cd ComposerStableDiffusion-master
conda create -n composer python=3.12
conda activate composer
pip install -r requirements.txt本项目在COCO数据集上预训练,选用unlabeled2017
mkdir data
wget http://images.cocodataset.org/zips/unlabeled2017.zip
unzip -d data/ unlabeled2017.zip计算好颜色直方图后,保存到data文件夹下
python rayleigh-master/rayleigh/image2color.py将图片对应的文字描述存储在csv文件中,保存到data文件夹下
python image2text.py首先下载对应模型的预训练权重(MiDaS、segment-anything)并复制到对应目录下,然后运行预处理脚本
wget https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_beit_large_512.pt
cp dpt_beit_large_512.pt MiDaS_master/weights/
wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth
cp sam_vit_l_0b3195.pth segment_anything_main/
python preprocess.py运行train.py开始训练
python train.py运行train_multi.py进行多卡训练
python train_multi.py运行infer.py进行推理
python infer.py