Encoderfile packages transformer encodersβoptionally with classification headsβinto a single, self-contained executable. No Python runtime, no dependencies, no network calls. Just a fast, portable binary that runs anywhere.
While Llamafile focuses on generative models, Encoderfile is purpose-built for encoder architectures with optional classification heads. It supports embedding, sequence classification, and token classification modelsβcovering most encoder-based NLP tasks, from text similarity to classification and taggingβall within one compact binary.
Under the hood, Encoderfile uses ONNX Runtime for inference, ensuring compatibility with a wide range of transformer architectures.
Why?
- Smaller footprint: a single binary measured in tens-to-hundreds of megabytes, not gigabytes of runtime and packages
- Compliance-friendly: deterministic, offline, security-boundary-safe
- Integration-ready: drop into existing systems as a CLI, microservice, or API without refactoring your stack
Encoderfiles can run as:
- REST API
- gRPC microservice
- CLI for batch processing
- MCP server (Model Context Protocol)
flowchart LR
%% Styling
classDef asset fill:#e1f5fe,stroke:#01579b,stroke-width:2px,color:#000;
classDef tool fill:#fff8e1,stroke:#ff6f00,stroke-width:2px,stroke-dasharray: 5 5,color:#000;
classDef process fill:#fff3e0,stroke:#e65100,stroke-width:2px,color:#000;
classDef artifact fill:#f5f5f5,stroke:#616161,stroke-width:2px,color:#000;
classDef service fill:#e8f5e9,stroke:#1b5e20,stroke-width:2px,color:#000;
classDef client fill:#e3f2fd,stroke:#0277bd,stroke-width:2px,stroke-dasharray: 5 5,color:#000;
subgraph Inputs ["1. Input Assets"]
direction TB
Onnx["ONNX Model<br/>(.onnx)"]:::asset
Tok["Tokenizer Data<br/>(tokenizer.json)"]:::asset
Config["Runtime Config<br/>(config.yml)"]:::asset
end
style Inputs fill:#e3f2fd,stroke:#0277bd,stroke-width:2px,stroke-dasharray: 5 5,color:#01579b
subgraph Compile ["2. Compile Phase"]
Compiler["Encoderfile Compiler<br/>(CLI Tool)"]:::asset
end
style Compile fill:#e3f2fd,stroke:#0277bd,stroke-width:2px,stroke-dasharray: 5 5,color:#01579b
subgraph Build ["3. Build Phase"]
direction TB
Builder["Wrapper Process<br/>(Embeds Assets + Runtime)"]:::process
end
style Build fill:#fff8e1,stroke:#ff8f00,stroke-width:2px,color:#e65100
subgraph Output ["4. Artifact"]
Binary["Single Binary Executable<br/>(Static File)"]:::artifact
end
style Output fill:#fafafa,stroke:#546e7a,stroke-width:2px,stroke-dasharray: 5 5,color:#546e7a
subgraph Runtime ["5. Runtime Phase"]
direction TB
%% Added fa:fa-server icons
Grpc["fa:fa-server gRPC Server<br/>(Protobuf)"]:::service
Http["fa:fa-server HTTP Server<br/>(JSON)"]:::service
MCP["fa:fa-server MCP Server<br/>(MCP)"]:::service
%% Added fa:fa-cloud icon
Client["fa:fa-cloud Client Apps /<br/>MCP Agent"]:::client
end
style Runtime fill:#f1f8e9,stroke:#2e7d32,stroke-width:2px,color:#1b5e20
%% Connections
Onnx & Tok & Config --> Builder
Compiler -.->|"Orchestrates"| Builder
Builder -->|"Outputs"| Binary
%% Runtime Connections
Binary -.->|"Executes"| Grpc
Binary -.->|"Executes"| Http
Grpc & Http & MCP-->|"Responds to"| Client
Encoderfile supports the following Hugging Face model classes (and their ONNX-exported equivalents):
| Task | Supported classes | Examples models |
|---|---|---|
| Embeddings / Feature Extraction | AutoModel, AutoModelForMaskedLM |
bert-base-uncased, distilbert-base-uncased |
| Sequence Classification | AutoModelForSequenceClassification |
distilbert-base-uncased-finetuned-sst-2-english, roberta-large-mnli |
| Token Classification | AutoModelForTokenClassification |
dslim/bert-base-NER, bert-base-cased-finetuned-conll03-english |
- β All architectures must be encoder-only transformers β no decoders, no encoderβdecoder hybrids (so no T5, no BART).
- βοΈ Models must have ONNX-exported weights (
path/to/your/model/model.onnx). - π§ The ONNX graph input must include
input_idsand optionallyattention_mask. - π« Models relying on generation heads (AutoModelForSeq2SeqLM, AutoModelForCausalLM, etc.) are not supported.
XLNet,Transfomer XL, and derivative architectures are not yet supported.
Download the encoderfile CLI tool to build your own model binaries:
curl -fsSL https://raw.githubusercontent.com/mozilla-ai/encoderfile/main/install.sh | sh
chmod +x encoderfileNote for Windows users: Pre-built binaries are not available for Windows. Please see BUILDING.md for instructions on building from source.
