worker_ids: bool = False):
@pytest.mark.asyncio
+@pytest.mark.timeout(5) # Expected: ~1s, timeout set to 5x for safety
async def test_event_handler(distributed_runtime):
kv_block_size = 32
namespace = "kv_test"
@@ -247,6 +247,7 @@ async def test_event_handler(distributed_runtime):
@pytest.mark.asyncio
+@pytest.mark.timeout(5) # Expected: ~1s, timeout set to 5x for safety
async def test_approx_kv_indexer(distributed_runtime):
"""Test ApproxKvIndexer with TTL-based block tracking"""
kv_block_size = 32
diff --git a/lib/bindings/python/tests/test_lora_utils.py b/lib/bindings/python/tests/test_lora_utils.py
index fdce6ff4c5..b33b7a43bb 100644
--- a/lib/bindings/python/tests/test_lora_utils.py
+++ b/lib/bindings/python/tests/test_lora_utils.py
@@ -1,26 +1,32 @@
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
+import pytest
+
from dynamo.llm import lora_name_to_id
max_int32 = 0x7FFFFFFF
class TestLoraNameToId:
+ @pytest.mark.timeout(5)
def test_import_function(self):
assert callable(lora_name_to_id)
+ @pytest.mark.timeout(5)
def test_returns_positive_integer_for_different_names(self):
for i in range(100):
result = lora_name_to_id(f"test_lora_{i}")
assert isinstance(result, int)
assert 1 <= result <= max_int32
+ @pytest.mark.timeout(5)
def test_different_names_produce_different_ids(self):
id1 = lora_name_to_id("lora_adapter_1")
id2 = lora_name_to_id("lora_adapter_2")
assert id1 != id2
+ @pytest.mark.timeout(5)
def test_consistency_across_multiple_calls(self):
test_names = [f"lora_{i}" for i in range(100)]
results_first = [lora_name_to_id(name) for name in test_names]
diff --git a/lib/bindings/python/tests/test_tensor.py b/lib/bindings/python/tests/test_tensor.py
index 30b1fde01c..e48de90f31 100644
--- a/lib/bindings/python/tests/test_tensor.py
+++ b/lib/bindings/python/tests/test_tensor.py
@@ -34,15 +34,12 @@ async def test_register(runtime: DistributedRuntime):
assert model_config == runtime_config.get_tensor_model_config()
- # [gluo FIXME] register_llm will attempt to load a LLM model,
- # which is not well-defined for Tensor yet. Currently provide
- # a valid model name to pass the registration.
+ # Use register_llm for tensor-based backends (skips HuggingFace downloads)
await register_llm(
ModelInput.Tensor,
ModelType.TensorBased,
endpoint,
- "Qwen/Qwen3-0.6B",
- "tensor",
+ "tensor", # model_path (used as display name for tensor-based models)
runtime_config=runtime_config,
)
diff --git a/lib/llm/Cargo.toml b/lib/llm/Cargo.toml
index 8bb5533e02..97da4b9c59 100644
--- a/lib/llm/Cargo.toml
+++ b/lib/llm/Cargo.toml
@@ -22,6 +22,7 @@ testing-cuda = ["dep:cudarc"]
testing-nixl = ["dep:nixl-sys"]
testing-etcd = []
block-manager = ["dep:nixl-sys", "dep:cudarc", "dep:nix", "dep:aligned-vec"]
+block-manager-bench = ["block-manager", "testing-full", "dep:clap", "dep:indicatif"]
cuda = ["dep:cudarc"]
integration = ["dynamo-runtime/integration"]
media-nixl = ["dep:nixl-sys", "dep:dynamo-memory"]
@@ -105,6 +106,10 @@ nixl-sys = { version = "=0.7.1", optional = true }
cudarc = { workspace = true, optional = true }
nix = { version = "0.26", optional = true }
+# block_manager_bench
+clap = { version = "4.5.49", features = ["derive"], optional = true }
+indicatif = { version = "0.18.0", optional = true }
+
# protocols
unicode-segmentation = "1.12"
@@ -188,3 +193,8 @@ mockito = "1.7.0"
[build-dependencies]
tonic-build = { version = "0.13.1" }
+
+[[bin]]
+name = "bench_local_transfer_v2"
+path = "bin/bench_local_transfer_v2.rs"
+required-features = ["block-manager-bench"]
