Skip to content

sangeet01/khukuri

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Khukuri Virtual Lab

AI-powered drug discovery platform with modular architecture.

Features

  • Target Discovery: PPI network analysis, target ranking, literature mining
  • Molecule Design: AI-powered generation, property optimization, fragment-based design
  • Molecular Docking: AutoDock Vina integration, binding site detection, pose analysis
  • ADMET Prediction: Drug-likeness, toxicity, pharmacokinetics
  • Resistance Prediction: Multi-target strategies, evolution simulation
  • Retrosynthesis: Route planning, synthetic accessibility scoring
  • Multi-Agent System: AI agents for autonomous drug discovery workflows

Quick Start

Installation

# Install dependencies
pip install -r requirements.txt


# Setup AutoDock Vina (Unix/Linux/macOS)
bash scripts/setup_vina.sh

Quick Test

python scripts/quick_test.py

Run Tests

python -m pytest tests/ -v

Project Structure

khukuri/
├── src/                    # Source code (9 modules, 39 files)
│   ├── core/              # Logging, validation, scoring
│   ├── target_discovery/  # Network analysis, target ranking
│   ├── molecule_design/   # Generation, optimization
│   ├── docking/           # Vina wrapper, pose analysis
│   ├── admet/             # Properties, toxicity, PK/PD
│   ├── resistance/        # Prediction, multi-target
│   ├── synthesis/         # Retrosynthesis, SA scoring
│   ├── agents/            # AI agents, orchestrator
│   └── workflows/         # End-to-end pipelines
├── tests/                 # Test suite (13 files)
├── config/                # Configuration files
├── scripts/               # Automation scripts
└── examples/              # Usage examples

Usage Example

from src.workflows import run_autonomous_discovery

# Run autonomous drug discovery
results = run_autonomous_discovery(
    disease="tuberculosis",
    target_genes=["inhA", "katG"],
    num_candidates=10
)

Dependencies

  • RDKit >= 2022.09.1
  • NetworkX >= 2.6.0
  • BioPython >= 1.79
  • NumPy, Pandas, SciPy
  • PyYAML >= 6.0
  • Requests >= 2.26.0
  • python-louvain >= 0.16
  • OpenAI >= 1.0.0 (optional)

Note: Work in Progress

About

virtual lab for antibiotics

Resources

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages