Skip to content

Commit bb52765

Browse files
committed
Update HTML files and PCS data structure for model-leaderboard-fork
- Replaced DOCTYPE comments and updated asset paths in multiple HTML files to reflect the new model-leaderboard-fork directory structure. - Revised metadata in index.txt files for improved SEO and formatting consistency. - Updated the label for the CGF metric in pcs-columns.ts to "CGF1" for clarity. - Introduced new JavaScript build manifests to enhance performance and modularity. - Updated references in the PCS, FAQ, and methodology sections to align with the new structure, improving user experience. - Removed outdated JavaScript chunks and replaced them with new versions for better performance.
1 parent 136a375 commit bb52765

File tree

15 files changed

+13
-13
lines changed

15 files changed

+13
-13
lines changed

docs/404.html

Lines changed: 1 addition & 1 deletion
Large diffs are not rendered by default.

docs/404/index.html

Lines changed: 1 addition & 1 deletion
Large diffs are not rendered by default.

docs/_next/static/chunks/app/pcs/page-6f07ac1b94fc04d9.js

Lines changed: 0 additions & 1 deletion
This file was deleted.

docs/_next/static/chunks/app/pcs/page-dbd4eae0f6458b94.js

Lines changed: 1 addition & 0 deletions
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

docs/faq/index.html

Lines changed: 1 addition & 1 deletion
Large diffs are not rendered by default.

docs/faq/index.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@ b:I[6874,["760","static/chunks/760-4248c9dc17cd00af.js","505","static/chunks/app
1212
14:I[8393,[],""]
1313
:HL["/model-leaderboard-fork/_next/static/media/e4af272ccee01ff0-s.p.woff2","font",{"crossOrigin":"","type":"font/woff2"}]
1414
:HL["/model-leaderboard-fork/_next/static/css/cedd3b9f0077aef5.css","style"]
15-
0:{"P":null,"b":"1fWYMgBfLm4dVIWAzGc5z","p":"/model-leaderboard-fork","c":["","faq",""],"i":false,"f":[[["",{"children":["faq",{"children":["__PAGE__",{}]}]},"$undefined","$undefined",true],["",["$","$1","c",{"children":[[["$","link","0",{"rel":"stylesheet","href":"/model-leaderboard-fork/_next/static/css/cedd3b9f0077aef5.css","precedence":"next","crossOrigin":"$undefined","nonce":"$undefined"}]],["$","html",null,{"lang":"en","suppressHydrationWarning":true,"className":"h-full","children":[["$","head",null,{"children":[["$","link",null,{"rel":"icon","href":"./favicon.ico","sizes":"any"}],["$","link",null,{"rel":"icon","href":"./favicon.svg","type":"image/svg+xml"}],["$","link",null,{"rel":"icon","href":"./favicon.png","type":"image/png"}],["$","link",null,{"rel":"apple-touch-icon","href":"./apple-touch-icon.png"}]]}],["$","body",null,{"className":"flex flex-col min-h-full __className_b537e5","children":[["$","$L2",null,{"attribute":"class","defaultTheme":"system","enableSystem":true,"disableTransitionOnChange":true,"children":[["$","div",null,{"className":"orb-container","children":["$","div",null,{"className":"orb orb-1"}]}],["$","$L3",null,{}],["$","main",null,{"className":"flex-1 flex flex-col gap-4 sm:gap-10","children":["$","$L4",null,{"parallelRouterKey":"children","error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","div",null,{"children":[["$","h2",null,{"children":"Not Found"}],["$","p",null,{"children":"Could not find requested resource"}]]}],[]],"forbidden":"$undefined","unauthorized":"$undefined"}]}],["$","footer",null,{"className":"py-4","children":["$","div",null,{"className":"container-base","children":["$","div",null,{"className":"flex justify-between","children":["$","p",null,{"className":"text-xs text-muted-foreground","children":["© ",2025," Roboflow, Inc. All rights reserved."]}]}]}]}]]}],["$","$L6",null,{"gaId":"G-KH26XBHQR9"}]]}]]}]]}],{"children":["faq",["$","$1","c",{"children":[null,["$","$L4",null,{"parallelRouterKey":"children","error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","forbidden":"$undefined","unauthorized":"$undefined"}]]}],{"children":["__PAGE__",["$","$1","c",{"children":[[["$","section",null,{"className":"pt-6 sm:pt-12","children":["$","div",null,{"className":"container-narrow space-y-6","children":["$","div",null,{"className":"space-y-6","children":[["$","h1",null,{"className":"text-3xl sm:text-4xl","children":"Frequently Asked Questions"}],["$","h2",null,{"className":"prose prose-sm","children":"Get answers to common questions about benchmarks, datasets, metrics, and how the leaderboard works."}]]}]}]}],["$","section",null,{"children":["$","div",null,{"className":"container-narrow","children":["$","$L7",null,{"type":"single","collapsible":true,"children":[["$","$L8",null,{"value":"item-1","children":[["$","$L9",null,{"className":"text-lg font-medium hover:no-underline","children":"What is mAP?"}],["$","$La",null,{"className":"prose prose-sm","children":["$","p",null,{"children":"Mean Average Precision (mAP) is a metric used to evaluate the object detection models. It is the average of the precision-recall curves at different IoU thresholds."}]}]]}],["$","$L8",null,{"value":"item-2","children":[["$","$L9",null,{"className":"text-lg font-medium hover:no-underline","children":"What is the difference between mAP 50, mAP 75 and mAP 50:95?"}],["$","$La",null,{"className":"prose prose-sm","children":["$","p",null,{"children":["mAP can be evaluated at multiple ",["$","$Lb",null,{"href":"https://blog.roboflow.com/mean-average-precision/#:~:text=The%20Intersection%20over%20Union","target":"_blank","className":"link-primary","children":"IoU thresholds"}],". mAP 50, for example, evaluates it while considering detections that overlap with an IoU of 0.5 or greater - everything else is a false positive. mAP 50:95 is an average of all considered IoU thresholds - 0.5, 0.6, … 0.8, 0.9, 0.95. It is the primary metric showing how well the model performs, across increasing levels of rigour."]}]}]]}],["$","$L8",null,{"value":"item-3","children":[["$","$L9",null,{"className":"text-lg font-medium hover:no-underline","children":"What do the small, medium, and large labels next to the mAP scores mean?"}],["$","$La",null,{"className":"prose prose-sm","children":["$","p",null,{"children":["The small, medium, and large labels next to the mAP scores indicate the size of the objects in the images. This is important because object detection models can struggle with detecting small objects. The COCO dataset has three categories of object sizes: small (less than 32x32 pixels), medium (between 32x32 and 96x96 pixels), and large (greater than 96x96 pixels). You can learn more about the definition on the ","$Lc","."]}]}]]}],"$Ld","$Le","$Lf","$L10","$L11"]}]}]}]],null,"$L12"]}],{},null,false]},null,false]},null,false],"$L13",false]],"m":"$undefined","G":["$14",[]],"s":false,"S":true}
15+
0:{"P":null,"b":"0cYeoO0_I3uQYDc75oNpu","p":"/model-leaderboard-fork","c":["","faq",""],"i":false,"f":[[["",{"children":["faq",{"children":["__PAGE__",{}]}]},"$undefined","$undefined",true],["",["$","$1","c",{"children":[[["$","link","0",{"rel":"stylesheet","href":"/model-leaderboard-fork/_next/static/css/cedd3b9f0077aef5.css","precedence":"next","crossOrigin":"$undefined","nonce":"$undefined"}]],["$","html",null,{"lang":"en","suppressHydrationWarning":true,"className":"h-full","children":[["$","head",null,{"children":[["$","link",null,{"rel":"icon","href":"./favicon.ico","sizes":"any"}],["$","link",null,{"rel":"icon","href":"./favicon.svg","type":"image/svg+xml"}],["$","link",null,{"rel":"icon","href":"./favicon.png","type":"image/png"}],["$","link",null,{"rel":"apple-touch-icon","href":"./apple-touch-icon.png"}]]}],["$","body",null,{"className":"flex flex-col min-h-full __className_b537e5","children":[["$","$L2",null,{"attribute":"class","defaultTheme":"system","enableSystem":true,"disableTransitionOnChange":true,"children":[["$","div",null,{"className":"orb-container","children":["$","div",null,{"className":"orb orb-1"}]}],["$","$L3",null,{}],["$","main",null,{"className":"flex-1 flex flex-col gap-4 sm:gap-10","children":["$","$L4",null,{"parallelRouterKey":"children","error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","div",null,{"children":[["$","h2",null,{"children":"Not Found"}],["$","p",null,{"children":"Could not find requested resource"}]]}],[]],"forbidden":"$undefined","unauthorized":"$undefined"}]}],["$","footer",null,{"className":"py-4","children":["$","div",null,{"className":"container-base","children":["$","div",null,{"className":"flex justify-between","children":["$","p",null,{"className":"text-xs text-muted-foreground","children":["© ",2025," Roboflow, Inc. All rights reserved."]}]}]}]}]]}],["$","$L6",null,{"gaId":"G-KH26XBHQR9"}]]}]]}]]}],{"children":["faq",["$","$1","c",{"children":[null,["$","$L4",null,{"parallelRouterKey":"children","error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","forbidden":"$undefined","unauthorized":"$undefined"}]]}],{"children":["__PAGE__",["$","$1","c",{"children":[[["$","section",null,{"className":"pt-6 sm:pt-12","children":["$","div",null,{"className":"container-narrow space-y-6","children":["$","div",null,{"className":"space-y-6","children":[["$","h1",null,{"className":"text-3xl sm:text-4xl","children":"Frequently Asked Questions"}],["$","h2",null,{"className":"prose prose-sm","children":"Get answers to common questions about benchmarks, datasets, metrics, and how the leaderboard works."}]]}]}]}],["$","section",null,{"children":["$","div",null,{"className":"container-narrow","children":["$","$L7",null,{"type":"single","collapsible":true,"children":[["$","$L8",null,{"value":"item-1","children":[["$","$L9",null,{"className":"text-lg font-medium hover:no-underline","children":"What is mAP?"}],["$","$La",null,{"className":"prose prose-sm","children":["$","p",null,{"children":"Mean Average Precision (mAP) is a metric used to evaluate the object detection models. It is the average of the precision-recall curves at different IoU thresholds."}]}]]}],["$","$L8",null,{"value":"item-2","children":[["$","$L9",null,{"className":"text-lg font-medium hover:no-underline","children":"What is the difference between mAP 50, mAP 75 and mAP 50:95?"}],["$","$La",null,{"className":"prose prose-sm","children":["$","p",null,{"children":["mAP can be evaluated at multiple ",["$","$Lb",null,{"href":"https://blog.roboflow.com/mean-average-precision/#:~:text=The%20Intersection%20over%20Union","target":"_blank","className":"link-primary","children":"IoU thresholds"}],". mAP 50, for example, evaluates it while considering detections that overlap with an IoU of 0.5 or greater - everything else is a false positive. mAP 50:95 is an average of all considered IoU thresholds - 0.5, 0.6, … 0.8, 0.9, 0.95. It is the primary metric showing how well the model performs, across increasing levels of rigour."]}]}]]}],["$","$L8",null,{"value":"item-3","children":[["$","$L9",null,{"className":"text-lg font-medium hover:no-underline","children":"What do the small, medium, and large labels next to the mAP scores mean?"}],["$","$La",null,{"className":"prose prose-sm","children":["$","p",null,{"children":["The small, medium, and large labels next to the mAP scores indicate the size of the objects in the images. This is important because object detection models can struggle with detecting small objects. The COCO dataset has three categories of object sizes: small (less than 32x32 pixels), medium (between 32x32 and 96x96 pixels), and large (greater than 96x96 pixels). You can learn more about the definition on the ","$Lc","."]}]}]]}],"$Ld","$Le","$Lf","$L10","$L11"]}]}]}]],null,"$L12"]}],{},null,false]},null,false]},null,false],"$L13",false]],"m":"$undefined","G":["$14",[]],"s":false,"S":true}
1616
15:I[9665,[],"OutletBoundary"]
1717
17:I[4911,[],"AsyncMetadataOutlet"]
1818
19:I[9665,[],"ViewportBoundary"]

