-
Notifications
You must be signed in to change notification settings - Fork 48
Add Riemannian manifold HMC #439
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Changes from all commits
7883d49
d0191cf
1fcdd09
5f9592f
567e2a8
6df40b5
c9e6b0a
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -1,257 +1,16 @@ | ||
| using Random | ||
|
|
||
| ### integrator.jl | ||
|
|
||
| import AdvancedHMC: ∂H∂θ, ∂H∂r, DualValue, PhasePoint, phasepoint, step | ||
| using AdvancedHMC: TYPEDEF, TYPEDFIELDS, AbstractScalarOrVec, AbstractLeapfrog, step_size | ||
|
|
||
| """ | ||
| $(TYPEDEF) | ||
| Generalized leapfrog integrator with fixed step size `ϵ`. | ||
| # Fields | ||
| $(TYPEDFIELDS) | ||
| """ | ||
| struct GeneralizedLeapfrog{T<:AbstractScalarOrVec{<:AbstractFloat}} <: AbstractLeapfrog{T} | ||
| "Step size." | ||
| ϵ::T | ||
| n::Int | ||
| end | ||
| function Base.show(io::IO, l::GeneralizedLeapfrog) | ||
| return print(io, "GeneralizedLeapfrog(ϵ=", round.(l.ϵ; sigdigits=3), ", n=", l.n, ")") | ||
| end | ||
|
|
||
| # Fallback to ignore return_cache & cache kwargs for other ∂H∂θ | ||
| function ∂H∂θ_cache(h, θ, r; return_cache=false, cache=nothing) where {T} | ||
| dv = ∂H∂θ(h, θ, r) | ||
| return return_cache ? (dv, nothing) : dv | ||
| end | ||
|
|
||
| # TODO Make sure vectorization works | ||
| # TODO Check if tempering is valid | ||
| function step( | ||
| lf::GeneralizedLeapfrog{T}, | ||
| h::Hamiltonian, | ||
| z::P, | ||
| n_steps::Int=1; | ||
| fwd::Bool=n_steps > 0, # simulate hamiltonian backward when n_steps < 0 | ||
| full_trajectory::Val{FullTraj}=Val(false), | ||
| ) where {T<:AbstractScalarOrVec{<:AbstractFloat},P<:PhasePoint,FullTraj} | ||
| n_steps = abs(n_steps) # to support `n_steps < 0` cases | ||
|
|
||
| ϵ = fwd ? step_size(lf) : -step_size(lf) | ||
| ϵ = ϵ' | ||
|
|
||
| res = if FullTraj | ||
| Vector{P}(undef, n_steps) | ||
| else | ||
| z | ||
| end | ||
|
|
||
| for i in 1:n_steps | ||
| θ_init, r_init = z.θ, z.r | ||
| # Tempering | ||
| #r = temper(lf, r, (i=i, is_half=true), n_steps) | ||
| #! Eq (16) of Girolami & Calderhead (2011) | ||
| r_half = copy(r_init) | ||
| local cache | ||
| for j in 1:(lf.n) | ||
| # Reuse cache for the first iteration | ||
| if j == 1 | ||
| (; value, gradient) = z.ℓπ | ||
| elseif j == 2 # cache intermediate values that depends on θ only (which are unchanged) | ||
| retval, cache = ∂H∂θ_cache(h, θ_init, r_half; return_cache=true) | ||
| (; value, gradient) = retval | ||
| else # reuse cache | ||
| (; value, gradient) = ∂H∂θ_cache(h, θ_init, r_half; cache=cache) | ||
| end | ||
| r_half = r_init - ϵ / 2 * gradient | ||
| # println("r_half: ", r_half) | ||
| end | ||
| #! Eq (17) of Girolami & Calderhead (2011) | ||
| θ_full = copy(θ_init) | ||
| term_1 = ∂H∂r(h, θ_init, r_half) # unchanged across the loop | ||
| for j in 1:(lf.n) | ||
| θ_full = θ_init + ϵ / 2 * (term_1 + ∂H∂r(h, θ_full, r_half)) | ||
