|
23 | 23 |
|
24 | 24 | # from mealpy.utils.problem import Problem |
25 | 25 | from mealpy import Problem |
| 26 | +from mealpy import get_all_optimizers, get_optimizer_by_name |
| 27 | + |
26 | 28 |
|
27 | 29 | ndim = 30 |
28 | 30 | f18 = F292017(ndim, f_bias=0) |
@@ -63,61 +65,69 @@ def fit_func(self, solution): |
63 | 65 | P1 = Squared(lb=[-10, ] * 100, ub=[10, ] * 100, minmax="min") |
64 | 66 |
|
65 | 67 | if __name__ == "__main__": |
66 | | - model = WOA.OriginalWOA(epoch, pop_size) |
67 | | - model = OriginalBMO(epoch, pop_size) |
68 | | - model = OriginalTPO(epoch, pop_size) |
69 | | - model = OriginalEHO(epoch, pop_size) |
70 | | - model = OriginalESOA(epoch, pop_size) |
71 | | - model = T1.BaseBBO(epoch, pop_size) |
72 | | - model = T2.OriginalBBO(epoch, pop_size) |
73 | | - model = BaseBBO(epoch, pop_size) |
74 | | - model = LARO(epoch, pop_size) |
75 | | - model = OriginalARO(epoch, pop_size) |
76 | | - model = MGTO(epoch, pop_size) |
77 | | - model = EOA.OriginalEOA(epoch, pop_size) |
78 | | - model = SBO.OriginalSBO(epoch, pop_size) |
79 | | - model = SMA.OriginalSMA(epoch, pop_size) |
80 | | - model = SOA.DevSOA(epoch, pop_size) |
81 | | - model = MA.OriginalMA(epoch, pop_size) |
82 | | - model = BRO.BaseBRO(epoch, pop_size) |
83 | | - model = BSO.ImprovedBSO(epoch, pop_size) |
84 | | - model = CHIO.BaseCHIO(epoch, pop_size) |
85 | | - model = FBIO.OriginalFBIO(epoch, pop_size) |
86 | | - model = HBO.OriginalHBO(epoch, pop_size) |
87 | | - model = QSA.BaseQSA(epoch, pop_size) |
88 | | - model = QSA.OriginalQSA(epoch, pop_size) |
89 | | - model = QSA.OppoQSA(epoch, pop_size) |
90 | | - model = QSA.ImprovedQSA(epoch, pop_size) |
91 | | - model = SARO.BaseSARO(epoch, pop_size) |
92 | | - model = SARO.OriginalSARO(epoch, pop_size) |
93 | | - model = TLO.BaseTLO(epoch, pop_size) |
94 | | - model = TLO.ImprovedTLO(epoch, pop_size) |
95 | | - model = TLO.OriginalTLO(epoch, pop_size) |
96 | | - model = PSS.OriginalPSS(epoch, pop_size) |
97 | | - model = ASO.OriginalASO(epoch, pop_size) |
98 | | - model = EO.ModifiedEO(epoch, pop_size) |
99 | | - model = EO.AdaptiveEO(epoch, pop_size) |
100 | | - model = EO.OriginalEO(epoch, pop_size) |
101 | | - model = FLA.OriginalFLA(epoch, pop_size) |
102 | | - model = BFO.OriginalBFO(epoch, pop_size) |
103 | | - model = BFO.ABFO(epoch, pop_size) |
104 | | - model = GJO.OriginalGJO(epoch, pop_size) |
105 | | - model = GTO.Matlab102GTO(epoch, pop_size) |
106 | | - model = HHO.OriginalHHO(epoch, pop_size) |
107 | | - model = MPA.OriginalMPA(epoch, pop_size) |
108 | | - model = SeaHO.OriginalSeaHO(epoch, pop_size) |
109 | | - model = SRSR.OriginalSRSR(epoch, pop_size) |
110 | | - model = AVOA.OriginalAVOA(epoch, pop_size) |
111 | | - model = SA.OriginalSA(epoch, pop_size) |
112 | | - model = BSO.OriginalBSO(epoch, pop_size) |
| 68 | + # model = WOA.OriginalWOA(epoch, pop_size) |
| 69 | + # model = OriginalBMO(epoch, pop_size) |
| 70 | + # model = OriginalTPO(epoch, pop_size) |
| 71 | + # model = OriginalEHO(epoch, pop_size) |
| 72 | + # model = OriginalESOA(epoch, pop_size) |
| 73 | + # model = T1.BaseBBO(epoch, pop_size) |
| 74 | + # model = T2.OriginalBBO(epoch, pop_size) |
| 75 | + # model = BaseBBO(epoch, pop_size) |
| 76 | + # model = LARO(epoch, pop_size) |
| 77 | + # model = OriginalARO(epoch, pop_size) |
| 78 | + # model = MGTO(epoch, pop_size) |
