|
| 1 | +# External Pipeline Development Guide |
| 2 | + |
| 3 | +This guide explains how to create AI Runner pipelines that live in separate repositories and can be installed as dependencies. |
| 4 | + |
| 5 | +## Overview |
| 6 | + |
| 7 | +AI Runner supports external pipelines through Python entry points. This allows pipeline developers to: |
| 8 | + |
| 9 | +1. **Maintain separate repositories** - Each pipeline can have its own repo |
| 10 | +2. **Use ai-runner-base as a library** - Install `ai-runner-base` as a dependency |
| 11 | +3. **Automatic discovery** - Pipelines are discovered via entry points, no code changes needed in ai-runner |
| 12 | +4. **Multi-processing support** - Works seamlessly with the multiprocessing architecture |
| 13 | + |
| 14 | +## Architecture |
| 15 | + |
| 16 | +### Multi-Processing Context |
| 17 | + |
| 18 | +AI Runner uses `multiprocessing` with `spawn` context for GPU memory isolation. This means: |
| 19 | + |
| 20 | +- Pipelines run in a **separate spawned process** |
| 21 | +- The pipeline code must be **importable** from installed packages |
| 22 | +- Entry points are discovered **in the spawned process**, so they must be installed packages |
| 23 | + |
| 24 | +### Entry Points |
| 25 | + |
| 26 | +Pipelines register themselves via one entry point group: |
| 27 | + |
| 28 | +- **`ai_runner.pipelines`** - Pipeline class (which has a `Params` class attribute linking to its params class) |
| 29 | + |
| 30 | +## Creating an External Pipeline |
| 31 | + |
| 32 | +### Step 1: Project Structure |
| 33 | + |
| 34 | +Create a new Python package with this structure: |
| 35 | + |
| 36 | +``` |
| 37 | +my-pipeline/ |
| 38 | +├── pyproject.toml |
| 39 | +├── README.md |
| 40 | +├── src/ |
| 41 | +│ └── my_pipeline/ |
| 42 | +│ ├── __init__.py |
| 43 | +│ ├── pipeline.py |
| 44 | +│ └── params.py |
| 45 | +└── tests/ |
| 46 | +``` |
| 47 | + |
| 48 | +### Step 2: Install ai-runner-base |
| 49 | + |
| 50 | +In your `pyproject.toml`: |
| 51 | + |
| 52 | +```toml |
| 53 | +[project] |
| 54 | +name = "my-pipeline" |
| 55 | +version = "0.1.0" |
| 56 | +requires-python = ">=3.10" |
| 57 | +dependencies = [ |
| 58 | + "ai-runner-base>=0.1.0", |
| 59 | + # Your pipeline-specific dependencies |
| 60 | + "torch>=2.0.0", |
| 61 | + # ... other deps |
| 62 | +] |
| 63 | + |
| 64 | +[project.entry-points."ai_runner.pipelines"] |
| 65 | +my-pipeline = "my_pipeline.pipeline:MyPipeline" |
| 66 | + |
| 67 | +[build-system] |
| 68 | +requires = ["setuptools>=61.0", "wheel"] |
| 69 | +build-backend = "setuptools.build_meta" |
| 70 | +``` |
| 71 | + |
| 72 | +### Step 3: Implement Pipeline Interface |
| 73 | + |
| 74 | +Create `src/my_pipeline/pipeline.py`: |
| 75 | + |
| 76 | +```python |
| 77 | +from app.live.pipelines.interface import Pipeline |
| 78 | +from app.live.pipelines.trickle import VideoFrame, VideoOutput |
| 79 | +from .params import MyPipelineParams |
| 80 | +import asyncio |
| 81 | +import logging |
| 82 | + |
| 83 | +class MyPipeline(Pipeline): |
| 84 | + # Link params class to pipeline |
| 85 | + Params = MyPipelineParams |
| 86 | + |
| 87 | + def __init__(self): |
| 88 | + super().__init__() |
| 89 | + self.frame_queue: asyncio.Queue[VideoOutput] = asyncio.Queue() |
| 90 | + self.initialized = False |
| 91 | + |
| 92 | + async def initialize(self, **params): |
| 93 | + """Initialize the pipeline with parameters.""" |
| 94 | + logging.info(f"Initializing MyPipeline with params: {params}") |
| 95 | + # Your initialization logic here |
| 96 | + self.initialized = True |
| 97 | + |
| 98 | + async def put_video_frame(self, frame: VideoFrame, request_id: str): |
| 99 | + """Process an input frame.""" |
| 100 | + # Your processing logic here |
| 101 | + # For example, a simple pass-through: |
| 102 | + output = VideoOutput(frame, request_id) |
| 103 | + await self.frame_queue.put(output) |
| 104 | + |
| 105 | + async def get_processed_video_frame(self) -> VideoOutput: |