| # println("θ_full :", θ_full) | ||
| end | ||
| #! Eq (18) of Girolami & Calderhead (2011) | ||
| (; value, gradient) = ∂H∂θ(h, θ_full, r_half) | ||
| r_full = r_half - ϵ / 2 * gradient | ||
| # println("r_full: ", r_full) | ||
| # Tempering | ||
| #r = temper(lf, r, (i=i, is_half=false), n_steps) | ||
| # Create a new phase point by caching the logdensity and gradient | ||
| z = phasepoint(h, θ_full, r_full; ℓπ=DualValue(value, gradient)) | ||
| # Update result | ||
| if FullTraj | ||
| res[i] = z | ||
| else | ||
| res = z | ||
| end | ||
| if !isfinite(z) | ||
| # Remove undef | ||
| if FullTraj | ||
| res = res[isassigned.(Ref(res), 1:n_steps)] | ||
| end | ||
| break | ||
| end | ||
| # @assert false | ||
| end | ||
| return res | ||
| end | ||
|
|
||
| # TODO Make the order of θ and r consistent with neg_energy | ||
| ∂H∂θ(h::Hamiltonian, θ::AbstractVecOrMat, r::AbstractVecOrMat) = ∂H∂θ(h, θ) | ||
| ∂H∂r(h::Hamiltonian, θ::AbstractVecOrMat, r::AbstractVecOrMat) = ∂H∂r(h, r) | ||
|
|
||
| ### hamiltonian.jl | ||
|
|
||
| import AdvancedHMC: refresh, phasepoint | ||
| using AdvancedHMC: FullMomentumRefreshment, PartialMomentumRefreshment, AbstractMetric | ||
|
|
||
| # To change L180 of hamiltonian.jl | ||
| function phasepoint( | ||
| rng::Union{AbstractRNG,AbstractVector{<:AbstractRNG}}, | ||
| θ::AbstractVecOrMat{T}, | ||
| h::Hamiltonian, | ||
| ) where {T<:Real} | ||
| return phasepoint(h, θ, rand_momentum(rng, h.metric, h.kinetic, θ)) | ||
| end | ||
|
|
||
| # To change L191 of hamiltonian.jl | ||
| function refresh( | ||
| rng::Union{AbstractRNG,AbstractVector{<:AbstractRNG}}, | ||
| ::FullMomentumRefreshment, | ||
| h::Hamiltonian, | ||
| z::PhasePoint, | ||
| ) | ||
| return phasepoint(h, z.θ, rand_momentum(rng, h.metric, h.kinetic, z.θ)) | ||
| end | ||
|
|
||
| # To change L215 of hamiltonian.jl | ||
| function refresh( | ||
| rng::Union{AbstractRNG,AbstractVector{<:AbstractRNG}}, | ||
| ref::PartialMomentumRefreshment, | ||
| h::Hamiltonian, | ||
| z::PhasePoint, | ||
| ) | ||
| return phasepoint( | ||
| h, | ||
| z.θ, | ||
| ref.α * z.r + sqrt(1 - ref.α^2) * rand_momentum(rng, h.metric, h.kinetic, z.θ), | ||
| ) | ||
| end | ||
|
|
||
| ### metric.jl | ||
|
|
||
| import AdvancedHMC: _rand | ||
| using AdvancedHMC: AbstractMetric | ||
| using LinearAlgebra: eigen, cholesky, Symmetric | ||
|
|
||
| abstract type AbstractRiemannianMetric <: AbstractMetric end | ||
|
|
||
| abstract type AbstractHessianMap end | ||
|
|
||
| struct IdentityMap <: AbstractHessianMap end | ||
|
|
||
| (::IdentityMap)(x) = x | ||
|
|
||
| struct SoftAbsMap{T} <: AbstractHessianMap | ||
| α::T | ||
| end | ||
|
|
||
| # TODO Register softabs with ReverseDiff | ||
| #! The definition of SoftAbs from Page 3 of Betancourt (2012) | ||
| function softabs(X, α=20.0) | ||
| F = eigen(X) # ReverseDiff cannot diff through `eigen` | ||
| Q = hcat(F.vectors) | ||
| λ = F.values | ||
| softabsλ = λ .* coth.(α * λ) | ||