diff --git a/lib/llm/bin/bench_local_transfer_v2.rs b/lib/llm/bin/bench_local_transfer_v2.rs
new file mode 100644
index 0000000000..b82a5b89b8
--- /dev/null
+++ b/lib/llm/bin/bench_local_transfer_v2.rs
@@ -0,0 +1,196 @@
+// SPDX-FileCopyrightText: Copyright (c) 2024-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+use anyhow::Result;
+use clap::Parser;
+
+use core::time::Duration;
+use indicatif::ProgressIterator;
+use std::time::Instant;
+
+use dynamo_llm::block_manager::v2::physical::{
+ layout::LayoutConfig,
+ transfer::{
+ BounceBufferSpec, NixlAgent, PhysicalLayout, StorageKind, TransferOptions,
+ TransportManager, executor::execute_transfer,
+ },
+};
+
+use std::sync::Arc;
+
+#[derive(Parser)]
+struct Args {
+ /// Amount of layers
+ #[clap(long, default_value_t = 24)]
+ num_layers: usize,
+
+ /// Inner dimension
+ #[clap(long, default_value_t = 4096)]
+ inner_dim: usize,
+
+ /// Block size
+ #[clap(long, default_value_t = 32)]
+ block_size: usize,
+
+ /// Amount of blocks per pool
+ #[clap(long, default_value_t = 16)]
+ num_blocks: usize,
+
+ /// Amount of blocks per transferred batch
+ #[clap(long, default_value_t = 4)]
+ blocks_per_batch: usize,
+
+ /// Amount of pinned bounce buffer blocks
+ #[clap(long, default_value_t = 2)]
+ num_bounce_blocks: usize,
+
+ /// Amount of iterations
+ #[clap(long, default_value_t = 100)]
+ iterations: usize,
+}
+
+struct DummyBounceBufferSpec {
+ pub layout: PhysicalLayout,
+ pub block_ids: Vec,
+}
+
+impl BounceBufferSpec for DummyBounceBufferSpec {
+ fn layout(&self) -> &PhysicalLayout {
+ &self.layout
+ }
+ fn block_ids(&self) -> &[usize] {
+ &self.block_ids
+ }
+}
+
+#[tokio::main]
+pub async fn main() -> Result<()> {
+ let args = Args::parse();
+
+ // let manager = build_manager(&args).await?;
+
+ benchmark(&args).await?;
+
+ Ok(())
+}
+
+fn build_layout(
+ agent: NixlAgent,
+ config: LayoutConfig,
+ storage_kind: StorageKind,
+) -> PhysicalLayout {
+ let builder = PhysicalLayout::builder(agent)
+ .with_config(config)
+ .fully_contiguous();
+
+ match storage_kind {
+ StorageKind::System => builder.allocate_system().build().unwrap(),
+ StorageKind::Pinned => builder.allocate_pinned(false).build().unwrap(),
+ StorageKind::Device(device_id) => builder.allocate_device(device_id).build().unwrap(),
+ StorageKind::Disk(_) => builder.allocate_disk(None).build().unwrap(),
+ }
+}
+
+fn get_bandwidth_gbs(latencies: Vec, args: &Args) -> f64 {
+ let total_bytes =
+ args.num_layers * args.inner_dim * args.block_size * args.blocks_per_batch * 2;
+ let mean = latencies.iter().sum::() / latencies.len() as u32;
+
+ total_bytes as f64 / mean.as_nanos() as f64
+}
+
+async fn benchmark(args: &Args) -> Result<()> {
+ let agent = NixlAgent::require_backends("test_agent", &["POSIX", "GDS_MT"])?;
+ let src_dst_config = LayoutConfig::builder()
+ .num_blocks(args.num_blocks)
+ .num_layers(args.num_layers)
+ .outer_dim(2)
+ .page_size(args.block_size)
+ .inner_dim(args.inner_dim)
+ .dtype_width_bytes(2)
+ .build()?;
+
+ let disk_layout = build_layout(agent.clone(), src_dst_config.clone(), StorageKind::Disk(0));
+ let device_layout = build_layout(
+ agent.clone(),
+ src_dst_config.clone(),
+ StorageKind::Device(0),
+ );
+
+ let bounce_config = LayoutConfig::builder()
+ .num_blocks(args.num_bounce_blocks)
+ .num_layers(args.num_layers)
+ .outer_dim(2)
+ .page_size(args.block_size)
+ .inner_dim(args.inner_dim)
+ .dtype_width_bytes(2)
+ .build()?;
+
+ let bounce_layout = build_layout(agent.clone(), bounce_config.clone(), StorageKind::Pinned);
