|
| 1 | +// Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +// All rights reserved. |
| 3 | +// |
| 4 | +// This source code is licensed under the license found in the |
| 5 | +// LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +#pragma once |
| 8 | + |
| 9 | +#if defined(__aarch64__) || defined(__ARM_NEON) |
| 10 | + |
| 11 | +#include <algorithm> |
| 12 | +#include <cassert> |
| 13 | +#include <cstring> |
| 14 | + |
| 15 | +#include <arm_neon.h> |
| 16 | +#include <torchao/experimental/kernels/cpu/aarch64/macro.h> |
| 17 | +#include <torchao/experimental/kernels/cpu/aarch64/matmul/matmul_utils.h> |
| 18 | + |
| 19 | +namespace torchao::kernels::cpu::aarch64::quantized_matmul { |
| 20 | +namespace channelwise_8bit_a_channelwise_8bit_b_1x16x16_f32_smlal::internal { |
| 21 | + |
| 22 | +namespace { |
| 23 | +/* |
| 24 | +This function loads int8x16_t value from a, and 8 int8x16_t values from b. |
| 25 | +For each int8x16_t of b: |
| 26 | +- subl to subtarct a_zero_point from a, to get a_low, a_high |
| 27 | +- 4 int32x4 accumulated values |
| 28 | +- for i in [0, 8]: |
| 29 | + - load b[i] |
| 30 | + - subl to subtarct b_zero_point from b, to get b_low, b_high |
| 31 | + - smlal_lane to multiply a_low[i] and b_low_low. |
| 32 | + - smlal_lane to multiply a_low[i] and b_low_high. |
| 33 | + - smlal_lane to multiply a_low[i] and b_high_low. |
| 34 | + - smlal_lane to multiply a_low[i] and b_high_high. |
| 35 | + - This produces 2 int32x4_t values |
| 36 | +- for i in [0, 8]: |
| 37 | + - load b[i] |
| 38 | + - subl to subtarct b_zero_point from b, to get b_low, b_high |
| 39 | + - smlal_lane to multiply a_low[i] and b_low_low. |
| 40 | + - smlal_lane to multiply a_low[i] and b_low_high. |
| 41 | + - smlal_lane to multiply a_low[i] and b_high_low. |
| 42 | + - smlal_lane to multiply a_low[i] and b_high_high. |
| 43 | + - This produces 2 int32x4_t values |
| 44 | +Possibly better to transpose 16x16 of b and use dotprod. Left for future. |
| 45 | +*/ |
| 46 | + |
| 47 | +template <int lane> |
| 48 | +TORCHAO_ALWAYS_INLINE void block_mul_1x16x1( |
| 49 | + const int16x4_t& a_vec, |
| 50 | + const int8x16_t& b_vec, |
| 51 | + const int8x16_t& b_zero_point_vec, |
| 52 | + int32x4_t (&partial_sums)[4]) { |
| 53 | + int16x8_t b_vec_low = |
| 54 | + vsubl_s8(vget_low_s8(b_vec), vget_low_s8(b_zero_point_vec)); |
| 55 | + int16x8_t b_vec_high = |
| 56 | + vsubl_s8(vget_high_s8(b_vec), vget_high_s8(b_zero_point_vec)); |
| 57 | + partial_sums[0] = |
| 58 | + vmlal_lane_s16(partial_sums[0], vget_low_s16(b_vec_low), a_vec, lane); |
| 59 | + partial_sums[1] = |
| 60 | + vmlal_lane_s16(partial_sums[1], vget_high_s16(b_vec_low), a_vec, lane); |
| 61 | + partial_sums[2] = |
| 62 | + vmlal_lane_s16(partial_sums[2], vget_low_s16(b_vec_high), a_vec, lane); |