| return Q * diagm(softabsλ) * Q', Q, λ, softabsλ | ||
| end | ||
|
|
||
| (map::SoftAbsMap)(x) = softabs(x, map.α)[1] | ||
|
|
||
| struct DenseRiemannianMetric{ | ||
| T, | ||
| TM<:AbstractHessianMap, | ||
| A<:Union{Tuple{Int},Tuple{Int,Int}}, | ||
| AV<:AbstractVecOrMat{T}, | ||
| TG, | ||
| T∂G∂θ, | ||
| } <: AbstractRiemannianMetric | ||
| size::A | ||
| G::TG # TODO store G⁻¹ here instead | ||
| ∂G∂θ::T∂G∂θ | ||
| map::TM | ||
| _temp::AV | ||
| end | ||
|
|
||
| # TODO Make dense mass matrix support matrix-mode parallel | ||
| function DenseRiemannianMetric(size, G, ∂G∂θ, map=IdentityMap()) where {T<:AbstractFloat} | ||
| _temp = Vector{Float64}(undef, size[1]) | ||
| return DenseRiemannianMetric(size, G, ∂G∂θ, map, _temp) | ||
| end | ||
| # DenseEuclideanMetric(::Type{T}, D::Int) where {T} = DenseEuclideanMetric(Matrix{T}(I, D, D)) | ||
| # DenseEuclideanMetric(D::Int) = DenseEuclideanMetric(Float64, D) | ||
| # DenseEuclideanMetric(::Type{T}, sz::Tuple{Int}) where {T} = DenseEuclideanMetric(Matrix{T}(I, first(sz), first(sz))) | ||
| # DenseEuclideanMetric(sz::Tuple{Int}) = DenseEuclideanMetric(Float64, sz) | ||
|
|
||
| # renew(ue::DenseEuclideanMetric, M⁻¹) = DenseEuclideanMetric(M⁻¹) | ||
|
|
||
| Base.size(e::DenseRiemannianMetric) = e.size | ||
| Base.size(e::DenseRiemannianMetric, dim::Int) = e.size[dim] | ||
| Base.show(io::IO, dem::DenseRiemannianMetric) = print(io, "DenseRiemannianMetric(...)") | ||
|
|
||
| function rand_momentum( | ||
| rng::Union{AbstractRNG,AbstractVector{<:AbstractRNG}}, | ||
| metric::DenseRiemannianMetric{T}, | ||
| kinetic, | ||
| #! Eq (14) of Girolami & Calderhead (2011) | ||
| function ∂H∂r( | ||
| h::Hamiltonian{<:DenseRiemannianMetric,<:GaussianKinetic}, | ||
| θ::AbstractVecOrMat, | ||
| ) where {T} | ||
| r = _randn(rng, T, size(metric)...) | ||
| G⁻¹ = inv(metric.map(metric.G(θ))) | ||
| chol = cholesky(Symmetric(G⁻¹)) | ||
| ldiv!(chol.U, r) | ||
| return r | ||
| end | ||
|
|
||
| ### hamiltonian.jl | ||
|
|
||
| import AdvancedHMC: phasepoint, neg_energy, ∂H∂θ, ∂H∂r | ||
| using LinearAlgebra: logabsdet, tr | ||
|
|
||
| # QUES Do we want to change everything to position dependent by default? | ||
| # Add θ to ∂H∂r for DenseRiemannianMetric | ||
| function phasepoint( | ||
| h::Hamiltonian{<:DenseRiemannianMetric}, | ||
| θ::T, | ||
| r::T; | ||
| ℓπ=∂H∂θ(h, θ), | ||
| ℓκ=DualValue(neg_energy(h, r, θ), ∂H∂r(h, θ, r)), | ||
| ) where {T<:AbstractVecOrMat} | ||
| return PhasePoint(θ, r, ℓπ, ℓκ) | ||
| end | ||
|
|
||
| # Negative kinetic energy | ||
| #! Eq (13) of Girolami & Calderhead (2011) | ||
| function neg_energy( | ||
|
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Is this correct? Eq (13) of Girolami & Calderhead (2011) also contains the log-likelihood term, -L(θ). Why is this not included here? Even if this is correct, we should clarify the naming conventions as it's quite hard to follow.
