A comprehensive collection of machine learning implementations, tutorials, and learning materials covering various algorithms and techniques.
This repository serves as a complete learning hub for machine learning concepts, from fundamental algorithms to advanced techniques. Each module is designed to provide both theoretical understanding and practical implementation.
machine-learning/
├── README.md # Main repository overview
├── .gitignore # Git ignore configuration
└── Linear_Regression/ # Linear Regression module
├── README.md # Linear Regression specific documentation
├── linearregression_day1.ipynb # Basic linear regression tutorial
├── LR_day2.ipynb # Ice cream sales prediction
├── LR_day2_sal.ipynb # Salary prediction model
├── LR_day2_stuPro.ipynb # Student performance analysis
├── Salary_dataset.csv # Salary dataset
├── Student_Performance.csv # Student performance dataset
└── Theory materials/ # PDF resources and theoretical references
Location: /Linear_Regression/
Featured Notebook: linearregression_day1.ipynb
- Study hours vs exam scores relationship
- Complete ML pipeline from data to evaluation
- Perfect for beginners understanding linear regression fundamentals
Real-world Applications:
- Salary prediction based on experience
- Student performance analysis
- Ice cream sales prediction
- Logistic Regression
- Decision Trees & Random Forest
- Support Vector Machines
- Neural Networks
- Clustering Algorithms
- Python 3.x - Programming language
- pandas - Data manipulation
- numpy - Numerical computing
- matplotlib - Data visualization
- scikit-learn - Machine learning library
- jupyter - Interactive development
`Bash
git clone https://github.com/Rahullll101/machine-learning.git cd machine-learning
pip install pandas numpy matplotlib scikit-learn jupyter
cd Linear_Regression jupyter notebook linearregression_day1.ipynb `
- Start Here: Linear_Regression/linearregression_day1.ipynb
- Apply Knowledge: Linear_Regression/LR_day2.ipynb
- Real Data: Linear_Regression/LR_day2_sal.ipynb
- Complex Analysis: Linear_Regression/LR_day2_stuPro.ipynb
Rahullll101
- GitHub: @Rahullll101
- Email: [email protected]
This project is open source and available under the MIT License.
- If you find this repository helpful, please consider giving it a star!*