This repository is the official pytorch code of the Joint Asymmetric Loss (JAL).
🔵 We use NCEandAMSE as JAL-CE and NFLandAMSE as JAL-FL in the code.
Benchmark Datasets: The running file is main.py
- dataset: cifar10 | cifar100.
- loss: NCEandAMSE, NFLandAMSE, CE, GCE, etc.
- noise_type: symmetric | asymmetric | dependent (instance-dependent noise) | human (cifar-n).
Real-World Datasets: The running file is main_real_world.py
- dataset: webvision | clothing1m.
- loss: NCEandAMSE, NFLandAMSE, CE, GCE, etc.
NCEandAMSE for cifar10 with 0.8 symmetric noise:
python main.py --dataset cifar10 --noise_type symmetric --noise_rate 0.8 --loss NCEandAMSE NCEandAMSE for webvision:
python main_real_world.py --dataset webvision --loss NCEandAMSEIf you have any question, you can contact [email protected]