Find python module's import dependencies.
import_deps is based on ast module from standard library,
so the modules being analysed are not executed.
pip install import_deps
import_deps is designed to track only imports within a known set of package and modules.
Given a package with the modules:
foo/__init__.pyfoo/foo_a.pyfoo/foo_b.pyfoo/foo_c.py
Where foo_a.py has the following imports:
from . import foo_b
from .foo_c import obj_c> import_deps foo/foo_a.py
foo.foo_b
foo.foo_c> import_deps foo/
foo.__init__:
foo.foo_a:
foo.foo_b
foo.foo_c
foo.foo_b:
foo.foo_c:
foo.__init__Use the --json flag to get results in JSON format:
> import_deps foo/foo_a.py --json
[
{
"module": "foo.foo_a",
"imports": [
"foo.foo_b",
"foo.foo_c"
]
}
]For package analysis with JSON:
> import_deps foo/ --json
[
{
"module": "foo.__init__",
"imports": []
},
{
"module": "foo.foo_a",
"imports": [
"foo.foo_b",
"foo.foo_c"
]
},
...
]Use the --dot flag to generate a dependency graph in DOT format for graphviz:
> import_deps foo/ --dot
digraph imports {
"foo.foo_a" -> "foo.foo_b";
"foo.foo_a" -> "foo.foo_c";
"foo.foo_c" -> "foo.__init__";
"foo.foo_d" -> "foo.foo_c";
"foo.sub.sub_a" -> "foo.foo_d";
}You can visualize the graph using graphviz:
> import_deps foo/ --dot | dot -Tpng > dependencies.png
> import_deps foo/ --dot | dot -Tsvg > dependencies.svgThe DOT output features:
- Modules displayed as light blue rounded boxes
- Packages grouped with dashed gray borders (clearly distinct from arrows)
- Sub-packages nested hierarchically
- Circular dependencies highlighted in bold red arrows
Use the --check flag to detect circular dependencies and exit with error if any are found:
> import_deps foo/ --check
No circular dependencies found.
# If cycles are detected:
> import_deps foo/ --check
Circular dependencies detected:
foo.module_a -> foo.module_b
foo.module_b -> foo.module_a
# (exits with code 1)This is useful for CI/CD pipelines to enforce DAG (Directed Acyclic Graph) structure in your codebase.
Use the --sort flag to output modules in topological order (dependencies before dependents):
> import_deps foo/ --sort
foo.__init__
foo.foo_c
foo.foo_b
foo.foo_d
foo.foo_a
foo.sub.sub_a
foo.sub.__init__The output guarantees that:
- Dependencies always appear before modules that import them
- When multiple modules become available, those with higher rank are prioritized
- Rank is defined as the longest path from any leaf module (module that imports but isn't imported)
- When multiple modules have the same rank, FIFO order is maintained
- Circular dependencies are handled gracefully (see below)
- Isolated modules (no dependencies, no dependents) appear last
- Useful for initialization order, build systems, or understanding module hierarchy
For example, if you have A -> B -> C -> D and B -> E (where A -> B means "A imports B"):
- Ranks: A=1 (leaf), B=2, C=3, E=3, D=4
- Output:
D, E, C, B, A - D comes first (rank 4, highest)
- E comes before C (both rank 3, FIFO order)
- Then B and A in dependency order
When circular dependencies exist, the sort handles them gracefully:
# If you have: A -> C -> B -> A (circular); D -> B; E (isolated)
# (where A imports C, C imports B, B imports A, D imports B, E imports nothing)
> import_deps circular_package/ --sort
A
B
C
D
EThe ordering is:
- A, B, C first (nodes in the cycle, sorted alphabetically)
- D next (imports B which is in cycle, so comes after cycle nodes)
- E last (isolated node with no connections)
import pathlib
from import_deps import ModuleSet
# First initialise a ModuleSet instance with a list str of modules to track
pkg_paths = pathlib.Path('foo').glob('**/*.py')
module_set = ModuleSet([str(p) for p in pkg_paths])
# then you can get the set of imports
for imported in module_set.mod_imports('foo.foo_a'):
print(imported)
# foo.foo_c
# foo.foo_bYou can get a list of all modules in a ModuleSet by path or module's full qualified name.
by_path
Note that key for by_path must be exactly the as provided on ModuleSet initialization.
for mod in sorted(module_set.by_path.keys()):
print(mod)
# results in:
# foo/__init__.py
# foo/foo_a.py
# foo/foo_b.py
# foo/foo_c.pyby_name
for mod in sorted(module_set.by_name.keys()):
print(mod)
# results in:
# foo.__init__
# foo.foo_a
# foo.foo_b
# foo.foo_cast_imports is a low level function that returns a list of entries for import statement in the module.
The parameter file_path can be a string or pathlib.Path instance.
The return value is a list of 4-tuple items with values:
- module name (of the "from" statement,
Noneif a plainimport) - object name
- as name
- level of relative import (number of parent,
Noneif plainimport)
from import_deps import ast_imports
ast_imports('foo.py')# import datetime
(None, 'datetime', None, None)
# from datetime import time
('datetime', 'time', None, 0)
# from datetime import datetime as dt
('datetime', 'datetime', 'dt', 0)
# from .. import bar
(None, 'bar', None, 2)
# from .acme import baz
('acme', 'baz', None, 1)
# note that a single statement will contain one entry per imported "name"
# from datetime import time, timedelta
('datetime', 'time', None, 0)
('datetime', 'timedelta', None, 0)