Skip to content

michaeldatascience/IITM-MLP-Practise

Repository files navigation

Machine-Learning Practice


Course structure

WEEK 1 - End-to-end machine learning project on scikit-learn

WEEK 2 - End-to-end machine learning project on scikit-learn (continued)

WEEK 3 - Regression on scikit-learn - Linear regression Gradient-descent- Batch (MBGD) and Stochastic (SGD).

WEEK 4 - Polynomial regression, Regularized models

WEEK 5 - Logistic regression

WEEK 6 - Classification on scikit-learn - Binary classifier

WEEK 7 - Classification on scikit-learn - Multiclass classifier

WEEK 8 - Support Vector Machines using scikit-learn

WEEK 9 - Decision Trees using scikit-learn

WEEK 10 - Ensemble Learning and Random Forests using scikit-learn

WEEK 11 - Clustering using scikit-learn

WEEK 12 - Neural networks models in scikit-learn


About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published