| 63 | + partial_sums[3] = |
| 64 | + vmlal_lane_s16(partial_sums[3], vget_high_s16(b_vec_high), a_vec, lane); |
| 65 | +} |
| 66 | + |
| 67 | +void block_mul_1x16x16( |
| 68 | + const int8_t* a, |
| 69 | + const int8_t* b, |
| 70 | + const size_t ldb, |
| 71 | + const int8_t a_zero_point, |
| 72 | + const int8_t* b_zero_point, |
| 73 | + int32x4_t (&partial_sums)[4]) { |
| 74 | + int8x16_t a_vec = vld1q_s8(a); |
| 75 | + int8x8_t a_zero_point_vec = vdup_n_s8(a_zero_point); |
| 76 | + int8x16_t b_zero_point_vec = vld1q_s8(b_zero_point); |
| 77 | + int16x8_t a_vec_low = vsubl_s8(vget_low_s8(a_vec), a_zero_point_vec); |
| 78 | + int16x8_t a_vec_high = vsubl_s8(vget_high_s8(a_vec), a_zero_point_vec); |
| 79 | + |
| 80 | + int8x16_t b_vec = vld1q_s8(b + 0 * ldb); |
| 81 | + block_mul_1x16x1<0>( |
| 82 | + vget_low_s16(a_vec_low), b_vec, b_zero_point_vec, partial_sums); |
| 83 | + b_vec = vld1q_s8(b + 1 * ldb); |
| 84 | + block_mul_1x16x1<1>( |
| 85 | + vget_low_s16(a_vec_low), b_vec, b_zero_point_vec, partial_sums); |
| 86 | + b_vec = vld1q_s8(b + 2 * ldb); |
| 87 | + block_mul_1x16x1<2>( |
| 88 | + vget_low_s16(a_vec_low), b_vec, b_zero_point_vec, partial_sums); |
| 89 | + b_vec = vld1q_s8(b + 3 * ldb); |
| 90 | + block_mul_1x16x1<3>( |
| 91 | + vget_low_s16(a_vec_low), b_vec, b_zero_point_vec, partial_sums); |
| 92 | + b_vec = vld1q_s8(b + 4 * ldb); |
| 93 | + block_mul_1x16x1<0>( |
| 94 | + vget_high_s16(a_vec_low), b_vec, b_zero_point_vec, partial_sums); |
| 95 | + b_vec = vld1q_s8(b + 5 * ldb); |
| 96 | + block_mul_1x16x1<1>( |
| 97 | + vget_high_s16(a_vec_low), b_vec, b_zero_point_vec, partial_sums); |
| 98 | + b_vec = vld1q_s8(b + 6 * ldb); |
| 99 | + block_mul_1x16x1<2>( |
| 100 | + vget_high_s16(a_vec_low), b_vec, b_zero_point_vec, partial_sums); |
| 101 | + b_vec = vld1q_s8(b + 7 * ldb); |
| 102 | + block_mul_1x16x1<3>( |
| 103 | + vget_high_s16(a_vec_low), b_vec, b_zero_point_vec, partial_sums); |
| 104 | + |
| 105 | + // Second set of 8 channels |
| 106 | + b_vec = vld1q_s8(b + 8 * ldb); |
| 107 | + block_mul_1x16x1<0>( |
| 108 | + vget_low_s16(a_vec_high), b_vec, b_zero_point_vec, partial_sums); |
| 109 | + b_vec = vld1q_s8(b + 9 * ldb); |
| 110 | + block_mul_1x16x1<1>( |
| 111 | + vget_low_s16(a_vec_high), b_vec, b_zero_point_vec, partial_sums); |
| 112 | + b_vec = vld1q_s8(b + 10 * ldb); |
| 113 | + block_mul_1x16x1<2>( |
| 114 | + vget_low_s16(a_vec_high), b_vec, b_zero_point_vec, partial_sums); |
| 115 | + b_vec = vld1q_s8(b + 11 * ldb); |
| 116 | + block_mul_1x16x1<3>( |
| 117 | + vget_low_s16(a_vec_high), b_vec, b_zero_point_vec, partial_sums); |
| 118 | + b_vec = vld1q_s8(b + 12 * ldb); |
| 119 | + block_mul_1x16x1<0>( |
| 120 | + vget_high_s16(a_vec_high), b_vec, b_zero_point_vec, partial_sums); |
| 121 | + b_vec = vld1q_s8(b + 13 * ldb); |
| 122 | + block_mul_1x16x1<1>( |
| 123 | + vget_high_s16(a_vec_high), b_vec, b_zero_point_vec, partial_sums); |
| 124 | + b_vec = vld1q_s8(b + 14 * ldb); |
| 125 | + block_mul_1x16x1<2>( |
| 126 | + vget_high_s16(a_vec_high), b_vec, b_zero_point_vec, partial_sums); |
| 127 | + b_vec = vld1q_s8(b + 15 * ldb); |
| 128 | + block_mul_1x16x1<3>( |
| 129 | + vget_high_s16(a_vec_high), b_vec, b_zero_point_vec, partial_sums); |
| 130 | +} |
| 131 | + |
| 132 | +TORCHAO_ALWAYS_INLINE void dequantize_1x16_int32_t( |
| 133 | + const int32x4_t (&sums)[4], |
| 134 | + const float* lhs_scales, |
| 135 | + const float* rhs_scales, |
| 136 | + float32x4_t (&outputs)[4]) { |
| 137 | + float32x4_t scales_0123 = vmulq_n_f32(vld1q_f32(rhs_scales), lhs_scales[0]); |
| 138 | + float32x4_t scales_4567 = |
| 139 | + vmulq_n_f32(vld1q_f32(rhs_scales + 4), lhs_scales[0]); |
| 140 | + float32x4_t scales_89ab = |
| 141 | + vmulq_n_f32(vld1q_f32(rhs_scales + 8), lhs_scales[0]); |
| 142 | + float32x4_t scales_cdef = |
| 143 | + vmulq_n_f32(vld1q_f32(rhs_scales + 12), lhs_scales[0]); |
| 144 | + |
| 145 | + outputs[0] = vmulq_f32(vcvtq_f32_s32(sums[0]), scales_0123); |
| 146 | + outputs[1] = vmulq_f32(vcvtq_f32_s32(sums[1]), scales_4567); |
| 147 | + outputs[2] = vmulq_f32(vcvtq_f32_s32(sums[2]), scales_89ab); |
| 148 | + outputs[3] = vmulq_f32(vcvtq_f32_s32(sums[3]), scales_cdef); |
| 149 | +} |
| 150 | + |
| 151 | +template < |
| 152 | + bool a_has_zeros, |
| 153 | + bool b_has_zeros, |
| 154 | + bool a_transposed, |
| 155 | + bool b_transposed> |
| 156 | +struct KernelImpl { |
| 157 | + static void run( |
| 158 | + int m, |
| 159 | + int n, |
| 160 | + int k, |
| 161 | + const void* lhs, |
| 162 | + int lhs_stride_m, |
| 163 | + const void* rhs, |
| 164 | + int rhs_stride_n, |
| 165 | + float32_t* output, |
| 166 | + int out_stride_m, |
| 167 | + const int8_t* lhs_zero_points, |
| 168 | + const int8_t* rhs_zero_points, |
| 169 | + const float* lhs_scales, |
| 170 | + const float* rhs_scales, |
| 171 | + const int lhs_qparams_stride, |
| 172 | + const int rhs_qparams_stride); |
| 173 | +}; |
| 174 | + |
| 175 | +template <> |
| 176 | +struct KernelImpl<true, true, false, false> { |
| 177 | + /** |
| 178 | + * @brief Implements quantized matrix multiplication for 8-bit channelwise |
| 179 | + * quantized matrices |
| 180 | + * |
| 181 | + * This specialized implementation handles the case where: |
| 182 | + * - Both LHS and RHS have zero points (true, true) |
| 183 | + * - Neither LHS nor RHS are transposed (false, false) |
| 184 | + * |
| 185 | + * The function performs a quantized matrix multiplication C = A * B where: |
| 186 | + * - A is an m×k matrix (LHS) |
| 187 | + * - B is a k×n matrix (RHS) |
