|
1 | | -pycam02ucs |
2 | | -========== |
| 1 | +viscm |
| 2 | +===== |
3 | 3 |
|
4 | | -.. image:: https://travis-ci.org/njsmith/pycam02ucs.png?branch=master |
5 | | - :target: https://travis-ci.org/njsmith/pycam02ucs |
6 | | -.. image:: https://coveralls.io/repos/njsmith/pycam02ucs/badge.png?branch=master |
7 | | - :target: https://coveralls.io/r/njsmith/pycam02ucs?branch=master |
| 4 | +This is a little tool for analyzing colormaps and creating new colormaps. |
8 | 5 |
|
9 | | -This is an powerful, accurate, and easy-to-use library for performing |
10 | | -colorspace conversions. |
| 6 | +Try:: |
11 | 7 |
|
12 | | -In addition to the most common standard colorspaces (sRGB, XYZ, xyY, |
13 | | -CIELab, CIELCh), we also include: color vision deficiency ("color |
14 | | -blindness") simulations using the approach of Machado et al (2009); a |
15 | | -complete implementation of `CIECAM02 |
16 | | -<https://en.wikipedia.org/wiki/CIECAM02>`_; and the perceptually |
17 | | -uniform CAM02-UCS / CAM02-LCD / CAM02-SCD spaces proposed by Luo et al |
18 | | -(2006). |
19 | | - |
20 | | -To use it, simply write:: |
21 | | - |
22 | | - from pycam02ucs import cspace_convert |
23 | | - |
24 | | - Jp, ap, bp = cspace_convert([64, 128, 255], "sRGB255", "CAM02-UCS") |
25 | | - |
26 | | -This converts an sRGB value (represented as integers between 0-255) to |
27 | | -CAM02-UCS J'a'b' coordinates (by default, assuming standard sRGB |
28 | | -viewing conditions). This requires passing through 4 intermediate |
29 | | -colorspaces; ``cspace_convert`` automatically finds the optimal route |
30 | | -and applies all conversions in sequence: |
31 | | - |
32 | | -This function also of course accepts arbitrary NumPy arrays, so |
33 | | -converting a whole image is just as easy as converting a single value. |
34 | | - |
35 | | -Documentation: |
36 | | - TODO |
37 | | - |
38 | | -Installation: |
39 | | - ``pip install .`` |
| 8 | + $ pip install viscm |
| 9 | + $ python -m viscm show jet |
| 10 | + $ python -m viscm edit |
40 | 11 |
|
41 | 12 | Downloads: |
42 | | - TODO |
| 13 | + https://pypi.python.org/pypi/viscm/ |
43 | 14 |
|
44 | 15 | Code and bug tracker: |
45 | | - https://github.com/njsmith/pycam02ucs |
| 16 | + https://github.com/bids/viscm |
46 | 17 |
|
47 | 18 | Contact: |
48 | | - Nathaniel J. Smith < [email protected]> |
| 19 | + Nathaniel J. Smith < [email protected]> and Stefan van der Walt <[email protected]> |
49 | 20 |
|
50 | 21 | Dependencies: |
51 | 22 | * Python 2.6+, or 3.3+ |
| 23 | + * `colorspacious <https://pypi.python.org/pypi/colorspacious>`_ |
| 24 | + * Matplotlib |
52 | 25 | * NumPy |
53 | 26 |
|
54 | | -Developer dependencies (only needed for hacking on source): |
55 | | - * nose: needed to run tests |
56 | | - |
57 | 27 | License: |
58 | 28 | MIT, see LICENSE.txt for details. |
59 | | - |
60 | | -References: |
61 | | - |
62 | | - Luo, M. R., Cui, G., & Li, C. (2006). Uniform colour spaces based on |
63 | | - CIECAM02 colour appearance model. Color Research & Application, 31(4), |
64 | | - 320–330. doi:10.1002/col.20227 |
65 | | - |
66 | | - Machado, G. M., Oliveira, M. M., & Fernandes, L. A. (2009). A |
67 | | - physiologically-based model for simulation of color vision |
68 | | - deficiency. Visualization and Computer Graphics, IEEE Transactions on, |
69 | | - 15(6), 1291–1298. http://www.inf.ufrgs.br/~oliveira/pubs_files/CVD_Simulation/CVD_Simulation.html |
70 | | - |
71 | | -Other Python packages with similar functionality that you might also |
72 | | -want to check out: |
73 | | - |
74 | | -* ``colour``: http://colour-science.org/ |
75 | | -* ``colormath``: http://python-colormath.readthedocs.org/ |
76 | | -* ``ciecam02``: https://pypi.python.org/pypi/ciecam02/ |
77 | | -* ``ColorPy``: http://markkness.net/colorpy/ColorPy.html |
0 commit comments