| 79 | + # model = EOA.OriginalEOA(epoch, pop_size) |
| 80 | + # model = SBO.OriginalSBO(epoch, pop_size) |
| 81 | + # model = SMA.OriginalSMA(epoch, pop_size) |
| 82 | + # model = SOA.DevSOA(epoch, pop_size) |
| 83 | + # model = MA.OriginalMA(epoch, pop_size) |
| 84 | + # model = BRO.BaseBRO(epoch, pop_size) |
| 85 | + # model = BSO.ImprovedBSO(epoch, pop_size) |
| 86 | + # model = CHIO.BaseCHIO(epoch, pop_size) |
| 87 | + # model = FBIO.OriginalFBIO(epoch, pop_size) |
| 88 | + # model = HBO.OriginalHBO(epoch, pop_size) |
| 89 | + # model = QSA.BaseQSA(epoch, pop_size) |
| 90 | + # model = QSA.OriginalQSA(epoch, pop_size) |
| 91 | + # model = QSA.OppoQSA(epoch, pop_size) |
| 92 | + # model = QSA.ImprovedQSA(epoch, pop_size) |
| 93 | + # model = SARO.BaseSARO(epoch, pop_size) |
| 94 | + # model = SARO.OriginalSARO(epoch, pop_size) |
| 95 | + # model = TLO.BaseTLO(epoch, pop_size) |
| 96 | + # model = TLO.ImprovedTLO(epoch, pop_size) |
| 97 | + # model = TLO.OriginalTLO(epoch, pop_size) |
| 98 | + # model = PSS.OriginalPSS(epoch, pop_size) |
| 99 | + # model = ASO.OriginalASO(epoch, pop_size) |
| 100 | + # model = EO.ModifiedEO(epoch, pop_size) |
| 101 | + # model = EO.AdaptiveEO(epoch, pop_size) |
| 102 | + # model = EO.OriginalEO(epoch, pop_size) |
| 103 | + # model = FLA.OriginalFLA(epoch, pop_size) |
| 104 | + # model = BFO.OriginalBFO(epoch, pop_size) |
| 105 | + # model = BFO.ABFO(epoch, pop_size) |
| 106 | + # model = GJO.OriginalGJO(epoch, pop_size) |
| 107 | + # model = GTO.Matlab102GTO(epoch, pop_size) |
| 108 | + # model = HHO.OriginalHHO(epoch, pop_size) |
| 109 | + # model = MPA.OriginalMPA(epoch, pop_size) |
| 110 | + # model = SeaHO.OriginalSeaHO(epoch, pop_size) |
| 111 | + # model = SRSR.OriginalSRSR(epoch, pop_size) |
| 112 | + # model = AVOA.OriginalAVOA(epoch, pop_size) |
| 113 | + # model = SA.OriginalSA(epoch, pop_size) |
| 114 | + # model = BSO.OriginalBSO(epoch, pop_size) |
113 | 115 | # model = BSO.ImprovedBSO(epoch, pop_size) |
114 | | - model = SCSO.OriginalSCSO(epoch, pop_size) |
115 | | - model = TS.OriginalTS(epoch, pop_size=2, tabu_size=5, neighbour_size=20, perturbation_scale=0.05) |
116 | | - model = GWO.OriginalGWO(epoch, pop_size) |
117 | | - model = GWO.GWO_WOA(epoch, pop_size) |
118 | | - model = GWO.RW_GWO(epoch, pop_size) |
119 | | - model = GWO.IGWO(epoch, pop_size, a_min=0.02, a_max=1.6) |
120 | | - best_position, best_fitness = model.solve(P1)#, mode="thread", n_workers=4, termination=term_dict1) |
| 116 | + # model = SCSO.OriginalSCSO(epoch, pop_size) |
| 117 | + # model = TS.OriginalTS(epoch, pop_size=2, tabu_size=5, neighbour_size=20, perturbation_scale=0.05) |
| 118 | + # model = GWO.OriginalGWO(epoch, pop_size) |
| 119 | + # model = GWO.GWO_WOA(epoch, pop_size) |
| 120 | + # model = GWO.RW_GWO(epoch, pop_size) |
| 121 | + |
| 122 | + ## 1st way |
| 123 | + # model = GWO.IGWO(epoch, pop_size, a_min=0.02, a_max=1.6) |
| 124 | + |
| 125 | + for opt_name, opt_class in get_all_optimizers().items(): |
| 126 | + print(f"{opt_name}: {opt_class}") |
| 127 | + |
| 128 | + ## 2nd way |
| 129 | + model = get_optimizer_by_name("IGWO")(epoch, pop_size, a_min=0.02, a_max=1.6) |
| 130 | + best_position, best_fitness = model.solve(P1, mode="thread", n_workers=4, termination=term_dict1) |
121 | 131 |
|
122 | 132 | print(best_position) |
123 | 133 | print(model.get_parameters()) |
|
0 commit comments