docs/index.html

Lines changed: 1 addition & 1 deletion
Large diffs are not rendered by default.

docs/index.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@ f:"$Sreact.suspense"
1313
11:I[8393,[],""]
1414
:HL["/model-leaderboard-fork/_next/static/media/e4af272ccee01ff0-s.p.woff2","font",{"crossOrigin":"","type":"font/woff2"}]
1515
:HL["/model-leaderboard-fork/_next/static/css/cedd3b9f0077aef5.css","style"]
16-
0:{"P":null,"b":"1fWYMgBfLm4dVIWAzGc5z","p":"/model-leaderboard-fork","c":["",""],"i":false,"f":[[["",{"children":["__PAGE__",{}]},"$undefined","$undefined",true],["",["$","$1","c",{"children":[[["$","link","0",{"rel":"stylesheet","href":"/model-leaderboard-fork/_next/static/css/cedd3b9f0077aef5.css","precedence":"next","crossOrigin":"$undefined","nonce":"$undefined"}]],["$","html",null,{"lang":"en","suppressHydrationWarning":true,"className":"h-full","children":[["$","head",null,{"children":[["$","link",null,{"rel":"icon","href":"./favicon.ico","sizes":"any"}],["$","link",null,{"rel":"icon","href":"./favicon.svg","type":"image/svg+xml"}],["$","link",null,{"rel":"icon","href":"./favicon.png","type":"image/png"}],["$","link",null,{"rel":"apple-touch-icon","href":"./apple-touch-icon.png"}]]}],["$","body",null,{"className":"flex flex-col min-h-full __className_b537e5","children":[["$","$L2",null,{"attribute":"class","defaultTheme":"system","enableSystem":true,"disableTransitionOnChange":true,"children":[["$","div",null,{"className":"orb-container","children":["$","div",null,{"className":"orb orb-1"}]}],["$","$L3",null,{}],["$","main",null,{"className":"flex-1 flex flex-col gap-4 sm:gap-10","children":["$","$L4",null,{"parallelRouterKey":"children","error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","div",null,{"children":[["$","h2",null,{"children":"Not Found"}],["$","p",null,{"children":"Could not find requested resource"}]]}],[]],"forbidden":"$undefined","unauthorized":"$undefined"}]}],["$","footer",null,{"className":"py-4","children":["$","div",null,{"className":"container-base","children":["$","div",null,{"className":"flex justify-between","children":["$","p",null,{"className":"text-xs text-muted-foreground","children":["© ",2025," Roboflow, Inc. All rights reserved."]}]}]}]}]]}],["$","$L6",null,{"gaId":"G-KH26XBHQR9"}]]}]]}]]}],{"children":["__PAGE__",["$","$1","c",{"children":[["$","$L7",null,{}],null,["$","$L8",null,{"children":["$L9",["$","$La",null,{"promise":"$@b"}]]}]]}],{},null,false]},null,false],["$","$1","h",{"children":[null,[["$","$Lc",null,{"children":"$Ld"}],["$","meta",null,{"name":"next-size-adjust","content":""}]],["$","$Le",null,{"children":["$","div",null,{"hidden":true,"children":["$","$f",null,{"fallback":null,"children":"$L10"}]}]}]]}],false]],"m":"$undefined","G":["$11",[]],"s":false,"S":true}
16+
0:{"P":null,"b":"0cYeoO0_I3uQYDc75oNpu","p":"/model-leaderboard-fork","c":["",""],"i":false,"f":[[["",{"children":["__PAGE__",{}]},"$undefined","$undefined",true],["",["$","$1","c",{"children":[[["$","link","0",{"rel":"stylesheet","href":"/model-leaderboard-fork/_next/static/css/cedd3b9f0077aef5.css","precedence":"next","crossOrigin":"$undefined","nonce":"$undefined"}]],["$","html",null,{"lang":"en","suppressHydrationWarning":true,"className":"h-full","children":[["$","head",null,{"children":[["$","link",null,{"rel":"icon","href":"./favicon.ico","sizes":"any"}],["$","link",null,{"rel":"icon","href":"./favicon.svg","type":"image/svg+xml"}],["$","link",null,{"rel":"icon","href":"./favicon.png","type":"image/png"}],["$","link",null,{"rel":"apple-touch-icon","href":"./apple-touch-icon.png"}]]}],["$","body",null,{"className":"flex flex-col min-h-full __className_b537e5","children":[["$","$L2",null,{"attribute":"class","defaultTheme":"system","enableSystem":true,"disableTransitionOnChange":true,"children":[["$","div",null,{"className":"orb-container","children":["$","div",null,{"className":"orb orb-1"}]}],["$","$L3",null,{}],["$","main",null,{"className":"flex-1 flex flex-col gap-4 sm:gap-10","children":["$","$L4",null,{"parallelRouterKey":"children","error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","div",null,{"children":[["$","h2",null,{"children":"Not Found"}],["$","p",null,{"children":"Could not find requested resource"}]]}],[]],"forbidden":"$undefined","unauthorized":"$undefined"}]}],["$","footer",null,{"className":"py-4","children":["$","div",null,{"className":"container-base","children":["$","div",null,{"className":"flex justify-between","children":["$","p",null,{"className":"text-xs text-muted-foreground","children":["© ",2025," Roboflow, Inc. All rights reserved."]}]}]}]}]]}],["$","$L6",null,{"gaId":"G-KH26XBHQR9"}]]}]]}]]}],{"children":["__PAGE__",["$","$1","c",{"children":[["$","$L7",null,{}],null,["$","$L8",null,{"children":["$L9",["$","$La",null,{"promise":"$@b"}]]}]]}],{},null,false]},null,false],["$","$1","h",{"children":[null,[["$","$Lc",null,{"children":"$Ld"}],["$","meta",null,{"name":"next-size-adjust","content":""}]],["$","$Le",null,{"children":["$","div",null,{"hidden":true,"children":["$","$f",null,{"fallback":null,"children":"$L10"}]}]}]]}],false]],"m":"$undefined","G":["$11",[]],"s":false,"S":true}
1717
d:[["$","meta","0",{"charSet":"utf-8"}],["$","meta","1",{"name":"viewport","content":"width=device-width, initial-scale=1"}]]
1818
9:null
1919
12:I[8175,[],"IconMark"]

0 commit comments

Comments
 (0)