AI-powered drug discovery platform with modular architecture.
- Target Discovery: PPI network analysis, target ranking, literature mining
- Molecule Design: AI-powered generation, property optimization, fragment-based design
- Molecular Docking: AutoDock Vina integration, binding site detection, pose analysis
- ADMET Prediction: Drug-likeness, toxicity, pharmacokinetics
- Resistance Prediction: Multi-target strategies, evolution simulation
- Retrosynthesis: Route planning, synthetic accessibility scoring
- Multi-Agent System: AI agents for autonomous drug discovery workflows
# Install dependencies
pip install -r requirements.txt
# Setup AutoDock Vina (Unix/Linux/macOS)
bash scripts/setup_vina.shpython scripts/quick_test.pypython -m pytest tests/ -vkhukuri/
├── src/ # Source code (9 modules, 39 files)
│ ├── core/ # Logging, validation, scoring
│ ├── target_discovery/ # Network analysis, target ranking
│ ├── molecule_design/ # Generation, optimization
│ ├── docking/ # Vina wrapper, pose analysis
│ ├── admet/ # Properties, toxicity, PK/PD
│ ├── resistance/ # Prediction, multi-target
│ ├── synthesis/ # Retrosynthesis, SA scoring
│ ├── agents/ # AI agents, orchestrator
│ └── workflows/ # End-to-end pipelines
├── tests/ # Test suite (13 files)
├── config/ # Configuration files
├── scripts/ # Automation scripts
└── examples/ # Usage examples
from src.workflows import run_autonomous_discovery
# Run autonomous drug discovery
results = run_autonomous_discovery(
disease="tuberculosis",
target_genes=["inhA", "katG"],
num_candidates=10
)- RDKit >= 2022.09.1
- NetworkX >= 2.6.0
- BioPython >= 1.79
- NumPy, Pandas, SciPy
- PyYAML >= 6.0
- Requests >= 2.26.0
- python-louvain >= 0.16
- OpenAI >= 1.0.0 (optional)
Note: Work in Progress