Skip to content

AutoTune Research Assistant - An intelligent conversational AI that helps researchers find optimal models, datasets, and fine-tuning strategies through multi-platform search across HuggingFace Hub, ArXiv papers, and Kaggle datasets.

Notifications You must be signed in to change notification settings

nhabibi/AutoTune-Research-Assistan

 
 

Repository files navigation

🚀 AutoTune Research Assistant

AutoTune Logo

An Intelligent AI Fine-Tuning Research Assistant

Powered by Gemini AI • Searches HuggingFace, ArXiv & Kaggle • Generates Comprehensive Reports

Python License Gemini AI


🌟 What is AutoTune?

AutoTune is an intelligent conversational AI assistant that helps researchers, developers, and AI enthusiasts find the perfect models, datasets, and approaches for their fine-tuning projects. Simply describe what you want to accomplish, and AutoTune will:

  • 🔍 Search across HuggingFace Hub, ArXiv papers, and Kaggle datasets
  • 🧠 Analyze your requirements using advanced AI
  • 📊 Generate comprehensive research reports with recommendations
  • 🎯 Provide actionable insights for your specific use case

✨ Key Features

🤖 Intelligent Analysis

  • Natural Language Understanding: Describe your project in plain English
  • Requirement Extraction: Automatically identifies task type, model size, performance needs
  • Smart Query Generation: Creates optimized search queries for each platform

🔍 Multi-Platform Search

  • HuggingFace Hub: Find pre-trained models with comprehensive metadata
  • ArXiv Papers: Discover latest research and SOTA methods
  • Kaggle Datasets: Locate relevant training data and benchmarks

📈 Advanced Intelligence

  • Intelligent Keyword Matching: Uses TF-IDF and cosine similarity for better results
  • Quality Scoring: Ranks results by downloads, citations, and relevance
  • Accumulated Learning: Improves search terms over multiple queries

📋 Comprehensive Reports

  • Model Recommendations: Top 3 models with pros/cons analysis
  • Dataset Suggestions: Curated datasets with quality metrics
  • Research Insights: Latest papers and SOTA developments
  • Implementation Strategy: Step-by-step approach for your project
  • Cost Analysis: Resource requirements and budget considerations

🚀 Quick Start

Prerequisites

pip install google-generativeai huggingface-hub requests pandas scikit-learn numpy

Basic Usage

from main import FineTuningAgent

# Initialize the assistant
agent = FineTuningAgent()

# Start interactive session
agent.start_conversation()

Example Interaction

🤖 Welcome to AutoTune Fine-Tuning Assistant!
💬 What would you like to fine-tune a model for? 
> I want to create a small model for mathematical reasoning

🔍 Analyzing your requirements...
📋 I understand you want to:
   • Task: reasoning
   • Model Size: small
   • Performance: medium

📊 Searching across HuggingFace, ArXiv, and Kaggle...
📝 Generating comprehensive research report...

🚀 Fine-Tuning Research Report
## 📋 Executive Summary
...

🛠️ Installation

Clone the Repository

git clone https://github.com/yourusername/autotune-research-assistant.git
cd autotune-research-assistant

Install Dependencies

pip install -r requirements.txt

Set Up API Keys

# Set your Gemini API key
export GEMINI_API_KEY="your_gemini_api_key_here"

# Optional: Set HuggingFace token for authenticated access
export HUGGINGFACE_TOKEN="your_hf_token_here"

📚 Usage Examples

1. Text Classification Project

agent = FineTuningAgent()
# Tell the agent: "I need a model for sentiment analysis on social media posts"

2. Code Generation Task

agent = FineTuningAgent()
# Tell the agent: "I want to fine-tune a model for Python code completion"

3. Multilingual Translation

agent = FineTuningAgent()
# Tell the agent: "I need a model for English to Persian translation"

🏗️ Architecture

AutoTune Research Assistant
├── 🤖 Main Agent (main.py)
│   ├── Requirement Analysis
│   ├── Query Generation
│   └── Report Generation
├── 🔍 Search Modules
│   ├── HuggingFace Search (huggingface_search.py)
│   ├── ArXiv Search (arxiv_search.py)
│   └── Kaggle Search (kaggle_search.py)
├── 🧠 Intelligence Layer
│   ├── Keyword Matcher (keyword_matcher.py)
│   └── Vocabulary System (vocabulary.py)
└── 📊 Generated Reports
    └── Fine-tuning Recommendations

