@@ -829,7 +829,7 @@ def idx_check(df1: pd.DataFrame, df2: pd.DataFrame) -> pd.DataFrame:
829829 d_n = slice_df (df_yrs , idx , year_ref , [yr_nn ], yr )
830830 d_n = d_n .loc [d_n .index .isin (d .index ), :]
831831 d = d .loc [d .index .isin (d_n .index ), :]
832- d [d .isnull () & d_n .notnull ()] = d_n
832+ d [d .isnull () & d_n .notnull ()] = d_n # type: ignore [call-overload]
833833 df2 .loc [df2 .index .isin (d .index ), :] = d
834834
835835 cond1 = df_dur .index <= yr_diff_new [0 ]
@@ -910,15 +910,15 @@ def idx_check(df1: pd.DataFrame, df2: pd.DataFrame) -> pd.DataFrame:
910910 ) # type: ignore
911911 df_yr [np .isinf (df_pre )] = df_pre
912912
913- # For those technolofies with one value for each year
913+ # For those technologies with one value for each year
914914 df_to_fill_nans : pd .DataFrame = intpol (
915915 df_pre , df_pp .shift (+ 1 , axis = 1 ), year_pre , year_pp , yr
916916 ) # type: ignore
917917 df_yr .loc [pd .isna (df_yr [yr ])] = df_to_fill_nans .shift (+ 1 , axis = 1 )
918- df_yr [pd .isna (df_yr )] = df_pre
918+ df_yr [pd .isna (df_yr )] = df_pre # type: ignore [call-overload]
919919
920920 if extrapol_neg :
921- df_yr [(df_yr < 0 ) & (df_pre >= 0 )] = df_pre * extrapol_neg
921+ df_yr [(df_yr < 0 ) & (df_pre >= 0 )] = df_pre * extrapol_neg # type: ignore [call-overload]
922922 df_yr .loc [:, df_yr .columns < str (yr )] = np .nan
923923
924924 # c) Otherwise, do intrapolation
0 commit comments