Skip to content

scttfrdmn/aws-trainium-tutorial-for-research

Repository files navigation

AWS Trainium & Inferentia Tutorial for Research

Open Source GitHub Stars Version Neuron SDK

🎯 Overview

The world's most comprehensive, production-ready tutorial for AWS Trainium and Inferentia. This tutorial provides everything researchers and organizations need to leverage AWS Neuron hardware for cost-effective ML research and production deployment.

Key Features

  • FinOps-First Approach: Built-in cost controls and monitoring
  • Ephemeral Computing: Auto-terminating resources to prevent runaway costs
  • Complete Workflows: End-to-end examples from training to inference
  • Advanced Patterns: NKI development, RAG implementations, distributed training
  • Real-Time Monitoring: S3-hosted dashboard for cost and resource tracking
  • Domain-Specific Examples: Climate science, biomedical, social sciences
  • Production Ready: Container-based workflows with AWS Batch

Cost Savings

  • Training: 30-75% savings vs traditional GPUs
  • Inference: Up to 88% savings with spot instances
  • Example: Llama 2 7B training - $144 (Trainium2) vs $295 (H100)

Table of Contents

  1. Introduction & Prerequisites
  2. FinOps First: Cost Control
  3. AWS Fundamentals
  4. Chip Comparison
  5. CUDA to Neuron Migration
  6. Ephemeral Environments
  7. Container Workflows
  8. Complete Trainium → Inferentia Workflow
  9. Cost Monitoring Dashboard
  10. Domain-Specific Examples
  11. Advanced Optimization
  12. Performance Benchmarks
  13. Troubleshooting

Quick Start

# 1. Set up AWS credentials
aws configure

# 2. Create budget alerts
python scripts/setup_budget.py --limit 500

# 3. Launch ephemeral experiment
python scripts/ephemeral_experiment.py \
    --name "bert-test" \
    --instance-type "trn1.2xlarge" \
    --max-hours 4

# 4. Monitor costs
python scripts/cost_monitor.py

Repository Structure

aws-trainium-inferentia-tutorial/
├── README.md                          # This file
├── docs/                              # Full tutorial documentation
├── scripts/                           # Utility scripts
├── examples/                          # Complete examples
│   ├── climate_prediction/           # Climate science example
│   ├── protein_structure/            # Biomedical example
│   ├── social_media_analysis/        # Social sciences example
│   └── rag_pipeline/                 # Modern RAG implementation
├── containers/                        # Docker configurations
├── monitoring/                        # Cost monitoring dashboard
├── advanced/                          # Advanced patterns (NKI, etc.)
└── benchmarks/                        # Performance data and comparisons

Key Examples

Complete Training → Inference Pipeline

Train a climate prediction model on Trainium, then deploy on Inferentia:

# Train on Trainium2
pipeline = TrainiumToInferentiaPipeline('climate-prediction-v1')
training_result = pipeline.train_on_trainium(
    model_class='ClimateTransformer',
    config={'epochs': 100, 'instance_type': 'trn2.48xlarge'}
)

# Deploy on Inferentia2  
inference_result = pipeline.deploy_on_inferentia(
    model_path=training_result['model_path']
)

# Cost analysis shows 60-70% savings vs GPU approach

Modern RAG Implementation

# RAG pipeline optimized for AWS ML chips
rag = NeuronRAGPipeline(
    embedding_model='BGE-base-en-v1.5',  # On Inferentia2
    llm_model='Llama-2-7B'               # On Trainium2
)

# Index documents
rag.index_documents(research_papers)

# Query with cost tracking
result = rag.generate("What are the latest findings in climate modeling?")
print(f"Answer: {result['answer']}")
print(f"Cost: ${result['inference_cost']:.4f}")

Advanced NKI Development

# Custom Flash Attention kernel for Trainium
@nki.jit
def flash_attention_kernel(q_tensor, k_tensor, v_tensor, scale):
    # Optimized for NeuronCore v2 memory hierarchy
    # - SBUF: 24MB on-chip memory
    # - PSUM: 2MB for matrix multiply results
    # - Native 128x128 matrix operations
    
    q_tile = nl.load(q_tensor)
    k_tile = nl.load(k_tensor) 
    v_tile = nl.load(v_tensor)
    
    scores = nl.matmul(q_tile, k_tile.transpose())
    attn_weights = nl.softmax(scores * scale)
    output = nl.matmul(attn_weights, v_tile)
    
    return output

Getting Started

  1. Clone the repository:

    git clone https://github.com/yourusername/aws-trainium-inferentia-tutorial
    cd aws-trainium-inferentia-tutorial
  2. Set up environment:

    pip install -r requirements.txt
    python setup.py install
  3. Configure AWS:

    python scripts/setup_aws_environment.py
  4. Run your first experiment:

    python examples/quickstart/bert_training.py

Contributing

We welcome contributions! Please see CONTRIBUTING.md for guidelines.

License

MIT License - see LICENSE for details.

Support

Citation

If you use this tutorial in your research, please cite:

@misc{aws_trainium_tutorial2025,
  title={AWS Trainium \& Inferentia: Complete Tutorial for Academic Researchers},
  author={[Your Name]},
  year={2025},
  publisher={GitHub},
  url={https://github.com/yourusername/aws-trainium-inferentia-tutorial}
}

About

Comprehensive AWS Trainium & Inferentia tutorial for ML research and production deployment

Resources

License

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published