Skip to content

q8e4/Forecasting-Hourly-Energy-Consumption-using-ARH-1-

Repository files navigation

Forecasting-Hourly-Energy-Consumption-using-ARH-1-

"Forecasting Hourly Energy Consumption: Is Functional Data Analysis Worth the Complexity?"
Second Reader - Zhenisbek Assylbekov,
Supervisor - Rustem Takhanov,
Submitted By - Rustem Kaliyev

This repository accompanies thesis, “Forecasting Hourly Energy Consumption: Is Functional Data Analysis Worth the Complexity?” It contains the experimental pipeline used to compare a functional autoregressive Hilbertian model (ARH (1)), a classical PCA + VAR (1) model, and several modern deep‑learning baselines (NHITS, LSTM, and TimeGPT) on PJM’s (Pennsylvania-New Jersey-Maryland Interconnection) hourly load data.

Key takeaway: In a clean, densely–sampled setting the simple PCA + VAR (1) approach matches the accuracy of ARH (1) (~2 % sMAPE) and outperforms deeper neural models.


Repository structure

dataset/ PJM Hourly Load CSVs (Oct 2023 – Sep 2024, five zones: AP, DOM, PN, JC, RTO).
preds/ Saved forecast tables produced by the notebooks.
ARH.ipynb Implementation of the functional ARH (1), and classical PCA+VAR(1) model.
ARH_VAR_comparison.R Comparison of ARH (1) and PCA+VAR(1) models across varying number of components.
NNmodels.ipynb TimeGPT, NHITS & LSTM experiments via Nixtla NeuralForecast.
evaluation.ipynb Prediction tables, computes MAE / MSE / sMAPE, and produces comparison plots.

Results snapshot

A concise comparison (full tables in evaluation.ipynb):

Model Avg sMAPE (%) Avg MAE Avg MSE
ARH (1) 1.91 310 1.9 × 10⁷
PCA + VAR (1) 1.90 305 1.8 × 10⁷
NHITS 2.15 342 2.2 × 10⁷
LSTM 3.01 610 3.6 × 10⁷
TimeGPT 1.97 318 2.0 × 10⁷

Data

The cleaned, timezone‑aligned CSVs live in dataset/. Included for convenience.


Re‑using the code on your data

  1. Replace the CSVs in dataset/ with your own hourly series.
  2. Adjust the preprocessing cell at the top of each notebook (path + column names).
  3. Re‑run the notebooks — all downstream steps are parameterised.

Acknowledgements

  • Special thanks to Amantay Nurlanuly, third-year Economics student for carrying out an experiment in section 5.
  • Nixtla for NeuralForecast and TimeGPT APIs.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published