Software stack for loco-manipulation experiments across multiple humanoid platforms, with primary support for the Unitree G1. This repository provides whole-body control policies, a teleoperation stack, and a data exporter.
- Ubuntu 22.04
- NVIDIA GPU with a recent driver
- Docker and NVIDIA Container Toolkit (required for GPU access inside the container)
Install Git and Git LFS:
sudo apt update
sudo apt install git git-lfs
git lfs installClone the repository:
mkdir -p ~/Projects
cd ~/Projects
git clone https://github.com/NVlabs/gr00t_wbc.git
cd gr00t_wbcWe provide a Docker image with all dependencies pre-installed.
Install a fresh image and start a container:
./docker/run_docker.sh --install --rootThis pulls the latest gr00t_wbc image from docker.io/nvgear.
Start or re-enter a container:
./docker/run_docker.sh --rootUse --root to run as the root user. To run as a normal user, build the image locally:
./docker/run_docker.sh --buildOnce inside the container, the control policies can be launched directly.
- Simulation:
python gr00t_wbc/control/main/teleop/run_g1_control_loop.py
- Real robot: Ensure the host machine network is configured per the G1 SDK Development Guide and set a static IP at
192.168.123.222, subnet mask255.255.255.0:python gr00t_wbc/control/main/teleop/run_g1_control_loop.py --interface real
Keyboard shortcuts (terminal window):
]: Activate policyo: Deactivate policy9: Release / Hold the robotw/s: Move forward / backwarda/d: Strafe left / rightq/e: Rotate left / rightz: Zero navigation commands1/2: Raise / lower the base heightbackspace(viewer): Reset the robot in the visualizer
The teleoperation policy primarily uses Pico controllers for coordinated hand and body control. It also supports other teleoperation devices, including LeapMotion and HTC Vive with Nintendo Switch Joy-Con controllers.
Keep run_g1_control_loop.py running, and in another terminal run:
python gr00t_wbc/control/main/teleop/run_teleop_policy_loop.py --hand_control_device=pico --body_control_device=picoConfigure the teleop app on your Pico headset by following the XR Robotics guidelines.
The necessary PC software is pre-installed in the Docker container. Only the XRoboToolkit-PC-Service component is needed.
Prerequisites: Connect the Pico to the same network as the host computer.
Controller bindings:
menu + left trigger: Toggle lower-body policymenu + right trigger: Toggle upper-body policyLeft stick: X/Y translationRight stick: Yaw rotationL/R triggers: Control hand grippers
Pico unit test:
python gr00t_wbc/control/teleop/streamers/pico_streamer.pyRun the full stack (control loop, teleop policy, and camera forwarder) via the deployment helper:
python scripts/deploy_g1.py \
--interface sim \
--camera_host localhost \
--sim_in_single_process \
--simulator robocasa \
--image-publish \
--enable-offscreen \
--env_name PnPBottle \
--hand_control_device=pico \
--body_control_device=picoThe tmux session g1_deployment is created with panes for:
control_data_teleop: Main control loop, data collection, and teleoperation policycamera: Camera forwardercamera_viewer: Optional live camera feed
Operations in the controller window (control_data_teleop pane, left):
]: Activate policyo: Deactivate policyk: Reset the simulation and policies`: Terminate the tmux sessionctrl + d: Exit the shell in the pane
Operations in the data exporter window (control_data_teleop pane, right top):
- Enter the task prompt
Operations on Pico controllers:
A: Start/Stop recordingB: Discard trajectory