+
+ let ctx = TransportManager::builder()
+ .worker_id(0)
+ .nixl_agent(agent)
+ .cuda_device_id(0)
+ .build()?;
+
+ let bounce_buffer_spec: Arc = Arc::new(DummyBounceBufferSpec {
+ layout: bounce_layout,
+ block_ids: (0..args.num_bounce_blocks).collect(),
+ });
+
+ let options = TransferOptions::builder()
+ .bounce_buffer(bounce_buffer_spec)
+ .build()?;
+
+ anyhow::ensure!(
+ args.blocks_per_batch <= args.num_blocks,
+ "blocks_per_batch must be less than or equal to num_blocks"
+ );
+ let blocks = (0..args.blocks_per_batch).collect::>();
+
+ for (src, dst, name) in vec![
+ (disk_layout.clone(), device_layout.clone(), "disk_to_device"),
+ (device_layout, disk_layout, "device_to_disk"),
+ ] {
+ println!("Starting {} benchmark...", name);
+
+ let mut latencies = Vec::new();
+ for _ in (0..args.iterations).progress() {
+ let options_clone = options.clone();
+ let start = Instant::now();
+ execute_transfer(
+ &src,
+ &dst,
+ blocks.as_slice(),
+ blocks.as_slice(),
+ options_clone,
+ ctx.context(),
+ )?
+ .await?;
+ let end = Instant::now();
+ let duration = end.duration_since(start);
+ latencies.push(duration);
+ }
+
+ println!(
+ "{} bandwidth: {:?} GB/s",
+ name,
+ get_bandwidth_gbs(latencies, args)
+ );
+ }
+
+ Ok(())
+}
diff --git a/lib/llm/src/block_manager/block/transfer/kernels/vectorized_copy.fatbin b/lib/llm/src/block_manager/block/transfer/kernels/vectorized_copy.fatbin
index 558ba11ff2..d1a3c05fb1 100644
Binary files a/lib/llm/src/block_manager/block/transfer/kernels/vectorized_copy.fatbin and b/lib/llm/src/block_manager/block/transfer/kernels/vectorized_copy.fatbin differ
diff --git a/lib/llm/src/block_manager/v2/physical/transfer/executor/mod.rs b/lib/llm/src/block_manager/v2/physical/transfer/executor/mod.rs
index a3eeb36379..896956f20b 100644
--- a/lib/llm/src/block_manager/v2/physical/transfer/executor/mod.rs
+++ b/lib/llm/src/block_manager/v2/physical/transfer/executor/mod.rs
@@ -17,6 +17,7 @@ use anyhow::Result;
use std::ops::Range;
use std::sync::Arc;
use std::sync::atomic::{AtomicBool, Ordering};
+use tokio::sync::Mutex;
// Re-export the NIXL transfer builder for public use
pub use nixl::NixlTransferBuilder;
@@ -181,6 +182,64 @@ struct TwoHopTransferParams<'a> {
ctx: &'a TransferContext,
}
+#[allow(clippy::too_many_arguments)]
+async fn handle_buffered_transfer(
+ src: &PhysicalLayout,
+ bounce_layout: &PhysicalLayout,
+ dst: &PhysicalLayout,
+ src_block_ids: &[usize],
+ bounce_block_ids: &[usize],
+ dst_block_ids: &[usize],
+ first_strategy: TransferStrategy,
+ second_strategy: TransferStrategy,
+ layer_range: &Option>,
+ ctx: &TransferContext,
+) -> Result<()> {
+ let bounce_groups =
+ &bounce_block_ids[0..std::cmp::min(src_block_ids.len(), bounce_block_ids.len())];
+ let (bounce_group_0, bounce_group_1) = bounce_groups.split_at(bounce_groups.len() / 2);
+ let bounce_group_0 = bounce_group_0.to_vec();
+ let bounce_group_1 = bounce_group_1.to_vec();
+
+ let src_dst_iter = Arc::new(Mutex::new(src_block_ids.iter().zip(dst_block_ids.iter())));
+
+ let transfer_task = async move |bounce_group: &[usize]| -> Result<()> {
+ loop {
+ let (src_ids, dst_ids): (Vec, Vec);
+ {
+ let mut x = src_dst_iter.lock().await;
+ (src_ids, dst_ids) = x.by_ref().take(bounce_group.len()).unzip();
+ if src_ids.is_empty() {
+ break;
+ }
+ }
+
+ execute_two_hop_transfer_chunk(
+ src,
+ bounce_layout,
+ dst,
+ &src_ids,
+ &bounce_group[0..src_ids.len()],
+ &dst_ids,
+ first_strategy,
+ second_strategy,
+ layer_range,
+ ctx,
+ )