| 188 | + * - C is an m×n matrix (output) |
| 189 | + * |
| 190 | + * The implementation uses NEON intrinsics for vectorized computation and |
| 191 | + * processes data in blocks of 16×16 for optimal performance on ARM |
| 192 | + * architecture. |
| 193 | + * |
| 194 | + * @param m Number of rows in LHS and output |
| 195 | + * @param n Number of columns in RHS and output |
| 196 | + * @param k Number of columns in LHS and rows in RHS |
| 197 | + * @param lhs Pointer to LHS matrix data (int8_t) |
| 198 | + * @param lhs_stride_m Stride between rows of LHS |
| 199 | + * @param rhs Pointer to RHS matrix data (int8_t) |
| 200 | + * @param rhs_stride_n Stride between rows of RHS |
| 201 | + * @param output Pointer to output matrix (float32_t) |
| 202 | + * @param out_stride_m Stride between rows of output |
| 203 | + * @param lhs_zero_points Zero points for LHS quantization (per-channel) |
| 204 | + * @param rhs_zero_points Zero points for RHS quantization (per-channel) |
| 205 | + * @param lhs_scales Scales for LHS quantization (per-channel) |
| 206 | + * @param rhs_scales Scales for RHS quantization (per-channel) |
| 207 | + * @param lhs_qparams_stride Stride for LHS quantization parameters |
| 208 | + * @param rhs_qparams_stride Stride for RHS quantization parameters |
| 209 | + */ |
| 210 | + static void run( |
| 211 | + int m, |
| 212 | + int n, |
| 213 | + int k, |
| 214 | + const void* lhs, |
| 215 | + int lhs_stride_m, |
| 216 | + const void* rhs, |
| 217 | + int rhs_stride_n, |
| 218 | + float32_t* output, |
| 219 | + int out_stride_m, |
| 220 | + const int8_t* lhs_zero_points, |
| 221 | + const int8_t* rhs_zero_points, |
| 222 | + const float* lhs_scales, |
| 223 | + const float* rhs_scales, |
| 224 | + const int lhs_qparams_stride, |
| 225 | + const int rhs_qparams_stride) { |
| 226 | + // If lhs_zero_points and rhs_zero_points are not contiguous, transpose |
| 227 | + std::unique_ptr<int8_t[]> lhs_zero_points_transposed = |
| 228 | + std::make_unique<int8_t[]>(m); |
| 229 | + std::unique_ptr<float[]> lhs_scales_transposed = |
| 230 | + std::make_unique<float[]>(m); |
| 231 | + if (lhs_qparams_stride > 1) { |
| 232 | + utils::transpose_scales_and_zero_points( |
| 233 | + lhs_zero_points, |
| 234 | + lhs_scales, |
| 235 | + lhs_zero_points_transposed.get(), |
| 236 | + lhs_scales_transposed.get(), |
| 237 | + m, |
| 238 | + lhs_qparams_stride); |
| 239 | + lhs_zero_points = lhs_zero_points_transposed.get(); |
| 240 | + lhs_scales = lhs_scales_transposed.get(); |
| 241 | + } |
| 242 | + std::unique_ptr<int8_t[]> rhs_zero_points_transposed = |
| 243 | + std::make_unique<int8_t[]>(n); |
| 244 | + std::unique_ptr<float[]> rhs_scales_transposed = |
| 245 | + std::make_unique<float[]>(n); |
