@@ -11,7 +11,7 @@ It is recommended to use uv to install the dependencies for faster installation:
1111``` bash
1212pip install --upgrade pip
1313pip install uv
14- uv pip install " sglang[all]>=0.4.5.post3 "
14+ uv pip install " sglang[all]>=0.4.6 "
1515```
1616
1717** Quick Fixes to Common Problems**
@@ -29,7 +29,7 @@ uv pip install "sglang[all]>=0.4.5.post3"
2929
3030``` bash
3131# Use the last release branch
32- git clone -b v0.4.5.post3 https://github.com/sgl-project/sglang.git
32+ git clone -b v0.4.6 https://github.com/sgl-project/sglang.git
3333cd sglang
3434
3535pip install --upgrade pip
@@ -44,7 +44,7 @@ Note: For AMD ROCm system with Instinct/MI GPUs, do following instead:
4444
4545``` bash
4646# Use the last release branch
47- git clone -b v0.4.5.post3 https://github.com/sgl-project/sglang.git
47+ git clone -b v0.4.6 https://github.com/sgl-project/sglang.git
4848cd sglang
4949
5050pip install --upgrade pip
@@ -73,7 +73,7 @@ docker run --gpus all \
7373Note: For AMD ROCm system with Instinct/MI GPUs, it is recommended to use ` docker/Dockerfile.rocm ` to build images, example and usage as below:
7474
7575``` bash
76- docker build --build-arg SGL_BRANCH=v0.4.5.post3 -t v0.4.5.post3 -rocm630 -f Dockerfile.rocm .
76+ docker build --build-arg SGL_BRANCH=v0.4.6 -t v0.4.6 -rocm630 -f Dockerfile.rocm .
7777
7878alias drun=' docker run -it --rm --network=host --device=/dev/kfd --device=/dev/dri --ipc=host \
7979 --shm-size 16G --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined \
@@ -82,11 +82,11 @@ alias drun='docker run -it --rm --network=host --device=/dev/kfd --device=/dev/d
8282drun -p 30000:30000 \
8383 -v ~ /.cache/huggingface:/root/.cache/huggingface \
8484 --env " HF_TOKEN=<secret>" \
85- v0.4.5.post3 -rocm630 \
85+ v0.4.6 -rocm630 \
8686 python3 -m sglang.launch_server --model-path meta-llama/Llama-3.1-8B-Instruct --host 0.0.0.0 --port 30000
8787
8888# Till flashinfer backend available, --attention-backend triton --sampling-backend pytorch are set by default
89- drun v0.4.5.post3 -rocm630 python3 -m sglang.bench_one_batch --batch-size 32 --input 1024 --output 128 --model amd/Meta-Llama-3.1-8B-Instruct-FP8-KV --tp 8 --quantization fp8
89+ drun v0.4.6 -rocm630 python3 -m sglang.bench_one_batch --batch-size 32 --input 1024 --output 128 --model amd/Meta-Llama-3.1-8B-Instruct-FP8-KV --tp 8 --quantization fp8
9090```
9191
9292## Method 4: Using docker compose
0 commit comments