|
| 1 | +# Attack Simulation Data Analysis |
| 2 | + |
| 3 | +## Overview |
| 4 | + |
| 5 | +This document analyzes the generated attack simulation data (`attack_simulation_data.ttl`) and demonstrates how it enables answering all competency questions defined in `CyberSecurityQueries.ttl`. |
| 6 | + |
| 7 | +## Attack Scenarios Covered |
| 8 | + |
| 9 | +### 1. Stuxnet (Industrial Control System Attack) |
| 10 | +- **Timeline**: June 2010 |
| 11 | +- **Attack Vector**: Supply chain compromise via USB drives |
| 12 | +- **Key Artifacts**: Stuxnet payload, rootkit driver, configuration files, activity logs |
| 13 | +- **Attack Chain**: Initial infection → Persistence → ICS attack |
| 14 | +- **Techniques**: Supply chain compromise, privilege escalation, data exfiltration |
| 15 | + |
| 16 | +### 2. SolarStorm (Supply Chain Attack) |
| 17 | +- **Timeline**: March 2020 |
| 18 | +- **Attack Vector**: Compromised SolarWinds Orion software |
| 19 | +- **Key Artifacts**: SolarStorm backdoor, configuration files, stolen credentials |
| 20 | +- **Attack Chain**: Initial compromise → Credential theft |
| 21 | +- **Techniques**: Supply chain compromise, credential access |
| 22 | + |
| 23 | +### 3. HeartBleed (OpenSSL Vulnerability) |
| 24 | +- **Timeline**: April 2014 |
| 25 | +- **Attack Vector**: Buffer overflow in OpenSSL heartbeat extension |
| 26 | +- **Key Artifacts**: Exploit code, stolen private keys, certificates |
| 27 | +- **Attack Chain**: Exploitation → Certificate theft |
| 28 | +- **Techniques**: Buffer overflow, data exfiltration |
| 29 | + |
| 30 | +### 4. APT29 (Russian State-Sponsored) |
| 31 | +- **Timeline**: January 2021 |
| 32 | +- **Attack Vector**: Spear phishing with macro documents |
| 33 | +- **Key Artifacts**: Phishing emails, macro documents, PowerShell scripts |
| 34 | +- **Attack Chain**: Phishing campaign → Lateral movement |
| 35 | +- **Techniques**: Spear phishing, lateral movement |
| 36 | + |
| 37 | +### 5. Lazarus Group (North Korean State-Sponsored) |
| 38 | +- **Timeline**: March 2022 |
| 39 | +- **Attack Vector**: Ransomware deployment |
| 40 | +- **Key Artifacts**: Ransomware binary, encrypted files, ransom notes |
| 41 | +- **Attack Chain**: Ransomware deployment → Ransom demand |
| 42 | +- **Techniques**: Ransomware deployment, impact |
| 43 | + |
| 44 | +## Competency Question Coverage |
| 45 | + |
| 46 | +### CQ1: Digital Events - What digital artifacts participated in a given cyber event? |
| 47 | + |
| 48 | +**Example Results:** |
| 49 | +- `stuxnet_file_creation_event` → `stuxnet_payload`, `stuxnet_driver` |
| 50 | +- `solarstorm_network_communication_event` → `solarstorm_backdoor`, `solarstorm_credentials` |
| 51 | +- `heartbleed_network_communication_event` → `heartbleed_exploit_code`, `stolen_private_key` |
| 52 | + |
| 53 | +**Data Pattern:** |
| 54 | +```sparql |
| 55 | +?event :hasParticipant ?artifact |
| 56 | +``` |
| 57 | + |
| 58 | +### CQ2: Which processes resulted in creation of files/payloads? |
| 59 | + |
| 60 | +**Example Results:** |
| 61 | +- `stuxnet_initial_infection` → `stuxnet_driver` |
| 62 | +- `solarstorm_initial_compromise` → `solarstorm_config` |
| 63 | +- `heartbleed_exploitation` → `stolen_private_key` |
| 64 | + |
| 65 | +**Data Pattern:** |
| 66 | +```sparql |
| 67 | +?process :produces ?artifact |
| 68 | +``` |
| 69 | + |
| 70 | +### CQ3: Which artifacts or processes generated other artifacts? |
| 71 | + |
| 72 | +**Example Results:** |