Move the binary to a location in your PATH:
# Linux/macOS
sudo mv encoderfile /usr/local/bin/
# Or add to your user bin
mkdir -p ~/.local/bin
mv encoderfile ~/.local/bin/See BUILDING.md for detailed instructions on building the CLI tool from source.
Quick build:
cargo build --bin encoderfile --release
./target/release/encoderfile --helpFirst, you need an ONNX-exported model. Export any HuggingFace model:
# Install optimum for ONNX export
pip install optimum[exporters]
# Export a sentiment analysis model
optimum-cli export onnx \
--model distilbert-base-uncased-finetuned-sst-2-english \
--task text-classification \
./sentiment-modelCreate sentiment-config.yml:
encoderfile:
name: sentiment-analyzer
path: ./sentiment-model
model_type: sequence_classification
output_path: ./build/sentiment-analyzer.encoderfileUse the downloaded encoderfile CLI tool:
encoderfile build -f sentiment-config.ymlThis creates a self-contained binary at ./build/sentiment-analyzer.encoderfile.
Start the server:
./build/sentiment-analyzer.encoderfile serveThe server will start on http://localhost:8080 by default.
Sentiment Analysis:
curl -X POST http://localhost:8080/predict \
-H "Content-Type: application/json" \
-d '{
"inputs": [
"This is the cutest cat ever!",
"Boring video, waste of time",
"These cats are so funny!"
]
}'Response:
{
"results": [
{
"logits": [0.00021549065, 0.9997845],
"scores": [0.00021549074, 0.9997845],
"predicted_index": 1,
"predicted_label": "POSITIVE"
},
{
"logits": [0.9998148, 0.00018516644],
"scores": [0.9998148, 0.0001851664],
"predicted_index": 0,
"predicted_label": "NEGATIVE"
},
{
"logits": [0.00014975034, 0.9998503],
"scores": [0.00014975043, 0.9998503],
"predicted_index": 1,
"predicted_label": "POSITIVE"
}
],
"model_id": "sentiment-analyzer"
}Embeddings:
curl -X POST http://localhost:8080/predict \
-H "Content-Type: application/json" \
-d '{
"inputs": ["Hello world"],
"normalize": true
}'Token Classification (NER):
curl -X POST http://localhost:8080/predict \
-H "Content-Type: application/json" \
-d '{
"inputs": ["Apple Inc. is located in Cupertino, California"]
}'Start an HTTP server (default port 8080):
./my-model.encoderfile serveCustom configuration:
./my-model.encoderfile serve \
--http-port 3000 \
--http-hostname 0.0.0.0Disable gRPC (HTTP only):
./my-model.encoderfile serve --disable-grpcStart with default gRPC server (port 50051):
./my-model.encoderfile servegRPC only (no HTTP):
./my-model.encoderfile serve --disable-httpCustom gRPC configuration:
./my-model.encoderfile serve \
--grpc-port 50052 \
--grpc-hostname localhostRun one-off inference without starting a server:
# Single input
./my-model.encoderfile infer "This is a test sentence"
# Multiple inputs
./my-model.encoderfile infer "First text" "Second text" "Third text"
# Save output to file
./my-model.encoderfile infer "Test input" -o results.jsonRun as a Model Context Protocol server:
./my-model.encoderfile mcp --hostname 0.0.0.0 --port 9100# Custom HTTP port
./my-model.encoderfile serve --http-port 3000
# Custom gRPC port
./my-model.encoderfile serve --grpc-port 50052
# Both
./my-model.encoderfile serve --http-port 3000 --grpc-port 50052./my-model.encoderfile serve \
--http-hostname 127.0.0.1 \
--grpc-hostname localhost# HTTP only
./my-model.encoderfile serve --disable-grpc
# gRPC only
./my-model.encoderfile serve --disable-http- Getting Started Guide - Step-by-step tutorial
- Building Guide - Build encoderfiles from ONNX models
- CLI Reference - Complete command-line documentation
- API Reference - REST, gRPC, and MCP API docs
Once you have the encoderfile CLI tool installed, you can build binaries from any compatible HuggingFace model.
See BUILDING.md for detailed instructions including:
- How to export models to ONNX format
- Configuration file options
- Advanced features (Lua transforms, custom paths, etc.)
- Troubleshooting tips
Quick workflow:
- Export your model to ONNX:
optimum-cli export onnx ... - Create a config file:
config.yml - Build the binary:
encoderfile build -f config.yml - Deploy anywhere:
./build/my-model.encoderfile serve
We welcome contributions! See CONTRIBUTING.md for guidelines.
# Clone the repository
git clone https://github.com/mozilla-ai/encoderfile.git
cd encoderfile
# Set up development environment
make setup
# Run tests
make test
# Build documentation - Check command with Raz
make docs-serveThis project is licensed under the Apache License 2.0 - see the LICENSE file for details.
- Built with ONNX Runtime
- Inspired by Llamafile
- Powered by the Hugging Face model ecosystem
- Discord - Join our community
- GitHub Issues - Report bugs or request features
- GitHub Discussions - Ask questions and share ideas