+ .await?;
+ }
+
+ Ok(())
+ };
+
+ let transfer_0 = transfer_task(&bounce_group_0);
+ let transfer_1 = transfer_task(&bounce_group_1);
+
+ futures::future::try_join(transfer_0, transfer_1).await?;
+
+ Ok(())
+}
+
fn execute_two_hop_transfer(params: TwoHopTransferParams) -> Result {
let TwoHopTransferParams {
src,
@@ -223,22 +282,26 @@ fn execute_two_hop_transfer(params: TwoHopTransferParams) -> Result Result,
+ client: Client,
threshold: f64,
) -> KvWorkerMonitor {
let mut monitors = self.worker_monitors.write();
diff --git a/lib/llm/src/discovery/watcher.rs b/lib/llm/src/discovery/watcher.rs
index 690560c1d9..059cd8eb48 100644
--- a/lib/llm/src/discovery/watcher.rs
+++ b/lib/llm/src/discovery/watcher.rs
@@ -405,11 +405,8 @@ impl ModelWatcher {
// Get or create the worker monitor for this model
// This allows dynamic threshold updates via the ModelManager
let worker_monitor = self.router_config.busy_threshold.map(|threshold| {
- self.manager.get_or_create_worker_monitor(
- card.name(),
- Arc::new(client.clone()),
- threshold,
- )
+ self.manager
+ .get_or_create_worker_monitor(card.name(), client.clone(), threshold)
});
// Add chat engine only if the model supports chat
diff --git a/lib/llm/src/discovery/worker_monitor.rs b/lib/llm/src/discovery/worker_monitor.rs
index fda3985715..d6ef5a97d8 100644
--- a/lib/llm/src/discovery/worker_monitor.rs
+++ b/lib/llm/src/discovery/worker_monitor.rs
@@ -55,11 +55,11 @@ impl WorkerLoadState {
/// Worker monitor for tracking KV cache usage and busy states.
///
-/// All fields are `Arc`, so cloning shares state. This allows multiple pipelines
+/// Cloning shares state via internal Arc-wrapped fields. This allows multiple pipelines
/// (e.g., chat and completions) to share the same monitor instance.
#[derive(Clone)]
pub struct KvWorkerMonitor {
- client: Arc,
+ client: Client,
worker_load_states: Arc>>,
/// Threshold stored as parts-per-10000 (e.g., 8500 = 0.85)
busy_threshold: Arc,
@@ -72,7 +72,7 @@ impl KvWorkerMonitor {
///
/// The threshold (0.0-1.0) controls when workers are considered busy based on
/// KV cache utilization. It can be dynamically updated via `set_threshold()`.
- pub fn new(client: Arc, threshold: f64) -> Self {
+ pub fn new(client: Client, threshold: f64) -> Self {
Self {
client,
worker_load_states: Arc::new(RwLock::new(HashMap::new())),
diff --git a/lib/llm/src/entrypoint/input/common.rs b/lib/llm/src/entrypoint/input/common.rs
index 2fef30b37a..beb3939927 100644
--- a/lib/llm/src/entrypoint/input/common.rs
+++ b/lib/llm/src/entrypoint/input/common.rs
@@ -271,13 +271,13 @@ where
// Link with prefill chooser including backward edge for response flow
let engine = frontend
.link(preprocessor_op.forward_edge())?
- .link(backend.forward_edge())?
.link(migration.forward_edge())?
+ .link(backend.forward_edge())?
.link(prefill_op.forward_edge())?
.link(service_backend)?
.link(prefill_op.backward_edge())?
- .link(migration.backward_edge())?
.link(backend.backward_edge())?
+ .link(migration.backward_edge())?
.link(preprocessor_op.backward_edge())?
.link(frontend)?;
diff --git a/lib/llm/src/grpc/protos/kserve.proto b/lib/llm/src/grpc/protos/kserve.proto
index b9efb9cefd..4d7fefd6a2 100644
--- a/lib/llm/src/grpc/protos/kserve.proto
+++ b/lib/llm/src/grpc/protos/kserve.proto
@@ -16,6 +16,27 @@ import "model_config.proto";
//@@
service GRPCInferenceService
{
+ //@@ .. cpp:var:: rpc ServerLive(ServerLiveRequest) returns
+ //@@ (ServerLiveResponse)
+ //@@
+ //@@ Check liveness of the inference server.
