-0:{"P":null,"b":"1fWYMgBfLm4dVIWAzGc5z","p":"/model-leaderboard-fork","c":["","faq",""],"i":false,"f":[[["",{"children":["faq",{"children":["__PAGE__",{}]}]},"$undefined","$undefined",true],["",["$","$1","c",{"children":[[["$","link","0",{"rel":"stylesheet","href":"/model-leaderboard-fork/_next/static/css/cedd3b9f0077aef5.css","precedence":"next","crossOrigin":"$undefined","nonce":"$undefined"}]],["$","html",null,{"lang":"en","suppressHydrationWarning":true,"className":"h-full","children":[["$","head",null,{"children":[["$","link",null,{"rel":"icon","href":"./favicon.ico","sizes":"any"}],["$","link",null,{"rel":"icon","href":"./favicon.svg","type":"image/svg+xml"}],["$","link",null,{"rel":"icon","href":"./favicon.png","type":"image/png"}],["$","link",null,{"rel":"apple-touch-icon","href":"./apple-touch-icon.png"}]]}],["$","body",null,{"className":"flex flex-col min-h-full __className_b537e5","children":[["$","$L2",null,{"attribute":"class","defaultTheme":"system","enableSystem":true,"disableTransitionOnChange":true,"children":[["$","div",null,{"className":"orb-container","children":["$","div",null,{"className":"orb orb-1"}]}],["$","$L3",null,{}],["$","main",null,{"className":"flex-1 flex flex-col gap-4 sm:gap-10","children":["$","$L4",null,{"parallelRouterKey":"children","error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":[["$","div",null,{"children":[["$","h2",null,{"children":"Not Found"}],["$","p",null,{"children":"Could not find requested resource"}]]}],[]],"forbidden":"$undefined","unauthorized":"$undefined"}]}],["$","footer",null,{"className":"py-4","children":["$","div",null,{"className":"container-base","children":["$","div",null,{"className":"flex justify-between","children":["$","p",null,{"className":"text-xs text-muted-foreground","children":["© ",2025," Roboflow, Inc. All rights reserved."]}]}]}]}]]}],["$","$L6",null,{"gaId":"G-KH26XBHQR9"}]]}]]}]]}],{"children":["faq",["$","$1","c",{"children":[null,["$","$L4",null,{"parallelRouterKey":"children","error":"$undefined","errorStyles":"$undefined","errorScripts":"$undefined","template":["$","$L5",null,{}],"templateStyles":"$undefined","templateScripts":"$undefined","notFound":"$undefined","forbidden":"$undefined","unauthorized":"$undefined"}]]}],{"children":["__PAGE__",["$","$1","c",{"children":[[["$","section",null,{"className":"pt-6 sm:pt-12","children":["$","div",null,{"className":"container-narrow space-y-6","children":["$","div",null,{"className":"space-y-6","children":[["$","h1",null,{"className":"text-3xl sm:text-4xl","children":"Frequently Asked Questions"}],["$","h2",null,{"className":"prose prose-sm","children":"Get answers to common questions about benchmarks, datasets, metrics, and how the leaderboard works."}]]}]}]}],["$","section",null,{"children":["$","div",null,{"className":"container-narrow","children":["$","$L7",null,{"type":"single","collapsible":true,"children":[["$","$L8",null,{"value":"item-1","children":[["$","$L9",null,{"className":"text-lg font-medium hover:no-underline","children":"What is mAP?"}],["$","$La",null,{"className":"prose prose-sm","children":["$","p",null,{"children":"Mean Average Precision (mAP) is a metric used to evaluate the object detection models. It is the average of the precision-recall curves at different IoU thresholds."}]}]]}],["$","$L8",null,{"value":"item-2","children":[["$","$L9",null,{"className":"text-lg font-medium hover:no-underline","children":"What is the difference between mAP 50, mAP 75 and mAP 50:95?"}],["$","$La",null,{"className":"prose prose-sm","children":["$","p",null,{"children":["mAP can be evaluated at multiple ",["$","$Lb",null,{"href":"https://blog.roboflow.com/mean-average-precision/#:~:text=The%20Intersection%20over%20Union","target":"_blank","className":"link-primary","children":"IoU thresholds"}],". mAP 50, for example, evaluates it while considering detections that overlap with an IoU of 0.5 or greater - everything else is a false positive. mAP 50:95 is an average of all considered IoU thresholds - 0.5, 0.6, … 0.8, 0.9, 0.95. It is the primary metric showing how well the model performs, across increasing levels of rigour."]}]}]]}],["$","$L8",null,{"value":"item-3","children":[["$","$L9",null,{"className":"text-lg font-medium hover:no-underline","children":"What do the small, medium, and large labels next to the mAP scores mean?"}],["$","$La",null,{"className":"prose prose-sm","children":["$","p",null,{"children":["The small, medium, and large labels next to the mAP scores indicate the size of the objects in the images. This is important because object detection models can struggle with detecting small objects. The COCO dataset has three categories of object sizes: small (less than 32x32 pixels), medium (between 32x32 and 96x96 pixels), and large (greater than 96x96 pixels). You can learn more about the definition on the ","$Lc","."]}]}]]}],"$Ld","$Le","$Lf","$L10","$L11"]}]}]}]],null,"$L12"]}],{},null,false]},null,false]},null,false],"$L13",false]],"m":"$undefined","G":["$14",[]],"s":false,"S":true}
0 commit comments