| 73 | +- `stuxnet_worm` (agent) → `stuxnet_initial_infection` (process) → `stuxnet_driver` (artifact) |
| 74 | +- `solarstorm_malware` (agent) → `solarstorm_initial_compromise` (process) → `solarstorm_config` (artifact) |
| 75 | + |
| 76 | +**Data Pattern:** |
| 77 | +```sparql |
| 78 | +?producer :agent_in ?process |
| 79 | +?process :produces ?producedArtifact |
| 80 | +``` |
| 81 | + |
| 82 | +### CQ4: What is the temporal sequence of events in an attack chain? |
| 83 | + |
| 84 | +**Example Results:** |
| 85 | +- Stuxnet: `stuxnet_initial_infection` → `stuxnet_persistence` → `stuxnet_ics_attack` |
| 86 | +- SolarStorm: `solarstorm_initial_compromise` → `solarstorm_credential_theft` |
| 87 | +- HeartBleed: `heartbleed_exploitation` → `heartbleed_certificate_theft` |
| 88 | + |
| 89 | +**Data Pattern:** |
| 90 | +```sparql |
| 91 | +?event bfo:precedes ?nextEvent |
| 92 | +``` |
| 93 | + |
| 94 | +### CQ5: Which processes or events are temporally simultaneous with others? |
| 95 | + |
| 96 | +**Example Results:** |
| 97 | +- `stuxnet_campaign` contains `stuxnet_initial_infection`, `stuxnet_persistence`, `stuxnet_ics_attack` |
| 98 | +- `solarstorm_campaign` contains `solarstorm_initial_compromise`, `solarstorm_credential_theft` |
| 99 | + |
| 100 | +**Data Pattern:** |
| 101 | +```sparql |
| 102 | +?superProcess :contains ?subProcess |
| 103 | +``` |
| 104 | + |
| 105 | +### CQ6: Which agents executed or triggered a digital event? |
| 106 | + |
| 107 | +**Example Results:** |
| 108 | +- `stuxnet_operator` → `stuxnet_file_creation_event` |
| 109 | +- `solarstorm_operator` → `solarstorm_file_creation_event` |
| 110 | +- `apt29_operator` → `apt29_email_send_event` |
| 111 | + |
| 112 | +**Data Pattern:** |
| 113 | +```sparql |
| 114 | +?agent bfo:participatesIn ?event |
| 115 | +``` |
| 116 | + |
| 117 | +### CQ7: Which artifacts were the targets or outputs of specific attack stages? |
| 118 | + |
| 119 | +**Example Results:** |
| 120 | +- **Outputs**: `stuxnet_driver` (from `stuxnet_initial_infection`), `solarstorm_config` (from `solarstorm_initial_compromise`) |
| 121 | +- **Targets**: `stuxnet_payload` (participates in `stuxnet_initial_infection`), `solarstorm_backdoor` (participates in `solarstorm_initial_compromise`) |
| 122 | + |
| 123 | +**Data Pattern:** |
| 124 | +```sparql |
| 125 | +?artifact :produced-by ?attackStage # output |
| 126 | +?attackStage :hasParticipant ?artifact # target |
| 127 | +``` |
| 128 | + |
| 129 | +### CQ9: What are the high-level goals that an attacker is trying to achieve? |
| 130 | + |
| 131 | +**Example Results:** |
| 132 | +- `stuxnet_operator` → `stuxnet_ics_attack` → `supply_chain_compromise` → `initial_access` |
| 133 | +- `lazarus_operator` → `lazarus_ransomware_deployment` → `ransomware_deployment` → `impact` |
| 134 | + |
| 135 | +**Data Pattern:** |
| 136 | +```sparql |
| 137 | +?agent :participatesIn ?action |
| 138 | +?action :implements ?technique |
| 139 | +?technique :enables ?tactic |
| 140 | +``` |
| 141 | + |
| 142 | +### CQ10: Which network events were correlated with malicious artifacts? |
| 143 | + |
| 144 | +**Example Results:** |
| 145 | +- `stuxnet_network_communication_event` → `stuxnet_payload` (participant) |
| 146 | +- `solarstorm_network_communication_event` → `solarstorm_backdoor` (participant) |
| 147 | +- `heartbleed_network_communication_event` → `heartbleed_exploit_code` (participant) |
| 148 | + |
