Skip to content

Phoenix3024/ComposerStableDiffusion

Repository files navigation

0.环境配置

cd ComposerStableDiffusion-master
conda create -n composer python=3.12
conda activate composer
pip install -r requirements.txt

1.图像预处理

本项目在COCO数据集上预训练,选用unlabeled2017

1.1首先下载COCO数据集并解压

mkdir data
wget http://images.cocodataset.org/zips/unlabeled2017.zip
unzip -d data/ unlabeled2017.zip

1.2计算颜色直方图

计算好颜色直方图后,保存到data文件夹下

python rayleigh-master/rayleigh/image2color.py

1.3获取图片对应的文字描述

将图片对应的文字描述存储在csv文件中,保存到data文件夹下

python image2text.py

1.4计算局部条件(草图、深度图、实例分割图、强度图)

首先下载对应模型的预训练权重(MiDaS、segment-anything)并复制到对应目录下,然后运行预处理脚本

wget https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_beit_large_512.pt
cp dpt_beit_large_512.pt MiDaS_master/weights/
wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth
cp sam_vit_l_0b3195.pth segment_anything_main/
python preprocess.py

2.训练

2.1单卡训练

运行train.py开始训练

python train.py

2.2多卡训练

运行train_multi.py进行多卡训练

python train_multi.py

3.推理

运行infer.py进行推理

python infer.py

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published