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I agree - created an issue here: #483 |
||
| h::Hamiltonian{<:DenseRiemannianMetric}, r::T, θ::T | ||
| ) where {T<:AbstractVecOrMat} | ||
| G = h.metric.map(h.metric.G(θ)) | ||
| D = size(G, 1) | ||
| # Need to consider the normalizing term as it is no longer same for different θs | ||
| logZ = 1 / 2 * (D * log(2π) + logdet(G)) # it will be user's responsibility to make sure G is SPD and logdet(G) is defined | ||
| mul!(h.metric._temp, inv(G), r) | ||
| return -logZ - dot(r, h.metric._temp) / 2 | ||
| r::AbstractVecOrMat, | ||
| ) | ||
| H = h.metric.G(θ) | ||
| G = h.metric.map(H) | ||
| return G \ r # NOTE it's actually pretty weird that ∂H∂θ returns DualValue but ∂H∂r doesn't | ||
| end | ||
|
|
||
| # QUES L31 of hamiltonian.jl now reads a bit weird (semantically) | ||
| function ∂H∂θ( | ||
| h::Hamiltonian{<:DenseRiemannianMetric{T,<:IdentityMap}}, | ||
| h::Hamiltonian{<:DenseRiemannianMetric{T,<:IdentityMap},<:GaussianKinetic}, | ||
| θ::AbstractVecOrMat{T}, | ||
| r::AbstractVecOrMat{T}, | ||
| ) where {T} | ||
|
|
@@ -293,14 +52,14 @@ function make_J(λ::AbstractVector{T}, α::T) where {T<:AbstractFloat} | |
| end | ||
|
|
||
| function ∂H∂θ( | ||
| h::Hamiltonian{<:DenseRiemannianMetric{T,<:SoftAbsMap}}, | ||
| h::Hamiltonian{<:DenseRiemannianMetric{T,<:SoftAbsMap},<:GaussianKinetic}, | ||
| θ::AbstractVecOrMat{T}, | ||
| r::AbstractVecOrMat{T}, | ||
| ) where {T} | ||
| return ∂H∂θ_cache(h, θ, r) | ||
| end | ||
| function ∂H∂θ_cache( | ||
| h::Hamiltonian{<:DenseRiemannianMetric{T,<:SoftAbsMap}}, | ||
| h::Hamiltonian{<:DenseRiemannianMetric{T,<:SoftAbsMap},<:GaussianKinetic}, | ||
| θ::AbstractVecOrMat{T}, | ||
| r::AbstractVecOrMat{T}; | ||
| return_cache=false, | ||
|
|
@@ -342,17 +101,26 @@ function ∂H∂θ_cache( | |
| return return_cache ? (dv, (; ℓπ, ∂ℓπ∂θ, ∂H∂θ, Q, softabsλ, J, term_1_cached)) : dv | ||
| end | ||
|
|
||
| #! Eq (14) of Girolami & Calderhead (2011) | ||
| function ∂H∂r( | ||
| h::Hamiltonian{<:DenseRiemannianMetric}, θ::AbstractVecOrMat, r::AbstractVecOrMat | ||
| ) | ||
| H = h.metric.G(θ) | ||
| # if !all(isfinite, H) | ||
| # println("θ: ", θ) | ||
| # println("H: ", H) | ||
| # end | ||
| G = h.metric.map(H) | ||
| # return inv(G) * r | ||
| # println("G \ r: ", G \ r) | ||
| return G \ r # NOTE it's actually pretty weird that ∂H∂θ returns DualValue but ∂H∂r doesn't | ||
| # QUES Do we want to change everything to position dependent by default? | ||
| # Add θ to ∂H∂r for DenseRiemannianMetric | ||
| function phasepoint( | ||
| h::Hamiltonian{<:DenseRiemannianMetric}, | ||
| θ::T, | ||
| r::T; | ||
| ℓπ=∂H∂θ(h, θ), | ||
| ℓκ=DualValue(neg_energy(h, r, θ), ∂H∂r(h, θ, r)), | ||
| ) where {T<:AbstractVecOrMat} | ||
| return PhasePoint(θ, r, ℓπ, ℓκ) | ||
| end | ||
|
|
||
| #! Eq (13) of Girolami & Calderhead (2011) | ||
| function neg_energy( | ||
| h::Hamiltonian{<:DenseRiemannianMetric,<:GaussianKinetic}, r::T, θ::T | ||
| ) where {T<:AbstractVecOrMat} | ||
| G = h.metric.map(h.metric.G(θ)) | ||
| D = size(G, 1) | ||
| # Need to consider the normalizing term as it is no longer same for different θs | ||
| logZ = 1 / 2 * (D * log(2π) + logdet(G)) # it will be user's responsibility to make sure G is SPD and logdet(G) is defined | ||
| mul!(h.metric._temp, inv(G), r) | ||
| return -logZ - dot(r, h.metric._temp) / 2 | ||
| end | ||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
AbstractRiemannianMetric?This logic is not unique to the dense metric.