The world's most comprehensive, production-ready tutorial for AWS Trainium and Inferentia. This tutorial provides everything researchers and organizations need to leverage AWS Neuron hardware for cost-effective ML research and production deployment.
- FinOps-First Approach: Built-in cost controls and monitoring
- Ephemeral Computing: Auto-terminating resources to prevent runaway costs
- Complete Workflows: End-to-end examples from training to inference
- Advanced Patterns: NKI development, RAG implementations, distributed training
- Real-Time Monitoring: S3-hosted dashboard for cost and resource tracking
- Domain-Specific Examples: Climate science, biomedical, social sciences
- Production Ready: Container-based workflows with AWS Batch
- Training: 30-75% savings vs traditional GPUs
- Inference: Up to 88% savings with spot instances
- Example: Llama 2 7B training - $144 (Trainium2) vs $295 (H100)
- Introduction & Prerequisites
- FinOps First: Cost Control
- AWS Fundamentals
- Chip Comparison
- CUDA to Neuron Migration
- Ephemeral Environments
- Container Workflows
- Complete Trainium → Inferentia Workflow
- Cost Monitoring Dashboard
- Domain-Specific Examples
- Advanced Optimization
- Performance Benchmarks
- Troubleshooting
# 1. Set up AWS credentials
aws configure
# 2. Create budget alerts
python scripts/setup_budget.py --limit 500
# 3. Launch ephemeral experiment
python scripts/ephemeral_experiment.py \
--name "bert-test" \
--instance-type "trn1.2xlarge" \
--max-hours 4
# 4. Monitor costs
python scripts/cost_monitor.pyaws-trainium-inferentia-tutorial/
├── README.md # This file
├── docs/ # Full tutorial documentation
├── scripts/ # Utility scripts
├── examples/ # Complete examples
│ ├── climate_prediction/ # Climate science example
│ ├── protein_structure/ # Biomedical example
│ ├── social_media_analysis/ # Social sciences example
│ └── rag_pipeline/ # Modern RAG implementation
├── containers/ # Docker configurations
├── monitoring/ # Cost monitoring dashboard
├── advanced/ # Advanced patterns (NKI, etc.)
└── benchmarks/ # Performance data and comparisons
Train a climate prediction model on Trainium, then deploy on Inferentia:
# Train on Trainium2
pipeline = TrainiumToInferentiaPipeline('climate-prediction-v1')
training_result = pipeline.train_on_trainium(
model_class='ClimateTransformer',
config={'epochs': 100, 'instance_type': 'trn2.48xlarge'}
)
# Deploy on Inferentia2
inference_result = pipeline.deploy_on_inferentia(
model_path=training_result['model_path']
)
# Cost analysis shows 60-70% savings vs GPU approach# RAG pipeline optimized for AWS ML chips
rag = NeuronRAGPipeline(
embedding_model='BGE-base-en-v1.5', # On Inferentia2
llm_model='Llama-2-7B' # On Trainium2
)
# Index documents
rag.index_documents(research_papers)
# Query with cost tracking
result = rag.generate("What are the latest findings in climate modeling?")
print(f"Answer: {result['answer']}")
print(f"Cost: ${result['inference_cost']:.4f}")# Custom Flash Attention kernel for Trainium
@nki.jit
def flash_attention_kernel(q_tensor, k_tensor, v_tensor, scale):
# Optimized for NeuronCore v2 memory hierarchy
# - SBUF: 24MB on-chip memory
# - PSUM: 2MB for matrix multiply results
# - Native 128x128 matrix operations
q_tile = nl.load(q_tensor)
k_tile = nl.load(k_tensor)
v_tile = nl.load(v_tensor)
scores = nl.matmul(q_tile, k_tile.transpose())
attn_weights = nl.softmax(scores * scale)
output = nl.matmul(attn_weights, v_tile)
return output-
Clone the repository:
git clone https://github.com/yourusername/aws-trainium-inferentia-tutorial cd aws-trainium-inferentia-tutorial -
Set up environment:
pip install -r requirements.txt python setup.py install
-
Configure AWS:
python scripts/setup_aws_environment.py
-
Run your first experiment:
python examples/quickstart/bert_training.py
We welcome contributions! Please see CONTRIBUTING.md for guidelines.
MIT License - see LICENSE for details.
- AWS Neuron Community: Slack
- GitHub Issues: Report bugs or request features
- Documentation: Full tutorial documentation
If you use this tutorial in your research, please cite:
@misc{aws_trainium_tutorial2025,
title={AWS Trainium \& Inferentia: Complete Tutorial for Academic Researchers},
author={[Your Name]},
year={2025},
publisher={GitHub},
url={https://github.com/yourusername/aws-trainium-inferentia-tutorial}
}