| 246 | + if (rhs_qparams_stride > 1) { |
| 247 | + utils::transpose_scales_and_zero_points( |
| 248 | + rhs_zero_points, |
| 249 | + rhs_scales, |
| 250 | + rhs_zero_points_transposed.get(), |
| 251 | + rhs_scales_transposed.get(), |
| 252 | + n, |
| 253 | + rhs_qparams_stride); |
| 254 | + rhs_zero_points = rhs_zero_points_transposed.get(); |
| 255 | + rhs_scales = rhs_scales_transposed.get(); |
| 256 | + } |
| 257 | + |
| 258 | + for (int m_idx = 0; m_idx < m; m_idx++) { |
| 259 | + // Loop over 16 cols at a time |
| 260 | + // Access to partial tiles must be protected:w |
| 261 | + constexpr int nr = 16; |
| 262 | + constexpr int kr = 16; |
| 263 | + assert(n >= nr); |
| 264 | + for (int n_idx = 0; n_idx < n; n_idx += nr) { |
| 265 | + // If remaining is < nr, that must mean that (nr - remaining) items |
| 266 | + // dont need to be computed. |
| 267 | + // In order to avoid out-of-bounds access, we need to rewind n_indx a |
| 268 | + // bit |
| 269 | + // |-------------------|-------------------| |
| 270 | + // 0-------------------8-------------------16 |
| 271 | + // 0-------------------8-----10 |
| 272 | + // If n = 10 and nr = 8 then at n_idx = 8, we need to rewind n_idx to |
| 273 | + // 8 - (8 - 10) = 2 |
| 274 | + int remaining = std::min(n - n_idx, nr); |
| 275 | + n_idx = n_idx - (nr - remaining); |
| 276 | + // Set activation_ptr to start of activation qvals for row m_idx |
| 277 | + const int8_t* lhs_ptr = (const int8_t*)lhs + m_idx * lhs_stride_m; |
| 278 | + const int8_t* rhs_ptr = (const int8_t*)rhs + n_idx; |
| 279 | + int32x4_t int32_sums[nr / 4] = {vdupq_n_s32(0)}; |
| 280 | + |
| 281 | + // Loop k_idx by group |
| 282 | + int k_idx = 0; |
| 283 | + for (; (k_idx + kr) <= k; k_idx += kr) { |
| 284 | + block_mul_1x16x16( |
| 285 | + lhs_ptr, |
| 286 | + rhs_ptr, |
| 287 | + rhs_stride_n, |
| 288 | + lhs_zero_points[m_idx], |
| 289 | + rhs_zero_points + n_idx, |
| 290 | + int32_sums); |
| 291 | + lhs_ptr += kr; |
| 292 | + rhs_ptr += kr * rhs_stride_n; |
| 293 | + } |
| 294 | + |
| 295 | + int8x16_t b_zero_point_vec = vld1q_s8(rhs_zero_points + n_idx); |
| 296 | + for (int ki = 0; ki < (k - k_idx); ++ki) { |
| 297 | + // For each of the remaining k values |
| 298 | + // Load 1 int8_t from lhs |
| 299 | + // Load 16 int8_t from rhs |
| 300 | + // And multiply + add into the 16 accumulators |
| 301 | + // arranged as int32x4_t[4] |
| 302 | + int16_t a_val = static_cast<int16_t>(lhs_ptr[ki]) - |
| 303 | + static_cast<int16_t>(lhs_zero_points[m_idx]); |
| 304 | + int8x16_t b_vec = vld1q_s8(rhs_ptr + ki * rhs_stride_n); |
| 305 | + int16x8_t b_vec_low = |
| 306 | + vsubl_s8(vget_low_s8(b_vec), vget_low_s8(b_zero_point_vec)); |
| 307 | + int16x8_t b_vec_high = |
| 308 | + vsubl_s8(vget_high_s8(b_vec), vget_high_s8(b_zero_point_vec)); |