+ //@@
+ rpc ServerLive(ServerLiveRequest) returns (ServerLiveResponse) {}
+
+ //@@ .. cpp:var:: rpc ServerReady(ServerReadyRequest) returns
+ //@@ (ServerReadyResponse)
+ //@@
+ //@@ Check readiness of the inference server.
+ //@@
+ rpc ServerReady(ServerReadyRequest) returns (ServerReadyResponse) {}
+
+ //@@ .. cpp:var:: rpc ModelReady(ModelReadyRequest) returns
+ //@@ (ModelReadyResponse)
+ //@@
+ //@@ Check readiness of a model in the inference server.
+ //@@
+ rpc ModelReady(ModelReadyRequest) returns (ModelReadyResponse) {}
+
//@@ .. cpp:var:: rpc ModelMetadata(ModelMetadataRequest) returns
//@@ (ModelMetadataResponse)
//@@
@@ -45,6 +66,89 @@ service GRPCInferenceService
rpc ModelConfig(ModelConfigRequest) returns (ModelConfigResponse) {}
}
+//@@
+//@@.. cpp:var:: message ServerLiveRequest
+//@@
+//@@ Request message for ServerLive.
+//@@
+message ServerLiveRequest {}
+
+//@@
+//@@.. cpp:var:: message ServerLiveResponse
+//@@
+//@@ Response message for ServerLive.
+//@@
+message ServerLiveResponse
+{
+ //@@
+ //@@ .. cpp:var:: bool live
+ //@@
+ //@@ True if the inference server is live, false if not live.
+ //@@
+ bool live = 1;
+}
+
+//@@
+//@@.. cpp:var:: message ServerReadyRequest
+//@@
+//@@ Request message for ServerReady.
+//@@
+message ServerReadyRequest {}
+
+//@@
+//@@.. cpp:var:: message ServerReadyResponse
+//@@
+//@@ Response message for ServerReady.
+//@@
+message ServerReadyResponse
+{
+ //@@
+ //@@ .. cpp:var:: bool ready
+ //@@
+ //@@ True if the inference server is ready, false if not ready. The server
+ //@@ is considered ready if it has any registered models, since models
+ //@@ can freely be registered and unregistered at runtime.
+ //@@
+ bool ready = 1;
+}
+
+//@@
+//@@.. cpp:var:: message ModelReadyRequest
+//@@
+//@@ Request message for ModelReady.
+//@@
+message ModelReadyRequest
+{
+ //@@
+ //@@ .. cpp:var:: string name
+ //@@
+ //@@ The name of the model to check for readiness.
+ //@@
+ string name = 1;
+
+ //@@ .. cpp:var:: string version
+ //@@
+ //@@ The version of the model to check for readiness. If not given the
+ //@@ server will choose a version based on the model and internal policy.
+ //@@
+ string version = 2;
+}
+
+//@@
+//@@.. cpp:var:: message ModelReadyResponse
+//@@
+//@@ Response message for ModelReady.
+//@@
+message ModelReadyResponse
+{
+ //@@
+ //@@ .. cpp:var:: bool ready
+ //@@
+ //@@ True if the model is ready, false if not ready.
