Skip to content

Using Uncertainty Quantification on a Uniform Distribution for Varying Data  #63

@DougRDrake

Description

@DougRDrake

I'm wanting to create a distribution across an imported data set. I try importing the data and creating a chaospy distribution and each point and then passing in these distributions into the parameters functionality like this where eps and eps_double_prime are my imported data:
eps_dist = []
eps_double_prime_dist = []
parameters = []
for i in range(len(eps)):
eps_dist.append(cp.Uniform(0.9eps[i], 1.1eps[i]))
eps_double_prime_dist.append(cp.Uniform(0.8eps_double_prime[i], 1.2eps_double_prime[i]))
parameters_dict = {"eps":eps_dist[i],"eps_double_prime":eps_double_prime_dist[i]} #defining parameters for uncertainpy
parameters.append(parameters_dict)
parameters = un.Parameters(parameters)

Whenever I do this I'm given a "key error 1:" at line 216 in the parameters.py source code.
un.Parameters works if I pass in single inputs from the parameters dictionary ie. parameters = un.Parameters(parameters[i]), but I want to pass the whole list into Uncertainty Quantification. Is there a way I can do this or do I have to pass each of the parameters from the dictionary in one at a time and then stitch the results together using other data tools in python?

Thanks for the help and I can clarify anything if you ask.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions