- Advancing my expertise in MLOps & Cloud ML Pipelines
- Exploring Prompt Engineering and Generative AI applications
- Building automated analytics dashboards with Streamlit & FastAPI
Β Python Β· SQL Β· FastAPI Β· Streamlit Β· TensorFlow Β· Keras Β· Scikit-learn Β· Airflow Β· Docker Β· GitHub Actions Β· AWS
| Category | One-liner |
|---|---|
| Core | Python Β· SQL Β· Bash Β· Git Β· GitHub |
| DS/ML | NumPy Β· Pandas Β· Scikit-learn Β· TensorFlow Β· Keras |
| AI Domains | NLP Β· Computer Vision Β· Deep Learning |
| MLOps / DevOps | Airflow Β· Docker Β· GitHub Actions Β· CI/CD Β· MLOps Β· AWS |
| Full-Stack | FastAPI Β· Flask Β· Streamlit Β· React Β· REST APIs |
| Visualization / BI | Matplotlib Β· Seaborn Β· Plotly Β· Tableau |
| Cloud / Infra | AWS Β· GCP Β· Linux |
| Automation / Productivity | DVC Β· Notion Β· Markdown Β· Papermill |
- Microservices Architecture: Designing scalable and resilient systems.
- RESTful APIs: Building clean and predictable web services.
A modern, real-time chat application showcasing enterprise-level architecture and best practices.
Core foundations for analytical, ML, and full-stack work
- π Python (core + advanced: OOP, async, decorators, testing, logging)
- π» SQL / MySQL / PostgreSQL (DDL, DML, DQL, joins, subqueries, CTEs)
- β Java (fundamentals, OOP, data structures)
- π JavaScript (ES6+)
- π§© HTML5 / CSS3
- π Bash / Shell Scripting
End-to-end DSML workflow β from data wrangling to model deployment
- NumPy, Pandas, Scikit-learn
- TensorFlow, PyTorch
- Matplotlib, Seaborn, Plotly, Tableau, Power BI
- Statsmodels, SciPy
- EDA (Exploratory Data Analysis) and Feature Engineering
- Model Evaluation (ROC-AUC, confusion matrices, precision/recall, etc.)
- Cross-Validation & Hyperparameter Tuning
- Supervised Learning: Regression, Classification
- Unsupervised Learning: Clustering (K-Means, GMM, DBSCAN, HAC)
- Dimensionality Reduction: PCA, t-SNE
- Advanced ML: XGBoost, LightGBM, CatBoost
- NLP: Tokenization, Word Embeddings, Transformers, Prompt Engineering
- Time Series: ARIMA/SARIMA, Prophet, LSTM forecasting
- Recommender Systems
- Feature Importance / Model Explainability: SHAP, Permutation Importance
Modern ML pipeline automation, deployment, and monitoring
- Docker, Kubernetes
- Git, GitHub Actions (CI/CD)
- Apache Airflow (workflow orchestration)
- MLflow, DVC (experiment tracking & versioning)
- EvidentlyAI, Prometheus, Grafana (model monitoring)
- Seldon, Istio, FastAPI (model serving)
- Terraform (IaC basics)
- Kubeflow, Vertex AI, SageMaker
- Concept Drift Detection, A/B Testing, Canary Deployments
Scalable compute, data storage, and ML deployment environments
- AWS (S3, Lambda, EC2, SageMaker)
- Google Cloud (GCP) (GKE, Vertex AI, BigQuery)
- Microsoft Azure (Basics: ML Studio, App Service)
- Heroku (App deployment)
- Streamlit Cloud / Hugging Face Spaces (ML app hosting)
Handling structured, unstructured, and streaming data
- SQL (MySQL, PostgreSQL, SQLite)
- NoSQL (MongoDB, Redis)
- Data Modeling & Normalization
- ETL Pipelines & Data Pipelines
- API Integration & Data Ingestion
- Data Warehousing Concepts
- Parquet / Feather / Arrow formats
Building interactive dashboards, APIs, and production-ready systems
- FastAPI, Flask (Python backends)
- React.js (frontend)
- Dash, Streamlit, Voila
- RESTful API Design & JWT Auth
- Asynchronous Programming (asyncio, aiohttp)
- Template Rendering (Jinja2)
- CORS, OAuth2, Middleware handling
- Postman, OpenAPI / Swagger
Transforming data into actionable insights and interactive stories
- Matplotlib, Seaborn, Plotly, Altair
- Dashboards: Streamlit, Dash, Tableau
- Power BI, Excel Analytics
- Storytelling with Data, KPIs & Metrics Design
- Automated Reporting (Papermill, nbconvert)
Analytical foundation for ML, inference, and optimization
- Descriptive Statistics (mean, variance, quantiles)
- Inferential Statistics (t-tests, ANOVA, chi-square)
- Regression Analysis (simple, multiple, logistic)
- Probability Distributions (Normal, Binomial, Poisson)
- Bayesian Inference, A/B Testing, Hypothesis Testing
- Linear Algebra: Vectors, Matrices, Eigenvalues
- Calculus: Differentiation, Optimization, Gradient Descent
Continuous improvement and reproducibility practices
- GitHub Actions (CI/CD pipelines)
- Makefiles, Shell automation
- Logging, Debugging, Unit Testing (pytest, unittest)
- Version Control, Branching strategies
- Papermill, nbconvert, cron / scheduler
- Notion, Markdown, Documentation Writing
Developer environments and collaboration tools
- VS Code, JupyterLab, PyCharm
- Anaconda / Miniconda
- Colab, Kaggle Notebooks
- Notion, Trello, Slack
Enterprise-grade practices for robust ML workflows
- Git / GitHub (PRs, branches, releases)
- Code Review Standards
- Data Versioning (DVC)
- Model Registry (MLflow / Vertex AI)
- CI/CD Workflows
- Documentation & Reproducibility Best Practices
Advanced and cutting-edge focus areas explored
- Large Language Models (LLMs) β Prompt Engineering, Chain-of-Thought, LangChain
- Self-Supervised Learning (SimCLR, BYOL)
- Vision: CNNs, Transfer Learning, Autoencoders
- NLP: Sentiment Analysis, Text Summarization, NER
- Generative AI: ChatGPT, OpenAI API integration
- Reinforcement Learning (Introductory)
Essential to data-driven and engineering mindset
- Analytical Thinking & Problem Solving
- Communication & Documentation Clarity
- End-to-End Ownership (Design β Deploy β Monitor)
- Team Collaboration (GitHub, Agile workflows)
- Technical Writing & Knowledge Sharing
- Continuous Learning & Automation Mindset