| 106 | + """Get the next processed frame.""" |
| 107 | + return await self.frame_queue.get() |
| 108 | + |
| 109 | + async def update_params(self, **params): |
| 110 | + """Update pipeline parameters.""" |
| 111 | + logging.info(f"Updating params: {params}") |
| 112 | + # Return a Task if reload is needed, None otherwise |
| 113 | + return None |
| 114 | + |
| 115 | + async def stop(self): |
| 116 | + """Clean up resources.""" |
| 117 | + self.frame_queue = asyncio.Queue() |
| 118 | + self.initialized = False |
| 119 | + |
| 120 | + @classmethod |
| 121 | + def prepare_models(cls): |
| 122 | + """Download/prepare models if needed.""" |
| 123 | + logging.info("Preparing MyPipeline models") |
| 124 | + # Your model preparation logic |
| 125 | +``` |
| 126 | + |
| 127 | +### Step 4: Implement Parameters |
| 128 | + |
| 129 | +Create `src/my_pipeline/params.py`: |
| 130 | + |
| 131 | +```python |
| 132 | +from app.live.pipelines.interface import BaseParams |
| 133 | +from pydantic import Field |
| 134 | + |
| 135 | +class MyPipelineParams(BaseParams): |
| 136 | + """Parameters for MyPipeline.""" |
| 137 | + |
| 138 | + # Add your custom parameters |
| 139 | + strength: float = Field( |
| 140 | + default=0.8, |
| 141 | + ge=0.0, |
| 142 | + le=1.0, |
| 143 | + description="Processing strength" |
| 144 | + ) |
| 145 | + |
| 146 | + # BaseParams already provides: width, height, show_reloading_frame |
| 147 | +``` |
| 148 | + |
| 149 | +### Step 5: Register Entry Points |
| 150 | + |
| 151 | +The entry points are registered in `pyproject.toml`: |
| 152 | + |
| 153 | +```toml |
| 154 | +[project.entry-points."ai_runner.pipelines"] |
| 155 | +my-pipeline = "my_pipeline.pipeline:MyPipeline" |
| 156 | +``` |
| 157 | + |
| 158 | +The params class is linked via the `Params` class attribute: |
| 159 | + |
| 160 | +```python |
| 161 | +class MyPipeline(Pipeline): |
| 162 | + Params = MyPipelineParams |
| 163 | +``` |
| 164 | + |
| 165 | +**Important**: |
| 166 | +- The entry point name (e.g., `my-pipeline`) is what will be used as the pipeline name when starting the runner. |
| 167 | +- Only one entry point is needed - the params class is linked via `Pipeline.Params` class attribute. |
| 168 | + |
| 169 | +### Step 6: Install and Use |
| 170 | + |
| 171 | +Install your pipeline: |
| 172 | + |
| 173 | +```bash |
| 174 | +# Development install |
| 175 | +pip install -e /path/to/my-pipeline |
| 176 | + |
| 177 | +# Or from a git repo |
| 178 | +pip install git+https://github.com/yourorg/my-pipeline.git |
| 179 | + |
| 180 | +# Or publish to PyPI |
| 181 | +pip install my-pipeline |
| 182 | +``` |
| 183 | + |
| 184 | +Then use it: |
| 185 | + |
| 186 | +```bash |
| 187 | +PIPELINE=my-pipeline MODEL_ID=my-pipeline python -m app.main |
| 188 | +``` |
| 189 | + |
| 190 | +## Docker Images (Optional) |
| 191 | + |
| 192 | +### Option 1: Use Base Image + Install Pipeline |
| 193 | + |
| 194 | +Create a Dockerfile that extends the ai-runner base image: |
| 195 | + |
| 196 | +```dockerfile |
| 197 | +FROM livepeer/ai-runner:live-base |
| 198 | + |
| 199 | +# Install your pipeline |
| 200 | +RUN pip install my-pipeline |
| 201 | + |
| 202 | +# Or install from git |
| 203 | +RUN pip install git+https://github.com/yourorg/my-pipeline.git |
| 204 | + |
| 205 | +# Or install from local source |
| 206 | +COPY my-pipeline/ /tmp/my-pipeline/ |
| 207 | +RUN pip install /tmp/my-pipeline/ |
| 208 | +``` |
| 209 | + |
| 210 | +### Option 2: Install via uv (Recommended) |
| 211 | + |
| 212 | +If using `uv` for faster installs: |
| 213 | + |
| 214 | +```dockerfile |
| 215 | +FROM livepeer/ai-runner:live-base |
| 216 | + |
| 217 | +# Install uv if not already present |
| 218 | +RUN pip install uv |
| 219 | + |
| 220 | +# Install your pipeline |
| 221 | +RUN uv pip install my-pipeline |
| 222 | + |
| 223 | +# Or from git |
| 224 | +RUN uv pip install git+https://github.com/yourorg/my-pipeline.git |
| 225 | +``` |
