A comprehensive machine learning project for energy demand forecasting and distribution optimization using advanced ML algorithms and interactive visualization.
This project implements an end-to-end machine learning pipeline for energy consumption forecasting and optimization. It combines multiple ML models, optimization algorithms, and an interactive dashboard to provide comprehensive energy management insights.
- ๐ฎ Advanced Forecasting: Multiple ML models (Linear Regression, Random Forest, XGBoost, LSTM, GRU)
- โ๏ธ Energy Optimization: Linear programming, genetic algorithms, and reinforcement learning approaches
- ๐ Interactive Dashboard: Real-time visualization with Streamlit
- ๐ Comprehensive Analysis: Exploratory data analysis with seasonal patterns and correlations
- ๐๏ธ Model Comparison: Performance metrics and feature importance analysis
- ๐ง Modular Architecture: Clean, extensible codebase with proper documentation
Energy_Forecasting/
โโโ src/
โ โโโ data/
โ โ โโโ collect_data.py # Data collection and synthetic generation
โ โ โโโ preprocess_data.py # Data preprocessing and feature engineering
โ โ โโโ utils.py # Data utility functions
โ โโโ models/
โ โ โโโ baseline_models.py # Traditional ML models
โ โ โโโ time_series_models.py # Deep learning models (LSTM/GRU)
โ โ โโโ evaluation.py # Model evaluation framework
โ โโโ optimization/
โ โโโ energy_optimizer.py # Energy distribution optimization
โโโ notebooks/
โ โโโ 01_exploratory_data_analysis.ipynb # Comprehensive EDA
โโโ dashboard/
โ โโโ app.py # Streamlit interactive dashboard
โโโ data/
โ โโโ raw/ # Raw data files
โ โโโ processed/ # Processed data files
โโโ models/
โ โโโ trained/ # Saved model files
โโโ requirements.txt # Python dependencies
โโโ .env.example # Environment variables template
โโโ README.md # Project documentation
- Python 3.8 or higher
- pip package manager
-
Clone the repository
git clone https://github.com/yourusername/energy-forecasting.git cd energy-forecasting -
Create virtual environment
python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate
-
Install dependencies
pip install -r requirements.txt
-
Set up environment variables
cp .env.example .env # Edit .env with your configuration
# Generate synthetic energy data
python src/data/collect_data.py
# Preprocess the data
python src/data/preprocess_data.py# Open the Jupyter notebook
jupyter notebook notebooks/01_exploratory_data_analysis.ipynb# Train baseline models
python src/models/baseline_models.py
# Train time series models
python src/models/time_series_models.py
# Evaluate all models
python src/models/evaluation.py# Run optimization algorithms
python src/optimization/energy_optimizer.py# Launch the Streamlit dashboard
streamlit run dashboard/app.pyThe dashboard will be available at http://localhost:8501
- Linear Regression
- Random Forest Regressor
- XGBoost
- LSTM (Long Short-Term Memory)
- GRU (Gated Recurrent Unit)
- Prophet for time series
- Reinforcement Learning for energy allocation
- Linear Programming for cost optimization
- RMSE (Root Mean Squared Error)
- MAE (Mean Absolute Error)
- MAPE (Mean Absolute Percentage Error)
- Rยฒ Score
- Real-time energy consumption forecasts
- Historical trend analysis
- Seasonal pattern visualization
- Optimization recommendations
- Anomaly detection alerts
- Cost analysis and savings projections
Create a .env file with:
OPENWEATHER_API_KEY=your_api_key_here
DB_CONNECTION_STRING=your_db_string_here
DASHBOARD_PORT=850101_exploratory_data_analysis.ipynb- Data exploration and visualization02_data_preprocessing.ipynb- Data cleaning and feature engineering03_baseline_models.ipynb- Simple ML models04_advanced_models.ipynb- Deep learning and time series models05_optimization.ipynb- Energy distribution optimization06_model_evaluation.ipynb- Comprehensive model comparison
docker build -t energy-forecast .
docker run -p 8501:8501 energy-forecast- Deploy on AWS, GCP, or Azure
- Use containerized deployment with Kubernetes
- Set up CI/CD pipelines
- IoT sensor integration
- Real-time data streaming
- Carbon footprint estimation
- Multi-region forecasting
- Advanced anomaly detection
- Mobile app interface
- Fork the repository
- Create a feature branch
- Commit your changes
- Push to the branch
- Create a Pull Request
This project is licensed under the MIT License - see the LICENSE file for details.
Your Name - [email protected] Project Link: https://github.com/yourusername/energy-forecasting
- UCI Machine Learning Repository
- UK National Grid
- OpenWeatherMap API
- Scikit-learn and TensorFlow communities