. .. _
. . | | ___ __ _ _ __
. . . .. | | / _ \ / _` | '_ \
. . . . ...... . | |__| (_) | (_| | | | |
..&&(..,&&.. |_____\___/ \__,_|_| |_| _
....... .&.&,..%&.&. / ___|_ _ __ _ _ __ __| |
..&&...%&&. ..&&....&&.. | | _| | | |/ _` | '__/ _` |
.&.&...&.... ........ | |_| | |_| | (_| | | | (_| |
..&&...&&/. \____|\__,_|\__,_|_| \__,_|
...... ..&&..
.................... ..&&&..
.####...&&&&&&&&&&&&&&&&&&&...&&&&..
.####.&&&&&&&&&&&&&&&&&&&&&&&&&..
.####.&&&&&&&&&&&&&&&&&&&&&&&..
.####.&&....................
.####..
LoanGuard is a Python-based application designed to assess the creditworthiness of loan applicants. It integrates data generation, machine learning model training (Logistic Regression), data visualization, and scoring of new applicants based on their provided data.
- Data Generation: Hypothetical data can be generated using the Faker library and saved to CSV files.
- Model Training: Utilizes Scikit-learn for training a Logistic Regression model to predict loan default risk.
- Data Visualization: Matplotlib and Seaborn are employed to visualize the distribution and relationships within the dataset.
- Scoring New Applicants: Allows users to input applicant data interactively or use default values to predict their credit risk score.
- Python
- Scikit-learn
- Pandas
- Matplotlib
- Seaborn
- Faker (for generating synthetic data)
-
Clone the repository:
git clone https://github.com/akramguediri/LoanGuard.git cd credit-risk-analysis -
Install dependencies:
pip install -r requirements.txt
To generate new data and process it:
python main.py --generate
To train the machine learning model:
python main.py --train
To visualize the dataset:
python main.py --plot
To fetch and score a new applicant:
python main.py --fetch
If no applicant data is provided, default values will be used.
Contributions are welcome! Please fork the repository and create a pull request with your improvements.
This project is licensed under the MIT License - see the LICENSE file for details.