Ethical AI in Healthcare
My Approach to AI Strategy for Healthcare
╔════════════════════════════════════════════════════════════════════════════════╗
║ A LIFE IN MISMATCHED PASTELS ║
║ Every color misaligns just enough to make meaning ║
║ Looks accidental—until you see the pattern ║
╚════════════════════════════════════════════════════════════════════════════════╝
FDF2F8 ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░
FFE0F5 ░░░░░░░░ 2022: Lab coat meets unexpected pastels ░░░░░░░░░░░
D4FFE4 ░░░░░░░░ Where pink met mint met purpose ░░░░░░░░░░░░░░░░░░░░
Name: Cazzy A.
Current Role: Head of Data @ FoXX Health
Background: Quality Control Scientist → Ethical AI
Trajectory: Former lab scientist who traded pipettes for Python
Education:
- MS Data Science (University of Denver)
- BS Integrative Biology & Chemistry (OSU Cascades)
- AI in Healthcare Certificate (Johns Hopkins, 2025)
Mission: Building AI that addresses healthcare inequities for women
Specialty: Pattern discovery in distribution tails & bias detection
Philosophy: Every model must be validated, evidence-based & production-ready
Approach: Effectiveness + Attractiveness + Impact = Excellence
# My ideal palette: Mismatched pastels that shouldn't work but doI started in a lab coat, where I learned that good science means obsessing over validation and reproducibility. Turns out, those habits translate pretty well to machine learning. I’m here to help teams build ethical & sustainable systems. I like the weird edges of data: tails, drift, the places fairness breaks. I bridge research and production. I say “no” when the data can’t support the claim. Bring me the messy dataset you’ve been avoiding; I’ll tell you what the tails are saying, and we’ll make it useful together. If you care less about hype and more about calibration curves, we’ll get along. I like turning messy data into useful, fair systems—models that explain themselves, pass their audits, and still look good in a dashboard. If you’re curious about outliers, tail behavior, and pushing code that doesn’t quietly exclude half the population, say hi. |
D4FFE4 ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
93C5FD ▒▒▒▒▒▒▒▒ 2019: Data Science emerges ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
FFCCE5 ▒▒▒▒▒▒▒▒ 30% reduction in errors ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
A7F3D0 ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓
FFCCE5 ▓▓▓▓▓▓▓▓ 2024: Lead Data Scientist ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓
93C5FD ▓▓▓▓▓▓▓▓ Built ML platform from scratch ▓▓▓▓▓▓▓▓▓▓▓▓▓▓
def career_acceleration():
"""
The gradient mismatches intentionally.
Knowledge compounds in unexpected colors.
"""
timeline = {
"2024_Q1": "Lead Data Scientist",
"2024_Q2": "Architected frameworks",
"2024_Q3": "AI Engineer",
"2025": "Head of Data",
"gradient": "exponential",
"palette": "Always mismatched"
}
return "Where patterns emerge from chaos" |
%%{init: {'theme': 'base'}}%%
graph TD
A[Dataset] -->|r = 0.06| B[Everyone: No Pattern]
A -->|But...| C[Me: Check the Extremes]
C -->|Top 5%| D[r = 0.85!]
C -->|Bottom 5%| E[r = 0.85!]
D --> F[PATTERN HIDDEN IN EXTREMES]
E --> F
F --> G[Being evaluated for drug safety & financial risk]
style A fill:#FFE0F5,stroke:#D4FFE4
style C fill:#D4FFE4,stroke:#93C5FD
style D fill:#93C5FD,stroke:#FFCCE5
style F fill:#A7F3D0,stroke:#E6E0FF
style G fill:#34D399,stroke:#FFE0F5
|
The stuff that actually ships to production |
Where math meets aesthetics |
Because models need homes too |
Because learning new languages keeps me curious |
|
From measuring chemical reactions to measuring algorithmic bias. |
Comprehensive technical portfolio showcasing systems architecture, ML engineering, and infrastructure expertise
Full stack engineering excellence with production-grade implementations
THE GRADIENT OF HARM:
░░░░░░░░░░░░░░░░░░░░░░░░░░░ Clinical trials exclude women
▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ 8/10 drugs affect women differently
▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ 50% higher misdiagnosis rate
████████████████████████████ Real people harmed daily
MY INTERVENTION (IN MISMATCHED PASTELS):
████████████████████████████ Detect bias (pink on mint)
▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ Balance data (blue on blush)
▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Fair models (lavender on sage)
░░░░░░░░░░░░░░░░░░░░░░░░░░░ Healthcare for all (in every shade)
|
| I'm always interested in conversations about pattern discovery, ethical AI, or why medical algorithms think everyone is a 70kg male. Also happy to discuss career transitions, the beauty of well-documented code, or why pastel color schemes are objectively superior. Hidden patterns in data • Building fair AI systems • Healthcare innovation |
░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ Curious about patterns?
▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Interested in fairness?
▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ Want to build together?
████████████████████████████████████ Let's make AI fair
|
|
|
|
|
╔═══════════════════════════════════════════════════════════════════════════════════╗
║ ║
║ COMPRESSION COMPLETE: ║
║ ║
║ Career = ∫(Pink → Blue → Mint → Purpose)dt ║
║ ║
║ Every color combination intentionally unexpected ║
║ Pink on mint, blue on blush, lavender on sage ║
║ Mismatched but never unintentional ║
║ ║
║ I find patterns in noise ║
║ I fix bias in algorithms ║
║ I do it all in mismatched pastels ║
║ ║
║ Because different is powerful ║
║ And unexpected is memorable ║
║ ║
╚═══════════════════════════════════════════════════════════════════════════════════╝
%%{init: {'theme': 'base', 'themeVariables': {'primaryColor':'#FFE0F5','fontSize':'14px'}}}%%
pie title Where My Code Lives
"Python (Data Science)" : 45
"Python (ML/AI)" : 30
"JavaScript (Viz)" : 15
"R (Stats)" : 8
"Shell (Automation)" : 2
I write code like I used to write lab reports: obsessively documented, thoroughly tested, and with enough comments that future-me won't hate past-me. |

