-
Notifications
You must be signed in to change notification settings - Fork 70
Open
Description
Different numbers of differences chosen, and excessive memory used.
library(fable)
#> Loading required package: fabletools
#> Registered S3 method overwritten by 'tsibble':
#> method from
#> as_tibble.grouped_df dplyr
library(forecast)
#> Registered S3 method overwritten by 'quantmod':
#> method from
#> as.zoo.data.frame zoo
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
# Different order of differences
auto.arima(AirPassengers, lambda = 0, biasadj = TRUE)
#> Series: AirPassengers
#> ARIMA(0,1,1)(0,1,1)[12]
#> Box Cox transformation: lambda= 0
#>
#> Coefficients:
#> ma1 sma1
#> -0.4018 -0.5569
#> s.e. 0.0896 0.0731
#>
#> sigma^2 = 0.001371: log likelihood = 244.7
#> AIC=-483.4 AICc=-483.21 BIC=-474.77
as_tsibble(AirPassengers) |>
model(ARIMA(log(value))) |>
report()
#> Series: value
#> Model: ARIMA(2,0,0)(0,1,1)[12] w/ drift
#> Transformation: log(value)
#>
#> Coefficients:
#> ar1 ar2 sma1 constant
#> 0.5754 0.2614 -0.5553 0.0193
#> s.e. 0.0843 0.0842 0.0771 0.0015
#>
#> sigma^2 estimated as 0.001323: log likelihood=249.65
#> AIC=-489.29 AICc=-488.82 BIC=-474.88
# Benchmarks
bench::mark(
forecast = auto.arima(AirPassengers, lambda = 0, biasadj = TRUE) |>
forecast(h = 12),
fable = as_tsibble(AirPassengers) |>
model(ARIMA(log(value))) |>
forecast(h = 12),
check = FALSE
) |>
select(expression, min, median, `itr/sec`, mem_alloc)
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
#> # A tibble: 2 × 5
#> expression min median `itr/sec` mem_alloc
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt>
#> 1 forecast 1.59s 1.59s 0.628 398.74MB
#> 2 fable 5.5s 5.5s 0.182 1.27GBCreated on 2025-05-30 with reprex v2.1.1
Metadata
Metadata
Assignees
Labels
No labels