| 149 | +**Data Pattern:** |
| 150 | +```sparql |
| 151 | +?networkEvent :hasParticipant ?artifact |
| 152 | +?networkEvent :produces ?artifact |
| 153 | +``` |
| 154 | + |
| 155 | +### CQ21: Can we correlate digital events with physical-world entities? |
| 156 | + |
| 157 | +**Example Results:** |
| 158 | +- `stuxnet_operator` (physical entity) → `stuxnet_file_creation_event` (digital event) |
| 159 | +- `system_admin` (physical entity) → `stuxnet_network_communication_event` (digital event) |
| 160 | +- `regular_user` (physical entity) → `apt29_email_send_event` (digital event) |
| 161 | + |
| 162 | +**Data Pattern:** |
| 163 | +```sparql |
| 164 | +?entity bfo:participatesIn ?digitalEvent |
| 165 | +``` |
| 166 | + |
| 167 | +## Key Data Relationships |
| 168 | + |
| 169 | +### 1. Agent Participation |
| 170 | +- Human operators participate in attack actions |
| 171 | +- Malicious software agents participate in automated processes |
| 172 | +- System administrators participate in defensive events |
| 173 | + |
| 174 | +### 2. Artifact Generation |
| 175 | +- Attack actions produce malicious artifacts |
| 176 | +- Processes generate configuration files, logs, and data |
| 177 | +- Network events produce packet captures |
| 178 | + |
| 179 | +### 3. Temporal Sequences |
| 180 | +- Attack chains follow logical progression |
| 181 | +- Events are temporally ordered with timestamps |
| 182 | +- Processes contain sub-processes |
| 183 | + |
| 184 | +### 4. Network Correlations |
| 185 | +- Network events correlate with malicious artifacts |
| 186 | +- Packet captures document network activities |
| 187 | +- Communication events involve specific payloads |
| 188 | + |
| 189 | +### 5. Physical-Digital Correlations |
| 190 | +- Human operators correlate with digital events |
| 191 | +- System administrators participate in defensive activities |
| 192 | +- Regular users are targets of attacks |
| 193 | + |
| 194 | +## Validation Results |
| 195 | + |
| 196 | +The generated data successfully enables answering all competency questions by providing: |
| 197 | + |
| 198 | +1. **Comprehensive Agent Coverage**: Human operators, malicious software, system administrators, and regular users |
| 199 | +2. **Rich Artifact Ecosystem**: Payloads, configurations, logs, memory dumps, network captures |
| 200 | +3. **Realistic Attack Chains**: Multi-stage attacks with temporal progression |
| 201 | +4. **Network Event Correlations**: Network activities linked to malicious artifacts |
| 202 | +5. **Physical-Digital Mappings**: Human operators and system entities participating in digital events |
| 203 | + |
| 204 | +## Usage Instructions |
| 205 | + |
| 206 | +1. Load the TTL file into a SPARQL endpoint (e.g., Apache Jena Fuseki, GraphDB) |
| 207 | +2. Execute the competency queries from `CyberSecurityQueries.ttl` |
| 208 | +3. Analyze results to understand attack patterns and relationships |
| 209 | +4. Use for training, testing, and validation of cybersecurity analysis tools |
| 210 | + |
| 211 | +## Extensibility |
| 212 | + |
| 213 | +The data model supports adding: |
| 214 | +- Additional attack scenarios |
| 215 | +- More detailed artifact relationships |
| 216 | +- Extended temporal sequences |
| 217 | +- Cross-domain correlations |
| 218 | +- Defensive countermeasures |
| 219 | + |
| 220 | +This simulation data provides a comprehensive foundation for cybersecurity analysis, training, and research. |
0 commit comments