Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions src/layer/sdpa.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -94,7 +94,7 @@ int SDPA::forward(const std::vector<Mat>& bottom_blobs, std::vector<Mat>& top_bl

if (attn_mask)
{
const Mat& maskm = attn_mask_blob.dims == 3 ? attn_mask_blob.channel(q) : attn_mask_blob;
const Mat& maskm = attn_mask_blob.c > 1 ? attn_mask_blob.channel(q) : attn_mask_blob;

for (int i = 0; i < src_seqlen; i++)
{
Expand Down Expand Up @@ -317,7 +317,7 @@ int SDPA::forward_int8(const std::vector<Mat>& bottom_blobs, std::vector<Mat>& t

if (attn_mask)
{
const Mat& maskm = attn_mask_blob.dims == 3 ? attn_mask_blob.channel(q) : attn_mask_blob;
const Mat& maskm = attn_mask_blob.c > 1 ? attn_mask_blob.channel(q) : attn_mask_blob;

for (int i = 0; i < src_seqlen; i++)
{
Expand Down
15 changes: 10 additions & 5 deletions tools/pnnx/tests/ncnn/test_F_scaled_dot_product_attention.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,18 +10,22 @@ class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()

def forward(self, q, k, v, m, k2, v2):
def forward(self, q, k, v, m, k2, v2, m2):
x = F.scaled_dot_product_attention(q, k, v)
y = F.scaled_dot_product_attention(q, k, v, attn_mask=m)

if version.parse(torch.__version__) >= version.parse('2.5'):
z = F.scaled_dot_product_attention(q, k2, v2, enable_gqa=True)
z2 = F.scaled_dot_product_attention(q, k2, v2, attn_mask=m2, enable_gqa=True)
else:
k2_stack = k2.repeat_interleave(q.size(-3)//k2.size(-3), -3)
v2_stack = v2.repeat_interleave(q.size(-3)//v2.size(-3), -3)
z = F.scaled_dot_product_attention(q, k2_stack, v2_stack)
k2_stack = k2.clone().repeat_interleave(q.size(-3)//k2.size(-3), -3)
v2_stack = v2.clone().repeat_interleave(q.size(-3)//v2.size(-3), -3)
z2 = F.scaled_dot_product_attention(q, k2_stack, v2_stack, attn_mask=m2)

return x, y, z
return x, y, z, z2

def test():
if version.parse(torch.__version__) < version.parse('2.0'):
Expand All @@ -37,16 +41,17 @@ def test():
m = torch.rand(1, 8, 128, 48)
k2 = torch.rand(1, 2, 48, 64)
v2 = torch.rand(1, 2, 48, 77)
m2 = torch.rand(1, 1, 128, 48)

a = net(q, k, v, m, k2, v2)
a = net(q, k, v, m, k2, v2, m2)

# export torchscript
mod = torch.jit.trace(net, (q, k, v, m, k2, v2))
mod = torch.jit.trace(net, (q, k, v, m, k2, v2, m2))
mod.save("test_F_scaled_dot_product_attention.pt")

# torchscript to pnnx
import os
os.system("../../src/pnnx test_F_scaled_dot_product_attention.pt inputshape=[1,8,128,64],[1,8,48,64],[1,8,48,77],[1,8,128,48],[1,2,48,64],[1,2,48,77]")
os.system("../../src/pnnx test_F_scaled_dot_product_attention.pt inputshape=[1,8,128,64],[1,8,48,64],[1,8,48,77],[1,8,128,48],[1,2,48,64],[1,2,48,77],[1,1,128,48]")

# ncnn inference
import test_F_scaled_dot_product_attention_ncnn
Expand Down
13 changes: 8 additions & 5 deletions tools/pnnx/tests/test_F_scaled_dot_product_attention.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,18 +10,20 @@ class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()

def forward(self, q, k, v, m, k2, v2):
def forward(self, q, k, v, m, k2, v2, m2):
x = F.scaled_dot_product_attention(q, k, v)
y = F.scaled_dot_product_attention(q, k, v, attn_mask=m)

if version.parse(torch.__version__) >= version.parse('2.5'):
z = F.scaled_dot_product_attention(q, k2, v2, enable_gqa=True)
z2 = F.scaled_dot_product_attention(q, k2, v2, attn_mask=m2, enable_gqa=True)
else:
k2_stack = k2.repeat_interleave(q.size(-3)//k2.size(-3), -3)
v2_stack = v2.repeat_interleave(q.size(-3)//v2.size(-3), -3)
z = F.scaled_dot_product_attention(q, k2_stack, v2_stack)
z2 = F.scaled_dot_product_attention(q, k2_stack, v2_stack, attn_mask=m2)

return x, y, z
return x, y, z, z2

def test():
if version.parse(torch.__version__) < version.parse('2.0'):
Expand All @@ -37,16 +39,17 @@ def test():
m = torch.rand(3, 8, 128, 48)
k2 = torch.rand(3, 2, 48, 64)
v2 = torch.rand(3, 2, 48, 77)
m2 = torch.rand(3, 1, 128, 48)

a = net(q, k, v, m, k2, v2)
a = net(q, k, v, m, k2, v2, m2)

# export torchscript
mod = torch.jit.trace(net, (q, k, v, m, k2, v2))
mod = torch.jit.trace(net, (q, k, v, m, k2, v2, m2))
mod.save("test_F_scaled_dot_product_attention.pt")

# torchscript to pnnx
import os
os.system("../src/pnnx test_F_scaled_dot_product_attention.pt inputshape=[3,8,128,64],[3,8,48,64],[3,8,48,77],[3,8,128,48],[3,2,48,64],[3,2,48,77]")
os.system("../src/pnnx test_F_scaled_dot_product_attention.pt inputshape=[3,8,128,64],[3,8,48,64],[3,8,48,77],[3,8,128,48],[3,2,48,64],[3,2,48,77],[3,1,128,48]")

# pnnx inference
import test_F_scaled_dot_product_attention_pnnx
Expand Down
Loading