Skip to content

EmadTolbaMohamed/Finding-Donors-for-CharityML

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Supervised Learning

Project: Finding Donors for CharityML

Code Requirements

This project requires Python 3.x and the following Python libraries installed:

This project for Udacity Machine Learning Cross-Skilling Nanodegree Program

Run

In a terminal or command window, navigate to the top-level project directory finding_donors/ (that contains this README) and run one of the following commands:

ipython notebook finding_donors.ipynb

or

jupyter notebook finding_donors.ipynb

This will open the iPython Notebook software and project file in your browser.

Data

The modified census dataset consists of approximately 32,000 data points, with each datapoint having 13 features. This dataset is a modified version of the dataset published in the paper "Scaling Up the Accuracy of Naive-Bayes Classifiers: a Decision-Tree Hybrid", by Ron Kohavi. You may find this paper online, with the original dataset hosted on UCI.

Features

  • age: Age
  • workclass: Working Class (Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked)
  • education_level: Level of Education (Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool)
  • education-num: Number of educational years completed
  • marital-status: Marital status (Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse)
  • occupation: Work Occupation (Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces)
  • relationship: Relationship Status (Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried)
  • race: Race (White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black)
  • sex: Sex (Female, Male)
  • capital-gain: Monetary Capital Gains
  • capital-loss: Monetary Capital Losses
  • hours-per-week: Average Hours Per Week Worked
  • native-country: Native Country (United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands)

Target Variable

  • income: Income Class (<=50K, >50K)

About

Project for Machine Learning Cross-Skilling Nanodegree Program - Udacity

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published