JAX-accelerated nuclear equation of state code and TOV solver - with support for automatic differentiation!
pip install jesterTOVWith optional dependencies:
pip install jesterTOV[examples] # For running example notebooks
pip install jesterTOV[dev] # For development (testing, pre-commit)
pip install jesterTOV[docs] # For building documentationOr install from source:
pip install git+https://github.com/nuclear-multimessenger-astronomy/jesterFor GPU support:
pip install "jax[cuda12_pip]" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html📚 Read the full documentation →
To build and view the documentation on your local machine:
# Install documentation dependencies
uv pip install -e ".[docs]"
# Build the documentation
uv run sphinx-build docs docs/_build/html
# Open in your browser
open docs/_build/html/index.html # macOS
xdg-open docs/_build/html/index.html # Linuxexamples/eos_tov.ipynb: Basic EOS and TOV solvingexamples/automatic_differentiation.ipynb: Gradient-based optimization
If you use jester in your work, please cite our paper!
@article{Wouters:2025zju,
author = "Wouters, Thibeau and Pang, Peter T. H. and Koehn, Hauke and Rose, Henrik and Somasundaram, Rahul and Tews, Ingo and Dietrich, Tim and Van Den Broeck, Chris",
title = "{Leveraging differentiable programming in the inverse problem of neutron stars}",
eprint = "2504.15893",
archivePrefix = "arXiv",
primaryClass = "astro-ph.HE",
reportNumber = "LA-UR-25-23486",
doi = "10.1103/v2y8-kxvx",
journal = "Phys. Rev. D",
volume = "112",
number = "4",
pages = "043037",
year = "2025"
}