Skip to content

arjungop/energy-forecasting-ml-pipeline

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

1 Commit
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

โšก Energy Consumption Forecasting & Optimization

A comprehensive machine learning project for energy demand forecasting and distribution optimization using advanced ML algorithms and interactive visualization.

Python Streamlit License

๐ŸŽฏ Project Overview

This project implements an end-to-end machine learning pipeline for energy consumption forecasting and optimization. It combines multiple ML models, optimization algorithms, and an interactive dashboard to provide comprehensive energy management insights.

Key Features

  • ๐Ÿ”ฎ Advanced Forecasting: Multiple ML models (Linear Regression, Random Forest, XGBoost, LSTM, GRU)
  • โš™๏ธ Energy Optimization: Linear programming, genetic algorithms, and reinforcement learning approaches
  • ๐Ÿ“Š Interactive Dashboard: Real-time visualization with Streamlit
  • ๐Ÿ“ˆ Comprehensive Analysis: Exploratory data analysis with seasonal patterns and correlations
  • ๐ŸŽ›๏ธ Model Comparison: Performance metrics and feature importance analysis
  • ๐Ÿ”ง Modular Architecture: Clean, extensible codebase with proper documentation

๐Ÿ—๏ธ Project Structure

Energy_Forecasting/
โ”œโ”€โ”€ src/
โ”‚   โ”œโ”€โ”€ data/
โ”‚   โ”‚   โ”œโ”€โ”€ collect_data.py      # Data collection and synthetic generation
โ”‚   โ”‚   โ”œโ”€โ”€ preprocess_data.py   # Data preprocessing and feature engineering
โ”‚   โ”‚   โ””โ”€โ”€ utils.py             # Data utility functions
โ”‚   โ”œโ”€โ”€ models/
โ”‚   โ”‚   โ”œโ”€โ”€ baseline_models.py   # Traditional ML models
โ”‚   โ”‚   โ”œโ”€โ”€ time_series_models.py # Deep learning models (LSTM/GRU)
โ”‚   โ”‚   โ””โ”€โ”€ evaluation.py        # Model evaluation framework
โ”‚   โ””โ”€โ”€ optimization/
โ”‚       โ””โ”€โ”€ energy_optimizer.py  # Energy distribution optimization
โ”œโ”€โ”€ notebooks/
โ”‚   โ””โ”€โ”€ 01_exploratory_data_analysis.ipynb # Comprehensive EDA
โ”œโ”€โ”€ dashboard/
โ”‚   โ””โ”€โ”€ app.py                   # Streamlit interactive dashboard
โ”œโ”€โ”€ data/
โ”‚   โ”œโ”€โ”€ raw/                     # Raw data files
โ”‚   โ””โ”€โ”€ processed/               # Processed data files
โ”œโ”€โ”€ models/
โ”‚   โ””โ”€โ”€ trained/                 # Saved model files
โ”œโ”€โ”€ requirements.txt             # Python dependencies
โ”œโ”€โ”€ .env.example                 # Environment variables template
โ””โ”€โ”€ README.md                    # Project documentation

๐Ÿš€ Quick Start

Prerequisites

  • Python 3.8 or higher
  • pip package manager

Installation

  1. Clone the repository

    git clone https://github.com/yourusername/energy-forecasting.git
    cd energy-forecasting
  2. Create virtual environment

    python -m venv venv
    source venv/bin/activate  # On Windows: venv\Scripts\activate
  3. Install dependencies

    pip install -r requirements.txt
  4. Set up environment variables

    cp .env.example .env
    # Edit .env with your configuration

Running the Project

1. Data Collection and Preprocessing

# Generate synthetic energy data
python src/data/collect_data.py

# Preprocess the data
python src/data/preprocess_data.py

2. Exploratory Data Analysis

# Open the Jupyter notebook
jupyter notebook notebooks/01_exploratory_data_analysis.ipynb

3. Model Training

# Train baseline models
python src/models/baseline_models.py

# Train time series models
python src/models/time_series_models.py

# Evaluate all models
python src/models/evaluation.py

4. Energy Optimization

# Run optimization algorithms
python src/optimization/energy_optimizer.py

5. Interactive Dashboard

# Launch the Streamlit dashboard
streamlit run dashboard/app.py

The dashboard will be available at http://localhost:8501

๐Ÿค– Models Implemented

Baseline Models

  • Linear Regression
  • Random Forest Regressor
  • XGBoost

Advanced Models

  • LSTM (Long Short-Term Memory)
  • GRU (Gated Recurrent Unit)
  • Prophet for time series

Optimization

  • Reinforcement Learning for energy allocation
  • Linear Programming for cost optimization

๐Ÿ“ˆ Performance Metrics

  • RMSE (Root Mean Squared Error)
  • MAE (Mean Absolute Error)
  • MAPE (Mean Absolute Percentage Error)
  • Rยฒ Score

๐ŸŽ›๏ธ Dashboard Features

  • Real-time energy consumption forecasts
  • Historical trend analysis
  • Seasonal pattern visualization
  • Optimization recommendations
  • Anomaly detection alerts
  • Cost analysis and savings projections

๐Ÿ”ง Configuration

Create a .env file with:

OPENWEATHER_API_KEY=your_api_key_here
DB_CONNECTION_STRING=your_db_string_here
DASHBOARD_PORT=8501

๐Ÿ“š Notebooks

  1. 01_exploratory_data_analysis.ipynb - Data exploration and visualization
  2. 02_data_preprocessing.ipynb - Data cleaning and feature engineering
  3. 03_baseline_models.ipynb - Simple ML models
  4. 04_advanced_models.ipynb - Deep learning and time series models
  5. 05_optimization.ipynb - Energy distribution optimization
  6. 06_model_evaluation.ipynb - Comprehensive model comparison

๐Ÿšข Deployment

Docker Deployment

docker build -t energy-forecast .
docker run -p 8501:8501 energy-forecast

Cloud Deployment

  • Deploy on AWS, GCP, or Azure
  • Use containerized deployment with Kubernetes
  • Set up CI/CD pipelines

๐Ÿ”ฎ Future Extensions

  • IoT sensor integration
  • Real-time data streaming
  • Carbon footprint estimation
  • Multi-region forecasting
  • Advanced anomaly detection
  • Mobile app interface

๐Ÿค Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Commit your changes
  4. Push to the branch
  5. Create a Pull Request

๐Ÿ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

๐Ÿ“ž Contact

Your Name - [email protected] Project Link: https://github.com/yourusername/energy-forecasting

๐Ÿ™ Acknowledgments

  • UCI Machine Learning Repository
  • UK National Grid
  • OpenWeatherMap API
  • Scikit-learn and TensorFlow communities

About

Comprehensive ML pipeline for energy consumption forecasting and optimization with interactive dashboard

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages