@@ -52,16 +52,6 @@ This is a yet another high quality EN-only base model for entity extraction.
5252It is a 12-layer pretrained pretrained [ Transformer] [ 7 ] model optimized for conversation.
5353Its architecture is pretrained for example-based use ([ KNN] [ 3 ] ), thus it can be used out of box.
5454
55- ### pretrained.20210105.microsoft.dte.00.12.bert_example_ner_multilingual.onnx (experimental)
56- This is a high quality multilingual base model for entity extraction.
57- It is a 12-layer pretrained pretrained [ Transformer] [ 7 ] model optimized for conversation.
58- Its architecture is pretrained for example-based use ([ KNN] [ 3 ] ), thus it can be used out of box.
59-
60- ### pretrained.20210105.microsoft.dte.00.12.tulr_example_ner_multilingual.onnx (experimental)
61- This is a high quality multilingual base model for entity extraction.
62- It is a 12-layer pretrained pretrained [ Transformer] [ 7 ] model optimized for conversation.
63- Its architecture is pretrained for example-based use ([ KNN] [ 3 ] ), thus it can be used out of box.
64-
6555### pretrained.20210205.microsoft.dte.00.06.bert_example_ner.en.onnx (experimental)
6656This is a high quality EN-only base model for entity extraction. It's smaller and faster than its 12-layer alternative.
6757It is a 6-layer pretrained pretrained [ Transformer] [ 7 ] model optimized for conversation.
@@ -72,16 +62,6 @@ This is a high quality EN-only base model for entity extraction. It's smaller an
7262It is a 6-layer pretrained pretrained [ Transformer] [ 7 ] model optimized for conversation.
7363Its architecture is pretrained for example-based use ([ KNN] [ 3 ] ), thus it can be used out of box.
7464
75- ### pretrained.20210205.microsoft.dte.00.06.bert_example_ner_multilingual.onnx (experimental)
76- This is a high quality multilingual base model for entity extraction. It's smaller and faster than its 12-layer alternative.
77- It is a 6-layer pretrained pretrained [ Transformer] [ 7 ] model optimized for conversation.
78- Its architecture is pretrained for example-based use ([ KNN] [ 3 ] ), thus it can be used out of box.
79-
80- ### pretrained.20210205.microsoft.dte.00.06.tulr_example_ner_multilingual.onnx (experimental)
81- This is a high quality multilingual base model for entity extraction. It's smaller and faster than its 12-layer alternative.
82- It is a 6-layer pretrained pretrained [ Transformer] [ 7 ] model optimized for conversation.
83- Its architecture is pretrained for example-based use ([ KNN] [ 3 ] ), thus it can be used out of box.
84-
8565## Models Evaluation
8666For a more quantitative comparison analysis of the different models see the following performance characteristics.
8767
@@ -136,13 +116,17 @@ For a more quantitative comparison analysis of the different models see the foll
136116| ------------------------------------------------------------ | ---------- | ------ | ----------------------- | --------------- |
137117| pretrained.20210205.microsoft.dte.00.06.bert_example_ner.en.onnx | BERT | 6 | ~ 23 ms | 259M |
138118| pretrained.20210205.microsoft.dte.00.12.bert_example_ner.en.onnx | BERT | 12 | ~ 40 ms | 427M |
119+ | pretrained.20210218.microsoft.dte.00.06.bert_example_ner.en.onnx | BERT | 6 | ~ 23 ms | 259M |
120+ | pretrained.20210218.microsoft.dte.00.12.bert_example_ner.en.onnx | BERT | 12 | ~ 40 ms | 425M |
139121
140122- The following table shows how accurate is each model relative to provided training sample size using [ Snips NLU] [ 4 ] system, evaluated by ** macro-average-F1** .
141123
142124| Training samples per entity type | 10 | 20 | 50 | 100 | 200 |
143125| ------------------------------------------------------------ | ----- | ----- | ----- | ----- | ----- |
144- | pretrained.20210205.microsoft.dte.00.06.bert_example_ner.en.onnx | 0.662 | 0.678 | 0.680 | 0.684 | 0.674 |
126+ | pretrained.20210205.microsoft.dte.00.06.bert_example_ner.en.onnx | 0.615 | 0.636 | 0.647 | 0.661 | 0.665 |
145127| pretrained.20210205.microsoft.dte.00.12.bert_example_ner.en.onnx | 0.637 | 0.658 | 0.684 | 0.698 | 0.702 |
128+ | pretrained.20210218.microsoft.dte.00.06.bert_example_ner.en.onnx | 0.637 | 0.658 | 0.673 | 0.686 | 0.684 |
129+ | pretrained.20210218.microsoft.dte.00.12.bert_example_ner.en.onnx | 0.661 | 0.664 | 0.670 | 0.685 | 0.681 |
146130
147131
148132
0 commit comments