Skip to content

Commit fedf7ae

Browse files
authored
Merge pull request #125 from ricj/master
pa4 more edits
2 parents f885418 + e2b1067 commit fedf7ae

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

_pages/dat450/assignment4.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -89,7 +89,7 @@ Using the prebuilt environment:
8989
python3 main.py
9090
```
9191

92-
## Step 0: Preprocessing
92+
## Step 1: Preprocessing
9393
Create a Dataset by loading Alpaca training set that already downloaded for you.
9494

9595
```python
@@ -258,7 +258,7 @@ DatasetDict({
258258
</details>
259259

260260

261-
## Step 1: Baseline zero-shot and prompt format
261+
## Step 2: Baseline zero-shot and prompt format
262262

263263
Set MODEL_NAME_OR_PATH (default suggested: `/data/courses/2025_dat450_dit247/models/OLMo-2-0425-1B`). Load the tokenizer and model in causal LM form.
264264

@@ -397,7 +397,7 @@ def make_trainer(
397397
return trainer
398398
```
399399

400-
## Step 2: Full fine-tuning (SFT dataset)
400+
## Step 3: Full fine-tuning (SFT dataset)
401401
Next, we train the pre-trained model using SFT (over all the parameters), then calculate the metrics and outputs to evaluate how well it follows instructions.
402402

403403
```python
@@ -459,7 +459,7 @@ Full SFT trainable params: 1484916736
459459

460460
Next, we train the pre-trained model using SFT, then calculate the metrics and outputs to evaluate how well it follows instructions. We also consider how long it will take to fine-tune all the parameters because the next step is to see how LoRA can help us achieve the same level of instruction tuning in less time.
461461

462-
## Step 3: Fine-tuning with LoRA
462+
## Step 4: Fine-tuning with LoRA
463463

464464
### Utilities for modifying models
465465

0 commit comments

Comments
 (0)