+ //@@
+ bool ready = 1;
+}
+
//@@
//@@.. cpp:var:: message ModelMetadataRequest
//@@
diff --git a/lib/llm/src/grpc/service/kserve.rs b/lib/llm/src/grpc/service/kserve.rs
index 6fa2518942..1d950a1bbb 100644
--- a/lib/llm/src/grpc/service/kserve.rs
+++ b/lib/llm/src/grpc/service/kserve.rs
@@ -675,4 +675,38 @@ impl GrpcInferenceService for KserveService {
request_model_name
)))
}
+
+ async fn server_live(
+ &self,
+ _request: Request,
+ ) -> Result, Status> {
+ // server is live if we can respond
+ Ok(Response::new(inference::ServerLiveResponse { live: true }))
+ }
+
+ async fn server_ready(
+ &self,
+ _request: Request,
+ ) -> Result, Status> {
+ let has_models = !self.state.manager().get_model_cards().is_empty();
+ Ok(Response::new(inference::ServerReadyResponse {
+ ready: has_models,
+ }))
+ }
+
+ async fn model_ready(
+ &self,
+ request: Request,
+ ) -> Result, Status> {
+ let request_model_name = &request.into_inner().name;
+ let is_ready = self
+ .state
+ .manager()
+ .get_model_cards()
+ .into_iter()
+ .any(|card| request_model_name == &card.display_name);
+ Ok(Response::new(inference::ModelReadyResponse {
+ ready: is_ready,
+ }))
+ }
}
diff --git a/lib/llm/src/http/service/metrics.rs b/lib/llm/src/http/service/metrics.rs
index 65f3867f39..58eeb20944 100644
--- a/lib/llm/src/http/service/metrics.rs
+++ b/lib/llm/src/http/service/metrics.rs
@@ -165,6 +165,7 @@ pub struct Metrics {
request_duration: HistogramVec,
input_sequence_length: HistogramVec,
output_sequence_length: HistogramVec,
+ cached_tokens: HistogramVec,
output_tokens_counter: IntCounterVec,
time_to_first_token: HistogramVec,
inter_token_latency: HistogramVec,
@@ -252,6 +253,8 @@ pub struct ResponseMetricCollector {
// be computed.
last_response_time: Option,
osl: usize,
+ // we track if cached_tokens has been observed to ensure we only increment once per request
+ cached_tokens_observed: bool,
}
impl Default for Metrics {
@@ -378,7 +381,7 @@ impl Metrics {
frontend_metric_name(frontend_service::INPUT_SEQUENCE_TOKENS),
"Input sequence length in tokens",
)
- .buckets(input_sequence_buckets),
+ .buckets(input_sequence_buckets.clone()),
&["model"],
)
.unwrap();
@@ -436,6 +439,16 @@ impl Metrics {
)
.unwrap();
+ let cached_tokens = HistogramVec::new(
+ HistogramOpts::new(
+ frontend_metric_name(frontend_service::CACHED_TOKENS),
+ "Number of cached tokens (prefix cache hits) per request",
+ )
+ .buckets(input_sequence_buckets.clone()),
+ &["model"],
+ )
+ .unwrap();
+
// Runtime configuration metrics
// Note: Some of these metrics represent counter-like values from source systems,
// but are implemented as gauges because they are copied/synchronized from upstream
@@ -502,6 +515,7 @@ impl Metrics {
request_duration,
input_sequence_length,
output_sequence_length,
+ cached_tokens,
output_tokens_counter,
time_to_first_token,
inter_token_latency,
@@ -597,6 +611,7 @@ impl Metrics {
registry.register(Box::new(self.request_duration.clone()))?;
registry.register(Box::new(self.input_sequence_length.clone()))?;
registry.register(Box::new(self.output_sequence_length.clone()))?;
+ registry.register(Box::new(self.cached_tokens.clone()))?;
registry.register(Box::new(self.output_tokens_counter.clone()))?;
registry.register(Box::new(self.time_to_first_token.clone()))?;
registry.register(Box::new(self.inter_token_latency.clone()))?;
@@ -830,6 +845,7 @@ impl ResponseMetricCollector {
last_response_time: None,
start_time: Instant::now(),
osl: 0,
+ cached_tokens_observed: false,
}
}
@@ -843,6 +859,19 @@ impl ResponseMetricCollector {
self.is_first_token
}
+ /// Observe cached tokens (prefix cache hits), observing only once per request when value is available
+ pub fn observe_cached_tokens(&mut self, cached_tokens: Option) {
+ if let Some(tokens) = cached_tokens
+ && !self.cached_tokens_observed
+ {
+ self.cached_tokens_observed = true;
+ self.metrics
+ .cached_tokens
+ .with_label_values(&[&self.model])
+ .observe(tokens as f64);
+ }
+ }
+
/// Observe a response with input sequence length and number of new tokens
pub fn observe_response(&mut self, isl: usize, num_tokens: usize) {
if num_tokens == 0 {
@@ -943,11 +972,13 @@ impl From> for EventConverter {
///
/// This function handles metrics collection, http_queue_guard management, and converts
/// annotated responses to SSE events for streaming responses.
+///
+/// Returns None for metrics annotation events (events without SSE data payload).
pub fn process_response_using_event_converter_and_observe_metrics(
annotated: EventConverter,
response_collector: &mut ResponseMetricCollector,
http_queue_guard: &mut Option,
-) -> Result {
+) -> Result