| 309 | + int32_sums[0] = |
| 310 | + vmlal_n_s16(int32_sums[0], vget_low_s16(b_vec_low), a_val); |
| 311 | + int32_sums[1] = |
| 312 | + vmlal_n_s16(int32_sums[1], vget_high_s16(b_vec_low), a_val); |
| 313 | + int32_sums[2] = |
| 314 | + vmlal_n_s16(int32_sums[2], vget_low_s16(b_vec_high), a_val); |
| 315 | + int32_sums[3] = |
| 316 | + vmlal_n_s16(int32_sums[3], vget_high_s16(b_vec_high), a_val); |
| 317 | + } |
| 318 | + |
| 319 | + float32x4_t res[4]; |
| 320 | + dequantize_1x16_int32_t( |
| 321 | + int32_sums, lhs_scales + m_idx, rhs_scales + n_idx, res); |
| 322 | + |
| 323 | + // Store result |
| 324 | + // Because we adjust n_idx, we may end up writing the same location |
| 325 | + // twice |
| 326 | + float* store_loc = output + m_idx * out_stride_m + n_idx; |
| 327 | + vst1q_f32(store_loc, res[0]); |
| 328 | + vst1q_f32(store_loc + 4, res[1]); |
| 329 | + vst1q_f32(store_loc + 8, res[2]); |
| 330 | + vst1q_f32(store_loc + 12, res[3]); |
| 331 | + } // n_idx |
| 332 | + } // m_idx |
| 333 | + } |
| 334 | +}; |
| 335 | + |
| 336 | +} // namespace |
| 337 | + |
| 338 | +} // namespace channelwise_8bit_a_channelwise_8bit_b_1x16x16_f32_smlal::internal |
| 339 | + |
| 340 | +namespace channelwise_8bit_a_channelwise_8bit_b_1x16x16_f32_smlal { |
| 341 | +template < |
| 342 | + bool a_has_zeros, |
| 343 | + bool b_has_zeros, |
| 344 | + bool a_transposed, |
| 345 | + bool b_transposed> |
| 346 | +void kernel( |
| 347 | + int m, |
| 348 | + int n, |
| 349 | + int k, |
| 350 | + const void* lhs, |
| 351 | + int lhs_stride_m, |
| 352 | + const void* rhs, |
| 353 | + int rhs_stride_n, |
| 354 | + float32_t* output, |
| 355 | + int out_stride_m, |
| 356 | + const int8_t* lhs_zero_points, |
| 357 | + const int8_t* rhs_zero_points, |
| 358 | + const float* lhs_scales, |
| 359 | + const float* rhs_scales, |
| 360 | + const int lhs_qparams_stride, |
| 361 | + const int rhs_qparams_stride) { |
| 362 | + torchao::kernels::cpu::aarch64::quantized_matmul:: |
| 363 | + channelwise_8bit_a_channelwise_8bit_b_1x16x16_f32_smlal::internal:: |
| 364 | + KernelImpl<a_has_zeros, b_has_zeros, a_transposed, b_transposed>::run( |
| 365 | + m, |
| 366 | + n, |
| 367 | + k, |
| 368 | + lhs, |
| 369 | + lhs_stride_m, |
| 370 | + rhs, |
| 371 | + rhs_stride_n, |
| 372 | + output, |
| 373 | + out_stride_m, |
| 374 | + lhs_zero_points, |
| 375 | + rhs_zero_points, |
| 376 | + lhs_scales, |
| 377 | + rhs_scales, |
| 378 | + lhs_qparams_stride, |
| 379 | + rhs_qparams_stride); |
| 380 | +} |
| 381 | +} // namespace channelwise_8bit_a_channelwise_8bit_b_1x16x16_f32_smlal |
| 382 | +} // namespace torchao::kernels::cpu::aarch64::quantized_matmul |
| 383 | + |
| 384 | +#endif // defined(__aarch64__) || defined(__ARM_NEON) |
0 commit comments