| 226 | + |
| 227 | +### Option 3: Pure Python Dependencies (Best) |
| 228 | + |
| 229 | +If your pipeline only needs Python dependencies (no system libraries), you can install it at runtime: |
| 230 | + |
| 231 | +```dockerfile |
| 232 | +FROM livepeer/ai-runner:live-base |
| 233 | + |
| 234 | +# Set environment variable to auto-install pipeline |
| 235 | +ENV AUTO_INSTALL_PIPELINE="my-pipeline" |
| 236 | + |
| 237 | +# Or use a startup script that installs the pipeline |
| 238 | +COPY install-pipeline.sh /usr/local/bin/ |
| 239 | +RUN chmod +x /usr/local/bin/install-pipeline.sh |
| 240 | +``` |
| 241 | + |
| 242 | +Then modify the runner startup to check for `AUTO_INSTALL_PIPELINE` and install it automatically. |
| 243 | + |
| 244 | +## Multi-Processing Considerations |
| 245 | + |
| 246 | +Since pipelines run in a spawned subprocess: |
| 247 | + |
| 248 | +1. **All dependencies must be installed** - The spawned process needs access to your pipeline package |
| 249 | +2. **Entry points must be discoverable** - They're discovered in the spawned process |
| 250 | +3. **No shared state** - Each process has its own memory space |
| 251 | +4. **Import paths** - Use absolute imports from `app.live.pipelines.interface` |
| 252 | + |
| 253 | +## Example: Complete Pipeline Package |
| 254 | + |
| 255 | +See `examples/external-pipeline-example/` for a complete working example. |
| 256 | + |
| 257 | +## Testing Your Pipeline |
| 258 | + |
| 259 | +Test locally: |
| 260 | + |
| 261 | +```bash |
| 262 | +# Install ai-runner-base in development mode |
| 263 | +cd /path/to/ai-runner/runner |
| 264 | +pip install -e . |
| 265 | + |
| 266 | +# Install your pipeline |
| 267 | +cd /path/to/my-pipeline |
| 268 | +pip install -e . |
| 269 | + |
| 270 | +# Run the runner |
| 271 | +cd /path/to/ai-runner/runner |
| 272 | +PIPELINE=my-pipeline MODEL_ID=my-pipeline python -m app.main |
| 273 | +``` |
| 274 | + |
| 275 | +## Publishing to PyPI |
| 276 | + |
| 277 | +1. Build your package: |
| 278 | + ```bash |
| 279 | + python -m build |
| 280 | + ``` |
| 281 | + |
| 282 | +2. Publish: |
| 283 | + ```bash |
| 284 | + twine upload dist/* |
| 285 | + ``` |
| 286 | + |
| 287 | +3. Users can then install: |
| 288 | + ```bash |
| 289 | + pip install my-pipeline |
| 290 | + ``` |
| 291 | + |
| 292 | +## Advanced: Pipeline Variants |
| 293 | + |
| 294 | +You can create pipeline variants (like `streamdiffusion-sd15`) by: |
| 295 | + |
| 296 | +1. Registering multiple entry points with different names |
| 297 | +2. Using the same pipeline class but with different default parameters |
| 298 | +3. Checking the pipeline name in `initialize()` to configure differently |
| 299 | + |
| 300 | +Example: |
| 301 | + |
| 302 | +```toml |
| 303 | +[project.entry-points."ai_runner.pipelines"] |
| 304 | +my-pipeline = "my_pipeline.pipeline:MyPipeline" |
| 305 | +my-pipeline-fast = "my_pipeline.pipeline:MyPipelineFast" |
| 306 | +my-pipeline-hq = "my_pipeline.pipeline:MyPipelineHQ" |
| 307 | +``` |
| 308 | + |
| 309 | +## Troubleshooting |
| 310 | + |
| 311 | +### Pipeline Not Found |
| 312 | + |
| 313 | +- Check that entry points are registered correctly in `pyproject.toml` |
| 314 | +- Verify the package is installed: `pip list | grep my-pipeline` |
| 315 | +- Check entry points: `python -c "from importlib.metadata import entry_points; print(list(entry_points(group='ai_runner.pipelines')))"` |
| 316 | + |
| 317 | +### Import Errors in Spawned Process |
| 318 | + |
| 319 | +- Ensure all dependencies are installed |
| 320 | +- Use absolute imports from `app.live.pipelines.interface` |
| 321 | +- Check that `ai-runner-base` is installed |
| 322 | + |
| 323 | +### Parameters Not Parsing |
| 324 | + |
| 325 | +- Verify the params entry point is registered |
| 326 | +- Check that your params class extends `BaseParams` |
| 327 | +- Ensure params can be imported without expensive dependencies |
| 328 | + |
0 commit comments