Skip to content

EBConlin/VS_Seg

 
 

Repository files navigation

Vestibular Schwannoma Segmentation

An ML pipeline for automatic segmentation of vestibular schwannomas (VS) from 3D MRI scans using size-aware data augmentation and transformer-enhanced nnUNet architectures.

🎯 Highlights

  • 2.5D UNet with Transformer bottleneck + gated residuals
  • Conditional Diffusion (Med-DDPM) for generating rare tumor samples
  • Cross-modality fusion decoder (T1 + T2)
  • Dice score: 0.926 on T1, 0.906 on T2

🧪 Data

  • Public VS-SEG dataset (242 patient scans)
  • T1-weighted and T2-weighted MRIs
  • Tumor contours in JSON, converted to NIfTI using 3DSlicer

🔧 Setup

pip install niftynet tensorflow

🧠 Architecture

  • nnUNet backbone
  • Optional Transformer block between encoder/decoder
  • Fusion Decoder uses pretrained Swin Transformer

🖼 Sample Outputs

  • Synthetic tumors in rare size bins
  • Segmentation visualizations coming soon

📝 Citation

Work based on: Poe, Wu, Conlin, Longhitano et al. (2024), BU NLP

About

Automatic Segmentation of Vestibular Schwannoma with MONAI (PyTorch)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 78.0%
  • Python 22.0%