Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 7 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,3 +7,10 @@ and this project adheres to [Semantic Versioning][].

[keep a changelog]: https://keepachangelog.com/en/1.0.0/
[semantic versioning]: https://semver.org/spec/v2.0.0.html

## [0.1.0] - TBA

### Added

- support for scvi-tools >= 1.0 (#37)
- support for multiple NB lossed (#34)
3 changes: 2 additions & 1 deletion src/multigrate/model/_multivae.py
Original file line number Diff line number Diff line change
Expand Up @@ -290,6 +290,7 @@ def train(
weight_decay: float = 1e-3,
eps: float = 1e-08,
early_stopping: bool = True,
early_stopping_patience: int = 10,
# save_best: bool = True,
check_val_every_n_epoch: int | None = None,
n_epochs_kl_warmup: int | None = None,
Expand Down Expand Up @@ -419,7 +420,7 @@ def train(
early_stopping=early_stopping,
check_val_every_n_epoch=check_val_every_n_epoch,
early_stopping_monitor="reconstruction_loss_validation",
early_stopping_patience=10,
early_stopping_patience=early_stopping_patience,
# enable_checkpointing=enable_checkpointing,
**kwargs,
)
Expand Down
14 changes: 8 additions & 6 deletions src/multigrate/module/_multivae_torch.py
Original file line number Diff line number Diff line change
Expand Up @@ -181,11 +181,12 @@ def __init__(

# assume for now that can only use nb/zinb once, i.e. for RNA-seq modality
# TODO: add check for multiple nb/zinb losses given
self.theta = None
self.theta = []
for i, loss in enumerate(losses):
if loss in ["nb", "zinb"]:
self.theta = torch.nn.Parameter(torch.randn(self.input_dims[i], num_groups))
break
self.theta.append(torch.nn.Parameter(torch.randn(self.input_dims[i], num_groups)))
else:
self.theta.append([])

# modality encoders
cond_dim_enc = cond_dim * (len(cat_covariate_dims) + len(cont_covariate_dims)) if self.condition_encoders else 0
Expand Down Expand Up @@ -307,6 +308,7 @@ def _h_to_x(self, h, i):
return x

def _product_of_experts(self, mus, logvars, masks):
# print(mus, logvars, masks)
vars = torch.exp(logvars)
masks = masks.unsqueeze(-1).repeat(1, 1, vars.shape[-1])
mus_joint = torch.sum(mus * masks / vars, dim=1)
Expand Down Expand Up @@ -658,7 +660,7 @@ def _calc_recon_loss(self, xs, rs, losses, group, size_factor, loss_coefs, masks
dec_mean = r
size_factor_view = size_factor.expand(dec_mean.size(0), dec_mean.size(1))
dec_mean = dec_mean * size_factor_view
dispersion = self.theta.T[group.squeeze().long()]
dispersion = self.theta[i].to(self.device).T[group.squeeze().long()]
dispersion = torch.exp(dispersion)
nb_loss = torch.sum(NegativeBinomial(mu=dec_mean, theta=dispersion).log_prob(x), dim=-1)
nb_loss = loss_coefs[str(i)] * nb_loss
Expand All @@ -667,9 +669,9 @@ def _calc_recon_loss(self, xs, rs, losses, group, size_factor, loss_coefs, masks
dec_mean, dec_dropout = r
dec_mean = dec_mean.squeeze()
dec_dropout = dec_dropout.squeeze()
size_factor_view = size_factor.unsqueeze(1).expand(dec_mean.size(0), dec_mean.size(1))
size_factor_view = size_factor.expand(dec_mean.size(0), dec_mean.size(1))
dec_mean = dec_mean * size_factor_view
dispersion = self.theta.T[group.squeeze().long()]
dispersion = self.theta[i].to(self.device).T[group.squeeze().long()]
dispersion = torch.exp(dispersion)
zinb_loss = torch.sum(
ZeroInflatedNegativeBinomial(mu=dec_mean, theta=dispersion, zi_logits=dec_dropout).log_prob(x),
Expand Down
Loading