🔧 Configuration

Environment Variables

# Required
GEMINI_API_KEY=your_gemini_api_key

# Optional
HUGGINGFACE_TOKEN=your_hf_token
KAGGLE_USERNAME=your_kaggle_username
KAGGLE_KEY=your_kaggle_key

Customization

  • Search Limits: Modify max_results in search functions
  • Quality Thresholds: Adjust filtering criteria
  • Report Templates: Customize report generation prompts

📊 Supported Tasks

Task Category Examples Supported
Text Classification Sentiment Analysis, Topic Classification
Text Generation Story Writing, Code Generation
Question Answering Reading Comprehension, Factual QA
Summarization Document Summarization, News Summarization
Translation Machine Translation, Multilingual
Reasoning Mathematical Reasoning, Logical Reasoning
Code Code Completion, Code Understanding
Vision Image Classification, Object Detection
Speech Speech Recognition, Text-to-Speech

🎯 Model Size Support

  • Small Models (<3B parameters): Mobile/laptop deployment
  • Medium Models (<7B parameters): Balanced performance
  • Large Models (>7B parameters): High performance, server deployment

📈 Performance Metrics

AutoTune evaluates models based on:

  • Download Count: Popularity and adoption
  • Citations: Research impact
  • Benchmark Scores: Performance metrics
  • Quality Score: Comprehensive evaluation (0-100)

🤝 Contributing

We welcome contributions! Here's how you can help:

🐛 Bug Reports

  • Use GitHub Issues to report bugs
  • Include error messages and steps to reproduce

💡 Feature Requests

  • Suggest new features via GitHub Issues
  • Describe the use case and expected behavior

🔧 Code Contributions

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature-name
  3. Make your changes
  4. Add tests if applicable
  5. Submit a pull request

📝 Documentation

  • Improve README sections
  • Add code examples
  • Translate to other languages

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🙏 Acknowledgments

  • Google Gemini AI for powerful language understanding
  • HuggingFace for the amazing model hub
  • ArXiv for open research papers
  • Kaggle for datasets and competitions
  • Open Source Community for inspiration and tools

📞 Support

  • GitHub Issues: For bugs and feature requests
  • Discussions: For questions and community support
  • Email: [email protected]

Made with ❤️ for the AI Research Community

⭐ Star this repo🐛 Report Bug💡 Request Feature


🇮🇷 فارسی

خوش آمدید به AutoTune Research Assistant

AutoTune یک دستیار هوشمند تحقیقاتی است که به شما کمک می‌کند بهترین مدل‌ها، دیتاست‌ها و روش‌های fine-tuning را برای پروژه‌های هوش مصنوعی خود پیدا کنید.

ویژگی‌های کلیدی:

  • 🔍 جستجوی هوشمند در HuggingFace، ArXiv و Kaggle
  • 🧠 تحلیل پیشرفته نیازهای شما با استفاده از Gemini AI
  • 📊 گزارش‌های جامع با توصیه‌های عملی
  • 🎯 پیشنهادات شخصی‌سازی شده برای پروژه شما

نحوه استفاده:

from main import FineTuningAgent
agent = FineTuningAgent()
agent.start_conversation()

مثال:

💬 چه کاری می‌خواهید با fine-tuning انجام دهید؟
> می‌خواهم یک مدل کوچک برای استدلال ریاضی بسازم

🔍 در حال تحلیل نیازهای شما...
📊 جستجو در HuggingFace، ArXiv و Kaggle...
📝 تولید گزارش تحقیقاتی جامع...

پشتیبانی:

  • برای گزارش باگ و درخواست ویژگی جدید از GitHub Issues استفاده کنید
  • برای سوالات و بحث‌های جامعه از Discussions استفاده کنید

با ❤️ برای جامعه تحقیقاتی هوش مصنوعی ساخته شده است


اگر از این پروژه خوشتان آمد، لطفاً آن را ستاره ⭐ کنید و نظرات خود را با ما در میان بگذارید!

About

AutoTune Research Assistant - An intelligent conversational AI that helps researchers find optimal models, datasets, and fine-tuning strategies through multi-platform search across HuggingFace Hub, ArXiv papers, and Kaggle datasets.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%