55
66---
77
8- [ ![ GitHub release] ( https://img.shields.io/badge/release-1.1.0 -yellow.svg )] ( https://github.com/thieu1995/intelelm/releases )
8+ [ ![ GitHub release] ( https://img.shields.io/badge/release-1.1.1 -yellow.svg )] ( https://github.com/thieu1995/intelelm/releases )
99[ ![ Wheel] ( https://img.shields.io/pypi/wheel/gensim.svg )] ( https://pypi.python.org/pypi/intelelm )
1010[ ![ PyPI version] ( https://badge.fury.io/py/intelelm.svg )] ( https://badge.fury.io/py/intelelm )
1111![ PyPI - Python Version] ( https://img.shields.io/pypi/pyversions/intelelm.svg )
@@ -87,7 +87,7 @@ Please include these citations if you plan to use this library:
8787$ pip install intelelm
8888```
8989
90- After installation, you can import IntelELM as any other Python module :
90+ After installation, you can check the version of current installed IntelELM by :
9191
9292``` sh
9393$ python
@@ -107,7 +107,6 @@ $ python
107107preprocessing steps mentioned below can be replicated using Scikit-Learn, we have implemented some utility functions
108108to provide users with convenience and faster usage.
109109
110- #### Utilities everything that IntelELM provided
111110
112111``` python
113112# ## Step 1: Importing the libraries
@@ -129,25 +128,27 @@ data.y_test = scaler_y.transform(data.y_test)
129128# ### Step 5: Fitting ELM-based model to the dataset
130129
131130# #### 5.1: Use standard ELM model for regression problem
132- regressor = ElmRegressor(hidden_size = 10 , act_name = " relu" )
131+ regressor = ElmRegressor(hidden_size = 10 , act_name = " relu" , seed = 42 )
133132regressor.fit(data.X_train, data.y_train)
134133
135134# #### 5.2: Use standard ELM model for classification problem
136- classifer = ElmClassifier(hidden_size = 10 , act_name = " tanh" )
135+ classifer = ElmClassifier(hidden_size = 10 , act_name = " tanh" , seed = 42 )
137136classifer.fit(data.X_train, data.y_train)
138137
139138# #### 5.3: Use Metaheuristic-based ELM model for regression problem
140139print (MhaElmClassifier.SUPPORTED_OPTIMIZERS )
141140print (MhaElmClassifier.SUPPORTED_REG_OBJECTIVES )
142141opt_paras = {" name" : " GA" , " epoch" : 10 , " pop_size" : 30 }
143- regressor = MhaElmRegressor(hidden_size = 10 , act_name = " elu" , obj_name = " RMSE" , optimizer = " BaseGA" , optimizer_paras = opt_paras)
142+ regressor = MhaElmRegressor(hidden_size = 10 , act_name = " elu" , obj_name = " RMSE" ,
143+ optimizer = " BaseGA" , optimizer_paras = opt_paras, seed = 42 )
144144regressor.fit(data.X_train, data.y_train)
145145
146146# #### 5.4: Use Metaheuristic-based ELM model for classification problem
147147print (MhaElmClassifier.SUPPORTED_OPTIMIZERS )
148148print (MhaElmClassifier.SUPPORTED_CLS_OBJECTIVES )
149149opt_paras = {" name" : " GA" , " epoch" : 10 , " pop_size" : 30 }
150- classifier = MhaElmClassifier(hidden_size = 10 , act_name = " elu" , obj_name = " KLDL" , optimizer = " BaseGA" , optimizer_paras = opt_paras)
150+ classifier = MhaElmClassifier(hidden_size = 10 , act_name = " elu" , obj_name = " KLDL" ,
151+ optimizer = " BaseGA" , optimizer_paras = opt_paras, seed = 42 )
151152classifier.fit(data.X_train, data.y_train)
152153
153154# ### Step 6: Predicting a new result
@@ -246,7 +247,7 @@ data.split_train_test(test_size=0.2, random_state=10) # Try different random_st
246247``` python
247248opt_paras = {" name" : " GA" , " epoch" : 30 , " pop_size" : 30 }
248249model = MhaElmClassifier(hidden_size = 10 , act_name = " elu" , obj_name = " KLDL" , optimizer = " BaseGA" ,
249- optimizer_paras = opt_paras, verbose = True )
250+ optimizer_paras = opt_paras, verbose = True , seed = 42 )
250251model.fit(X_train, y_train, lb = (- 10 ., ), ub = (10 ., ))
251252y_pred = model.predict(X_test)
252253```
0 commit comments