@@ -107,7 +107,7 @@ \section{Contraction}
107107
108108Define the contraction of two operators
109109\begin {equation }
110- \underbrace { A(t) B(t')}
110+ \wick { \c A(t) \c B(t')}
111111= T_\epsilon (A(t) B(t')) - \mathcal N(A(t)B(t'))
112112\end {equation }
113113The operator identity
@@ -119,7 +119,7 @@ \section{Operator level of ``contraction''}
119119\begin {example }[Two operators]
120120 We just look at the RHS of the contraction
121121 \[
122- \underbrace { \ gamma (t) \gamma ^\dagger (')}
122+ \wick { \c \ gamma (t) \c \gamma ^\dagger (')}
123123 = T_\epsilon (\gamma (t) \gamma ^\dagger (t')) - N(\gamma (t) \gamma ^\dagger (t'))
124124 \]
125125 On the operator level. Where
@@ -131,7 +131,7 @@ \section{Operator level of ``contraction''}
131131 \]
132132 Then, we have to define the actual contraction
133133 \[
134- \braket <\eta _0|\underbrace { \ gamma \gamma ^\dagger }|\eta _0>
134+ \braket <\eta _0|\wick { \c \ gamma \c \gamma ^\dagger }|\eta _0>
135135 = \iu G^{0,c}[\gamma , \gamma ^\dagger ]
136136 \]
137137\end {example }
@@ -147,7 +147,7 @@ \section{Operator level of ``contraction''}
147147 1234 + 2134 + \cdots
148148= (12 + 21)34 + T_\epsilon (12)(34)
149149\xlongequal {\text {Contraction tricks}}
150- (\overbrace {12 } + N(12)) (34)
150+ (\wick { \c 11 \c 12 } + N(12)) (34)
151151\]
152152So, the observable
153153\[
@@ -160,9 +160,9 @@ \section{Operator level of ``contraction''}
160160 1243 + 2143 \to \iu g_{12}(43), \quad
161161\]
162162The combines to $ \iu g_{12}$ and $ \iu g_{34}$ ,
163- i.e., $ T_\epsilon (\overbrace {12} \overbrace {34 })$ .
163+ i.e., $ T_\epsilon (\wick { \c 1 1 \c 1 2 \c 1 3 \c 1 4 })$ .
164164Also for $ 1324 + 3124 $ and $ 1342 + 3142 $ , which can be combined into
165- $ T_\epsilon (1234 ) $ . (overbrace 13 and 24) .
165+ $ T_\epsilon (\wick { \c 1 1 \c 2 2 \c 1 3 \c 2 4}) $ .
166166The LHS have $ 4 !$ terms in total, and we will have $ 4 \times 3 /2 = 6 $ contractions
167167\[
168168 g_{12} g_{34} \quad g_{13} g_{24} \quad g_{14} g_{23}
@@ -171,10 +171,10 @@ \section{Operator level of ``contraction''}
171171\begin {multline }
172172 T_\epsilon (123 \cdots 2N)
173173= N(12\cdots 2N) + \binom {N\text {-product}}{\text {with ONE contraction}}
174- N(\underbrace {12 }34 \cdots )
175- + N(\underbrace {13 }24 \cdots 2N) \\
174+ N(\wick { \c 11 \c 12 }34 \cdots )
175+ + N(\wick { \c 11 \c 13 }24 \cdots 2N) \\
176176+ \binom {N\text {-product}}{\text {with TWO contraction}}
177- + N(\underbrace {12} \underbrace {34 }56 \cdots 2N) + \cdots
177+ + N(\wick { \c 11 \c 12 \c 13 \c 14 }56 \cdots 2N) + \cdots
178178+ \{ \text {total contractions}\}
179179\end {multline }
180180\begin {example }[$ T_\epsilon (123456 )$ ]
@@ -188,9 +188,9 @@ \section{Operator level of ``contraction''}
188188\end {example }
189189Do the induction $ 2 n$ /$ 2 n + 2 $ -Wick's
190190\[
191- (\underbrace {12 }(34) + N(12)(34)) \cdot
192- (\underbrace {56 } + N(56)) \to
193- \prod _{1, \cdots , 1}^n (\underbrace { i_1 i_2} + N(\ \ quad))
191+ (\wick { \c 11 \c 12 }(34) + N(12)(34)) \cdot
192+ (\wick { \c 15 \c 16 } + N(56)) \to
193+ \prod _{1, \cdots , 1}^n (\wick { \c i_1 \c i_2} + N(\quad ))
194194\]
195195Together, we have $ n$ -terms
196196\[
@@ -210,7 +210,7 @@ \section{Operator level of ``contraction''}
210210The canonical algebra
211211\[
212212 \{ c_i, c_j^\dagger \} = \delta _{ij}, \quad
213- \underbrace { \ gamma \gamma ^\dagger } = T_\epsilon - N(\cdots )
213+ \wick { \c\ gamma \c \gamma ^\dagger } = T_\epsilon - N(\cdots )
214214 \to s^2 \Tr (s^+, s^-)
215215\]
216216One is canonical algebra, and one is the Gaussion states.
@@ -406,7 +406,7 @@ \section{Unlabeled Feyman diagram}
406406 COmbines them Topo ineq.
407407 \[
408408 G_\Gamma \to S, \quad
409- \cancel {\frac 1{2^nn!m!}} \sum \{ n|| \text {contractionss }\} = \frac 1s (\cdots )
409+ \cancel {\frac 1{2^nn!m!}} \sum \{ n\| \text {contraction }\} = \frac 1s (\cdots )
410410 \]
411411 which cancels by `` All poss value-inv-transf'' , for $ v = \frac 12 $ .
412412\end {example }
0 commit comments