Releases: byuflowlab/ImplicitAD.jl
Releases · byuflowlab/ImplicitAD.jl
v1.1.0
ImplicitAD v1.1.0
v1.0.1
ImplicitAD v1.0.1
Merged pull requests:
v1.0.0
ImplicitAD v1.0.0
- no breaking changes. mainly just moving to 1.0.0 to make semver easier.
- add a pytorch example
- minor doc, CI, compat, updates
Merged pull requests:
- Remove the unused parametric types present after PR 13. (#14) (@juddmehr)
- Add user defined matrix multiplication function (#16) (@jmaack24)
- Update eigenvalues.jl (#17) (@BTV25)
- Allow ForwardDiff version 1 in [compat] (#19) (@fredrikekre)
Closed issues:
- Keep getting error with provide_rule (#18)
v0.3.1
ImplicitAD v0.3.1
Merged pull requests:
v0.3.0
ImplicitAD v0.3.0
Closed issues:
- Differences with ImplicitDifferentiation.jl? (#4)
- Alternative method for providing partial derivatives? (#7)
- Partial derivative matrix cannot be safely re-used. (#9)
Merged pull requests:
- Avoid overwriting cached variables before the reverse pass (#10) (@taylormcd)
- add explicit_unsteady and implicit_unsteady (#11) (@taylormcd)
- Faster unsteady (#12) (@andrewning)