Skip to content

Commit 2a5963b

Browse files
vmscwRoRoJ
andauthored
fix(qaas): some minor fixes (#5961)
* fix(qaas): minor changes * fix(qaas): minor changes * fix(aer): config link * fix(pennylane): revoke soon iqm * Update pages/quantum-computing/additional-content/iqm-qpus.mdx Co-authored-by: Rowena Jones <[email protected]> --------- Co-authored-by: Rowena Jones <[email protected]>
1 parent 2b5739f commit 2a5963b

File tree

5 files changed

+7
-7
lines changed

5 files changed

+7
-7
lines changed

pages/quantum-computing/additional-content/iqm-qpus.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -30,8 +30,8 @@ The table below summarizes the key technical specifications and pricing models f
3030

3131
| Platform name | QPU Model | Qubits & Topology | Fidelity Metrics (Avg)* | Speed Metrics | Benchmarks | Pricing Model |
3232
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
33+
| **QPU-SIRIUS-24PQ** | Star-24 | 16 Active (of 24) [Star topology](https://www.iqmacademy.com/qpu/sirius/) | 1-gate: 99.89%, 2-gates:9 8.27%, readout: 98.05% | 2550 CLOPS | Q-score: 10 | 0.2€/circuit + 0.00075€/shot or 1200€/hour |
3334
| **QPU-GARNET-20PQ** | Crystal-20 | 20 Qubits [Square grid](https://www.iqmacademy.com/qpu/garnet/) | 1-gate: 99.88%, 2-gates: 99.4%, readout: 96.80% | 2600 CLOPS | Qv: 32 Q-score: 15 | 0.22€/circuit + 0.0012€/shot or 2000€/hour |
34-
| **QPU-SIRIUS-24PQ** | Star-24 | 16 Active (of 24) [Star tpology](https://www.iqmacademy.com/qpu/sirius/) | 1-gate: 99.89%, 2-gates:9 8.27%, readout: 98.05% | 2550 CLOPS | X | 0.2€/circuit + 0.00075€/shot or 1200€/hour |
3535
| **QPU-EMERALD-54PQ**| Crystal-54 | 54 Qubits [Square grid](https://www.iqmacademy.com/qpu/emerald/) | 1-gate: 99.8%, 2-gates: 98.86%, readout: 96.53% | 2550 CLOPS | Qv: 64 Q-score: 24 | 0.25€/circuit +0.0014€/shot or 3000€/hour |
3636

3737
<Message type="note">

pages/quantum-computing/additional-content/quandela-qpus.mdx

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -20,8 +20,8 @@ Developed by **Quandela**, a French quantum computing leader founded in 2017. Th
2020
## Use cases
2121

2222
* **Quantum Machine Learning (QML):** Ideal for generative modeling, classification, and training quantum neural networks (QNNs).
23-
* **Linear algebra:** Efficiently solves differential equations and complex linear algebra problems used in engineering and physics.
2423
* **Certified randomness:** Generation of high-quality entropy for cryptography and stochastic simulations.
24+
* **Sampling tasks:** Efficiently performs sampling from complex probability distributions, useful in various scientific applications.
2525

2626
## Quandela QPUs available at Scaleway
2727

@@ -30,8 +30,8 @@ Scaleway provides access to Quandela's "Mosaiq" generation devices and their dig
3030
| Platform name | QPU Model | Qubits & Topology | Fidelity Metrics (Avg)* | Speed Metrics | Pricing Model |
3131
| :--- | :--- | :--- | :--- | :--- | :--- |
3232
| **QPU-ASCELLA-6PQ** | Mosaiq-6 | 6 photons, 12 modes, All-to-All | 1-gate: 99.6%, 2-gates: 99%, readout: 99% | 4Mhz 144 op/s | 0.3€/circuit + 0.000001€/shot or 750€/hour |
33-
| **QPU-ALTAIR-10PQ** | Mosaiq-10 | 10 photons, 20 modes, All-to-All | 1-gate: 99.94%, 2-gates: 98.2%, readout: 99% | 3Mhz 400 op/s | X | 0.3€/circuit + 0.000001€/shot |
34-
| **QPU-BELENOS-12PQ** | Mosaiq-12 | 12 photons, 24 modes, Dual-Rail-Encoding, All-to-All | 1-gate: 99.6%, 2-gates: 99%, readout: 99% | 3Mhz 576 op/s | X | 0.3€/circuit + 0.000001€/shot or 1000€/hour |
33+
| **QPU-ALTAIR-10PQ** | Mosaiq-10 | 10 photons, 20 modes, All-to-All | 1-gate: 99.94%, 2-gates: 98.2%, readout: 99% | 3Mhz 400 op/s | 0.3€/circuit + 0.000001€/shot |
34+
| **QPU-BELENOS-12PQ** | Mosaiq-12 | 12 photons, 24 modes, Dual-Rail-Encoding, All-to-All | 1-gate: 99.6%, 2-gates: 99%, readout: 99% | 3Mhz 576 op/s | 0.3€/circuit + 0.000001€/shot or 1000€/hour |
3535

3636
Developed by Quandela, exQalibur is a cutting-edge photonic quantum emulator accelerated by Scaleway's most powerful GPUs. This synergy enables large-scale simulations, allowing users to explore complex parameter spaces across 31 photonic qubits at kilohertz rates, accelerating prototyping and optimization of advanced quantum algorithms.
3737

pages/quantum-computing/how-to/use-pennylane.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@ Scaleway offers access to the `pennylane-scaleway` plugin, which enables you to
2626

2727
- `scaleway.aer`
2828
- `scaleway.aqt`
29-
- `scaleway.iqm` (Available soon)
29+
- `scaleway.iqm`
3030

3131
2. Select which backend to use within the chose device. This will determine the performance of your device. Refer to the detailed list of [Scaleweay Quantum Computing offers](https://www.scaleway.com/en/quantum-as-a-service/) on the Scaleway Website to find a complete list of the available backend platforms.
3232

pages/quantum-computing/menu.ts

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -40,7 +40,7 @@ export const quantumComputingMenu = {
4040
},
4141
{
4242
label: 'Run Quantum Machine Learning with Pennylane',
43-
slug: 'use-qsim-emulators',
43+
slug: 'use-pennylane',
4444
},
4545
],
4646
label: 'How to',

pages/quantum-computing/quickstart.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -58,7 +58,7 @@ This guide shows you how to execute your first "Hello World" circuit (a Bell Sta
5858
backend_name = "QPU-GARNET-20PQ" # IQM (Transmons qubits)
5959

6060
# 3. Retrieve the platform
61-
# Example platform ID: 'EMU-AER-2L40S' (Aer emulator using an Nvidia H100 GPU)
61+
# Example platform: 'EMU-AER-2L40S' (Aer emulator using a managed cluster of 2 Nvidia L40S GPU)
6262
backend = provider.get_backend(backend_name)
6363

6464
# 3. Create a Quantum Circuit

0 commit comments

Comments
 (0)