11from Compiler .types import *
22from Compiler .sorting import *
33from Compiler .library import *
4- from Compiler .decision_tree import PrefixSum , PrefixSumR , PrefixSum_inv , PrefixSumR_inv , SortPerm , GroupSum , GroupPrefixSum , GroupFirstOne
4+ from Compiler .decision_tree import get_type , PrefixSum , PrefixSumR , PrefixSum_inv , PrefixSumR_inv , SortPerm , GroupSum , GroupPrefixSum , GroupFirstOne , output_decision_tree , pick , run_decision_tree , test_decision_tree
55from Compiler import util , oram
66
77from itertools import accumulate
1111debug_split = False
1212max_leaves = None
1313
14- def get_type (x ):
15- if isinstance (x , (Array , SubMultiArray )):
16- return x .value_type
17- elif isinstance (x , (tuple , list )):
18- x = x [0 ] + x [- 1 ]
19- if util .is_constant (x ):
20- return cint
21- else :
22- return type (x )
23- else :
24- return type (x )
25-
2614def GetSortPerm (keys , * to_sort , n_bits = None , time = False ):
2715 """
2816 Compute and return secret shared permutation that stably sorts :param keys.
@@ -36,7 +24,7 @@ def GetSortPerm(keys, *to_sort, n_bits=None, time=False):
3624 res = Matrix .create_from (get_vec (x ).v if isinstance (get_vec (x ), sfix ) else x
3725 for x in to_sort )
3826 res = res .transpose ()
39- return radix_sort_permutation_from_matrix (bs , res )
27+ return radix_sort_from_matrix (bs , res )
4028
4129def ApplyPermutation (perm , x ):
4230 res = Array .create_from (x )
@@ -374,81 +362,6 @@ def get_tree(self, h, Label):
374362def DecisionTreeTraining (x , y , h , binary = False ):
375363 return TreeTrainer (x , y , h , binary = binary ).train ()
376364
377- def output_decision_tree (layers ):
378- """ Print decision tree output by :py:class:`TreeTrainer`. """
379-
380- print_ln ('full model %s' , util .reveal (layers ))
381- for i , layer in enumerate (layers [:- 1 ]):
382- print_ln ('level %s:' , i )
383- for j , x in enumerate (('NID' , 'AID' , 'Thr' )):
384- print_ln (' %s: %s' , x , util .reveal (layer [j ]))
385- print_ln ('leaves:' )
386- for j , x in enumerate (('NID' , 'result' )):
387- print_ln (' %s: %s' , x , util .reveal (layers [- 1 ][j ]))
388-
389- def pick (bits , x ):
390- if len (bits ) == 1 :
391- return bits [0 ] * x [0 ]
392- else :
393- try :
394- return x [0 ].dot_product (bits , x )
395- except :
396- return sum (aa * bb for aa , bb in zip (bits , x ))
397-
398- def run_decision_tree (layers , data ):
399- """ Run decision tree against sample data.
400-
401- :param layers: tree output by :py:class:`TreeTrainer`
402- :param data: sample data (:py:class:`~Compiler.types.Array`)
403- :returns: binary label
404-
405- """
406- h = len (layers ) - 1
407- index = 1
408- for k , layer in enumerate (layers [:- 1 ]):
409- assert len (layer ) == 3
410- for x in layer :
411- assert len (x ) <= 2 ** k
412- bits = layer [0 ].equal (index , k )
413- threshold = pick (bits , layer [2 ])
414- key_index = pick (bits , layer [1 ])
415- if key_index .is_clear :
416- key = data [key_index ]
417- else :
418- key = pick (
419- oram .demux (key_index .bit_decompose (util .log2 (len (data )))), data )
420- child = 2 * key < threshold
421- index += child * 2 ** k
422- bits = layers [h ][0 ].equal (index , h )
423- return pick (bits , layers [h ][1 ])
424-
425- def test_decision_tree (name , layers , y , x , n_threads = None , time = False ):
426- if time :
427- start_timer (100 )
428- n = len (y )
429- x = x .transpose ().reveal ()
430- y = y .reveal ()
431- guess = regint .Array (n )
432- truth = regint .Array (n )
433- correct = regint .Array (2 )
434- parts = regint .Array (2 )
435- layers = [[Array .create_from (util .reveal (x )) for x in layer ]
436- for layer in layers ]
437- @for_range_multithread (n_threads , 1 , n )
438- def _ (i ):
439- guess [i ] = run_decision_tree ([[part [:] for part in layer ]
440- for layer in layers ], x [i ]).reveal ()
441- truth [i ] = y [i ].reveal ()
442- @for_range (n )
443- def _ (i ):
444- parts [truth [i ]] += 1
445- c = (guess [i ].bit_xor (truth [i ]).bit_not ())
446- correct [truth [i ]] += c
447- print_ln ('%s for height %s: %s/%s (%s/%s, %s/%s)' , name , len (layers ) - 1 ,
448- sum (correct ), n , correct [0 ], parts [0 ], correct [1 ], parts [1 ])
449- if time :
450- stop_timer (100 )
451-
452365class TreeClassifier :
453366 """ Tree classification that uses
454367 :py:class:`TreeTrainer` internally.
0 commit comments