@@ -41,18 +41,18 @@ We have learnt the theory behind using:
4141
4242## _ Image-like_ data
4343
44- ![ ] ( http ://colah.github.io/posts/2014-10-Visualizing-MNIST/img/mnist_pca/MNIST-p1815-1.png) {.absolute width=30% top=20% left=35%}
44+ ![ ] ( https ://colah.github.io/posts/2014-10-Visualizing-MNIST/img/mnist_pca/MNIST-p1815-1.png) {.absolute width=30% top=20% left=35%}
4545
4646::: {.fragment}
47- ![ ] ( http ://colah.github.io/posts/2014-10-Visualizing-MNIST/img/mnist_pca/MNIST-PCA1.png) {.absolute width=30% top=20% left=35%}
47+ ![ ] ( https ://colah.github.io/posts/2014-10-Visualizing-MNIST/img/mnist_pca/MNIST-PCA1.png) {.absolute width=30% top=20% left=35%}
4848:::
4949
5050::: {.fragment}
51- ![ ] ( http ://colah.github.io/posts/2014-10-Visualizing-MNIST/img/mnist_pca/MNIST-PCA1-4.png) {.absolute width=30% top=20% left=35%}
51+ ![ ] ( https ://colah.github.io/posts/2014-10-Visualizing-MNIST/img/mnist_pca/MNIST-PCA1-4.png) {.absolute width=30% top=20% left=35%}
5252:::
5353
5454::: {.fragment}
55- ![ ] ( http ://mdpi.com/atmosphere/atmosphere-08-00024/article_deploy/html/images/atmosphere-08-00024-g005.png) {.absolute width=70% top=15% left=15%}
55+ ![ ] ( https ://mdpi.com/atmosphere/atmosphere-08-00024/article_deploy/html/images/atmosphere-08-00024-g005.png) {.absolute width=70% top=15% left=15%}
5656:::
5757
5858::: {.attribution}
@@ -77,7 +77,7 @@ See review of @kashinath2021physics and @gmd-16-6433-2023
7777- Emulation of existing parameterisations
7878 [ @espinosa2022machine ]
7979 <br >
80- - Data-driven paramterisations
80+ - Data-driven parameterisations
8181 [ @yuval2020stable ; @giglio2018estimating ]
8282 <br >
8383- Downscaling/Upsampling
@@ -90,13 +90,13 @@ See review of @kashinath2021physics and @gmd-16-6433-2023
9090
9191::: {.column width="50%"}
9292- Time series forecasting
93- [ @shao2021deep ; @ nguyen2023climax ; @ bodnar2025foundation ]
93+ [ @shao2021deep ]
9494 <br >
9595- Equation discovery
9696 [ @zanna2020data ; @ma2021data ]
9797 <br >
9898- Complete forecasting
99- [ @pathak2022fourcastnet ; @bi2022pangu ; @rasp2024weatherbench ; @Kochkov_2024; @nathaniel2024chaosbench ]
99+ [ @pathak2022fourcastnet ; @bi2022pangu ; @nguyen2023climax ; @ rasp2024weatherbench ; @Kochkov_2024; @nathaniel2024chaosbench ; @ bodnar2025foundation ]
100100 <br >
101101 <br >
102102
@@ -199,8 +199,8 @@ Image by [Earth Lab](https://www.earthdatascience.org/courses/use-data-open-sour
199199- Time-series
200200 - Recurrent Neural Nets
201201- Complete weather
202- - FourCastNet, Pangu-Weather,
203- - GraphCast, NeuralGCM
202+ - FourCastNet, Pangu-Weather, ClimaX
203+ - GraphCast, NeuralGCM, Aurora
204204
205205![ ] ( https://media.springernature.com/full/springer-static/image/art%3A10.1038%2Fs41586-023-06185-3/MediaObjects/41586_2023_6185_Fig2_HTML.png?as=webp ) {.absolute bottom=0% left=0% width=48%}
206206
@@ -234,6 +234,9 @@ Images from Google NeuralGCM
234234- Fine tune for specific forecasting tasks
235235- Examples:
236236 - ClimaX, Microsoft Aurora
237+ - Limitations
238+ - Poor accuracy beyond short term forecasts
239+ - Predict unrealistic dynamics [ @chattopadhyay2023long ]
237240
238241
239242
0 commit comments